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A B S T R A C T

Objectives: To develop and validate a deep learning model using multimodal PET/CT imaging for detecting and 
classifying focal liver lesions (FLL).
Methods: This study included 185 patients who underwent 18F-FDG PET/CT imaging at our institution from 
March 2022 to February 2023. We analyzed serological data and imaging. Liver lesions were segmented on PET 
and CT, serving as the "reference standard". Deep learning models were trained using PET and CT images to 
generate predicted segmentations and classify lesion nature. Model performance was evaluated by comparing the 
predicted segmentations with the reference segmentations, using metrics such as Dice, Precision, Recall, F1- 
score, ROC, and AUC, and compared it with physician diagnoses.
Results: This study finally included 150 patients, comprising 46 patients with benign liver nodules, 51 patients 
with malignant liver nodules, and 53 patients with no FLLs. Significant differences were observed among groups 
for age, AST, ALP, GGT, AFP, CA19–9and CEA. On the validation set, the Dice coefficient of the model was 0.740. 
For the normal group, the recall was 0.918, precision was 0.904, F1-score was 0.909, and AUC was 0.976. For the 
benign group, the recall was 0.869, precision was 0.862, F1-score was 0.863, and AUC was 0.928. For the 
malignant group, the recall was 0.858, precision was 0.914, F1-score was 0.883, and AUC was 0.979. The 
model’s overall diagnostic performance was between that of junior and senior physician.
Conclusion: This deep learning model demonstrated high sensitivity in detecting FLLs and effectively differen-
tiated between benign and malignant lesions.

1. Introduction

Liver cancer is the third leading cause of cancer-related deaths 
globally. According to reports, in 2020, the global estimated incidence 
of liver cancer was approximately 905,700 cases. It is projected that the 
annual number of new liver cancer cases will increase by 55.0 % be-
tween 2020 and 2040 [1,2]. By 2025, the global incidence of liver 
cancer is expected to exceed one million [3], indicating that liver cancer 
remains a global health challenge.In terms of diagnosis, it is crucial to 
differentiate liver cancer from other focal liver lesions (FLL) such as 
hemangiomas, focal nodular hyperplasia, and liver cysts. Early detection 
and accurate diagnosis of FLL are essential for treatment and prognosis. 
Liver biopsy is considered the gold standard for determining the nature 
of FLL. However, this method has drawbacks including invasiveness, 

risks of procedure-related complications, and sampling errors [4]. In 
recent years, imaging techniques such as ultrasound and CT have been 
widely used in the diagnosis of FLL due to their non-invasive nature and 
ease of use [5].

Among various imaging modalities, PET/CT has unique value in 
tumor detection. 18F-fluorodeoxyglucose (18F-FDG) PET/CT is a mo-
lecular imaging technique that exhibits high sensitivity and specificity in 
tumor detection. CT provides anatomical localization information, while 
18F-FDG PET provides information on lesion glucose metabolism, 
reflecting functional and metabolic characteristics [6,7]. However, the 
normal liver parenchyma exhibits a certain degree of 18F-FDG uptake, 
which can make it challenging to distinguish between physiological 
uptake and pathological lesions, particularly when the lesions are not 
well-defined. Additionally, although most malignant tumors show high 
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18F-FDG uptake, some tumors may exhibit negative uptake, while 
benign lesions may exhibit positive uptake [8]. The diagnosis based 
solely on visual analysis is prone to missed or misdiagnosis, as it can be 
subjectively influenced by the clinical experience and expertise of the 
physician [9].

In recent years, there have been significant advancements in the 
application of artificial intelligence (AI) in the field of medicine, with 
applications in disease prediction, diagnosis, prognosis, and treatment 
response assessment [10]. Deep learning (DL), a subfield of AI, can 
automatically extract and learn data features from complex nonlinear 
processes based on neural network structures. It has been widely applied 
in the field of clinical medical imaging. DL can automatically extract 
features from images for analysis, enabling localization, segmentation, 
and classification of image targets, and demonstrating accuracy that is 
on par with or even exceeds human performance [11,12].

There have been studies on the application of DL in the liver [13–15]. 
Wang et al. [16] utilized ResNet18 to construct a multimodal model 
incorporating both CT and MRI images, demonstrating strong capabil-
ities in preoperatively predicting microvascular invasion of hepatocel-
lular carcinoma. The validated multimodal model achieved an AUC of 
0.819, outperforming the single-modality models using CT or MRI alone. 
Lai et al. [17] employed DL to extract and integrate 18F-FDG PET/CT 
images of patients to predict overall survival in liver cancer patients 
before liver transplantation. The study found that the model based on 
PET/CT images achieved a sensitivity of 0.571, exhibiting better per-
formance than the model based solely on CT images.

Currently, there is a lack of relevant reports on the application of DL 
in the detection and classification of liver lesions through the fusion of 
multimodal PET/CT images. Therefore, this study proposes a DL model 
based on multimodal PET/CT images to evaluate its performance in the 
detection and diagnosis of FLL.

2. Methods

2.1. Patients

This retrospective study was approved by the Institutional Review 
Board, and the requirement for informed consent was waived. All pro-
cedures were performed in accordance with the relevant guidelines and 

regulations. Collect the patient’s medical history and serological data for 
analysis, including whether there is a history of hepatitis, smoking, 
alcohol consumption, and diabetes mellitus. Measure the levels of tumor 
markers such as alpha-fetoprotein (AFP), Carbohydrate antigen 19–9 
(CA19–9), and Carcinoembryonic Antigen (CEA). As well as liver func-
tion parameters including serum albumin (ALB), alanine aminotrans-
ferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), 
gamma-glutamyl transferase (GGT), and total bilirubin (TB). The study 
utilized a PET/CT scanner (Discovery 710, GE) to acquire whole-body 
images. Patients fasted for at least 6 hours prior to the scan and un-
derwent 18F-FDG administration, with imaging obtained approximately 
60 minutes after tracer injection.

As shown in Fig. 1, this study included 185 patients who underwent 
whole-body 18F-FDG PET/CT imaging at our hospital from March 2022 
to February 2023. The data were anonymized. Patients who met the 
following criteria were included in the benign lesion group: the presence 
of at least one FLL in the images, diagnosed as a benign nodule based on 
pathological analysis or a combination of typical imaging features and 
clinical data. Patients who met the following criteria were included in 
the malignant lesion group: the presence of at least one FLL in the im-
ages, diagnosed as a malignant nodule based on pathological analysis or 
a combination of typical imaging features and clinical data. Patients 
who met the following criteria were included in the normal group: no 
FLL observed in the images. Exclusion criteria were as follows: patients 
who received relevant treatments for liver lesions prior to the exami-
nation, including transcatheter arterial chemoembolization, surgery, 
radiofrequency ablation, systemic chemotherapy, etc.; patients with a 
history of liver resection or liver transplantation; poor image quality. 
Based on these criteria, a total of 46 patients with benign liver nodules, 
51 patients with malignant liver nodules, and 53 patients without FLLs 
were included in the study. The study framework is shown in Fig. 2.

2.2. Lesion segmentation

The CT and PET images were processed in 3D Slicer (https://www. 
slicer.org) in DICOM format, with the imaging range from the dia-
phragm level to the pubic symphysis level. Each PET slice was 
256 × 256 pixels in size, and each CT slice was 512 × 512 pixels in size. 
The region of the liver lesions in each CT and PET image layer was 

Fig. 1. A total of 185 patients who underwent 18F-FDG PET/CT were studied, 150 of whom were eventually included in the analysis.
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segmented, excluding large blood vessels and bile ducts, and defined as 
the "reference standard" for the lesions. This process was completed by a 
resident physician and reviewed by two nuclear medicine physicians 
with over 20 years of experience.

2.3. Deep learning model training

The architecture of the DL model is shown in Fig. 3. When using 
multimodal data for segmentation or detection tasks, a common 
approach is to use multiple encoder branches to extract features sepa-
rately from each modality. In this method, PET and CT images cannot 
benefit from each other during the feature extraction process. Therefore, 
this study propose the Shared Down Block (SDB) module to help the 
encoder branches improve the effectiveness of feature extraction. The 
model utilized the SDB to map the PET-CT feature maps to the same 
spatial Region of Interest (ROI), which can maintain spatial and struc-
tural consistency. The SDB module performs segmentation on the input 

feature maps and then applies separate downsampling to each branch, 
which not only preserves more spatial information but also enhances the 
model’s ability to learn features from different modalities. This 
approach allows the model to perform feature extraction and fusion for 
both CT and PET images simultaneously when processing these multi-
modal images. Through this module, the CT features can help remove 
some false positives in the PET feature maps, while the PET features can 
help detect lesions that are difficult to identify in the CT.

The encoder branches have independent encoder blocks and the 
same SDB for PET-CT feature extraction. The model first reduce the size 
of the feature maps through 2 × 2 convolution, and then reduce the 
number of filters through 1 × 1 convolution, which also promotes cross 
PET-CT channel information interaction and improves the model’s 
nonlinear expression. During the training process, the weights of the 
SDB are updated twice per epoch. When the input to the SDB is from 
PET, the output of the SDB can contain some corresponding CT infor-
mation, and vice versa. This also means that the output of each SDB can 

Fig. 2. The framework of the study. Abbreviation: FLL, Focal Liver Lesion.

Fig. 3. The architecture of the deep learning model. Abbreviation: SDB, Shared Down Block.
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represent information from both modalities (PET and CT).
In the expansive path of UNet++, the nested skip connections further 

promote the combination of multi-scale features from the contracting 
path with the upsampled features. This multilevel feature fusion strategy 
enables the model to not only capture the detailed information in the 
images but also understand the contextual information, thereby 
providing more accurate predictions during the segmentation process. In 
this way, UNet++ can effectively handle noise and complex structures 
in medical images, particularly when dealing with highly heterogeneous 
lesion regions. Through end-to-end training, UNet++ can learn to 
extract fine-grained segmentation maps from the input multimodal 
medical images. During the training process, the model is optimized by 
minimizing a combination of segmentation loss and classification loss, 
which allows the model to not only perform accurate segmentation but 
also identify different pathological states in the multimodal data.

To add classification prediction capabilities on top of the UNet++

architecture, the model embedded classification heads at one or more 
selected levels within the expansive pathway. These levels are typically 
located in the middle part of the network in order to capture rich image 
features. For each selected level, we extract global information from the 
feature maps using global average pooling or global max pooling, 
forming a fixed-length feature vector. These feature vectors are then 
concatenated and processed through a series of fully connected layers to 
learn feature representations suitable for the classification task. Finally, 
an output layer with size corresponding to the number of classes in the 
classification task is used, and the results are output using a Softmax 
activation function. To reduce overfitting, this study employed K-Fold 
cross validation, where all the data were divided into training and 
validation sets at a 4:1 ratio to conduct the training.

2.4. Reader study

Two nuclear medicine physicians (a junior physician with 3 years of 
experience and a senior physician with 20 years of experience) did not 
participate in the model development or data processing. They were 
provided with imaging data consistent with the model, without knowl-
edge of any patient information, to assess the nature of the findings. This 
allowed for a comparison of the performance between the model and the 
physicians in classifying FLLs.

2.5. Evaluation

In this study, the Dice similarity coefficient (Dice) was used to 
evaluate the performance of the model in detecting lesions. It measures 
the similarity between the pre-segmented ground truth mask and the 
predicted mask. The performance of the model in lesion classification 
was assessed using precision, recall, F1-score, receiver operating char-
acteristic curve (ROC) and the area under the receiver operating char-
acteristic curve (AUC). Based on the reference values obtained from 
expert annotations, the predictions were classified as true positives (TP), 
false positives (FP), true negatives (TN), and false negatives (FN). The 
formulas for calculating precision, recall, and F1-score are as follows: 

Precision =
TP

TP + FP
,Recall =

TP
TP + FN

, F1

=
2 ∗ Precision ∗ Recall

Precision + Recall 

The diagnostic performance of physicians and the model was eval-
uated using sensitivity, specificity, and accuracy. Sensitivity is equal to 
recall as defined above, and specificity and accuracy are calculated as 
follows: 

Specificity =
TN

TN + FP
,Accuracy =

TP + TN
TP + FP + TN + FN 

2.6. Statistical analysis

The statistical analysis was performed using IBM SPSS Statistics 25.0 
software (IBM Corp., Armonk, NY, USA). The Shapiro-Wilk test was used 
to assess the normality of the distribution. For data with a normal dis-
tribution, the Student’s t-test was used for analysis. Otherwise, the 
Mann-Whitney U test was applied. p-value less than 0.05 is considered to 
indicate a significant difference.

3. Results

3.1. Patient clinical characteristics

This study ultimately included 150 patients (mean [SD] age, 56.7 
[13.2] years; 68 males [45.3 %]). Patients were categorized into three 
groups based on pathology and typical imaging features: benign, ma-
lignancy, and normal. Table 1 presents the clinical characteristics of the 
patients. Significant differences were observed among the three groups 
in terms of age, AST, ALP, GGT, AFP, CA19–9, and CEA.

3.2. Evaluation of deep learning model performance

Fig. 4 displays the ROC for the validation set. Table 2 displays the 
performance of the model in the five-fold cross-validation. The Dice 
coefficient for the training set was 0.760 (95 % CI, 0.717–0.803), and for 
the validation set, it was 0.740 (95 % CI, 0.706–0.774). In the validation 
set, the recall for the normal group was 0.918 (0.865–0.972), precision 
was 0.904 (0.826–0.981), F1 score was 0.909 (0.885–0.933), and AUC 
was 0.976 (0.969–0.983). For the benign group in the validation set, the 
recall was 0.869 (0.798–0.940), precision was 0.862 (0.801–0.922), F1 
score was 0.863 (0.837–0.889), and AUC was 0.928 (0.894–0.963). For 
the malignant group in the validation set, the recall was 0.858 
(0.789–0.927), precision was 0.914 (0.870–0.958), F1 score was 0.883 
(0.863–0.904), and AUC was 0.979 (0.972–0.986).

Fig. 5 shows the case of lesions detected by the model, where A-E, F-J 
and K-O are images of normal, benign and malignant patients respec-
tively. It includes CT images (A, F, K), PET images (B, G, L), 

Table 1 
Patient clinical characteristics.

Characteristics Benign 
(n = 46)

Malignant 
(n = 51)

Normal 
(n = 53)

p-value

Male(n[%]) 26 (56.5) 25 (49.0) 17 (32.1) 
Hepatitis(n[%]) 3 (6.5) 8 (15.7) 1 (1.9) 
Smoking history 
(n[%])

9 (19.6) 5 (9.8) 3 (5.7) 

Alcohol history(n 
[%])

2 (4.3) 5 (9.8) 1 (1.9) 

Diabetes 2 (27.2) 12 (23.5) 2 (3.8) 
Age,years 57.0 ± 15.5 61.8 ± 11.5 47.0 ± 8.3 0.001*
ALB, g/L 38.3 ± 4.9 37.7 ± 4.8 37.2 ± 5.6 0.307
ALT, U/L 14.0 

(10.0–25.0)
20.0 
(11.0–32.0)

19.9 
(13.3–37.3)

0.239

AST, U/L 29.0 
(19.0–51.0)

22.5 
(15.0–32.5)

22.5 
(15–32.5)

0.001*

ALP, U/L 63.0 
(52.0–89.0)

110.0 
(73.0–159.0)

68 
(51.5–84.5)

<0.001*

GGT, U/L 23.0 
(15.0–32.7)

51.0 
(26.0–146.0)

28 
(20.5–60.3)

0.001*

TB, umol/L 8.1 
(5.0–14.2)

11.3 
(8.0–16.8)

7.7 
(5.4–12.0)

0.010

AFP, ug/L 1.9 (1.4–3.5) 2.9 (2.2–4.8) 2.2 (1.5–3.3) 0.005*
CA19–9, U/ml 8.2 

(2.6–19.6)
18.5 
(3.9–477.7)

9.4 
(3.6–17.8)

0.017*

CEA, ug/L 2.3 (1.6–4.8) 4.2 (2.1–14.6) 2.3 (0.9–4.1) 0.001*

ALB, Serum Albumin; ALT, Alanine Aminotransferase; AST, Aspartate Trans-
aminase; ALP, Alkaline Phosphatase; GGT, γ-Glutamyl Transpeptadase; TB, 
Total Bilirubin; AFP, Alpha-Fetoprotein; CA19–9, Carbohydrate antigen 19–9; 
CEA, Carcinoembryonic Antigen; *p < 0.05 indicates a statistical significance.
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segmentation of the lesion on CT images (C, H, M), segmentation of the 
lesion on PET images (D, I, N), and lesions predicted by the deep 
learning model (E, J, O). The model demonstrated excellent perfor-
mance in the identification and segmentation of the target regions, 
exhibiting both superior segmentation quality and a high degree of 
accuracy.

3.3. Reader study

We compared the detection performance of the model and physi-
cians. The model had an average accuracy of 0.936, with a sensitivity of 

0.918 and specificity of 0.671 for normal group; a sensitivity of 0.869 
and specificity of 0.989 for benign lesions; and a sensitivity of 0.858 and 
specificity of 0.984 for malignant lesions. The junior physician had an 
average accuracy of 0.909, with sensitivities and specificities of 0.906 
and 0.887 for normal group, 0.848 and 0.962 for benign lesions, and 
0.843 and 0.939 for malignant lesions. The senior physician achieved an 
average accuracy of 0.944, with sensitivities and specificities of 0.925 
and 0.918 for normal group, 0.891 and 0.981 for benign lesions, and 
0.922 and 0.980 for malignant lesions (Table S1).

4. Discussion

FLLs are a common clinical issue, and the benignity or malignancy of 
the lesions can impact the treatment strategy [5]. Among various im-
aging modalities, PET/CT has unique advantages in the diagnosis of 
FLLs. 18F-FDG PET/CT is an advanced molecular imaging technique that 
can detect cellular metabolic activity, which helps to accurately delin-
eate the lesion boundaries and better differentiate the benign or ma-
lignant nature of the lesions [8,18]. Deep learning models have already 
demonstrated excellent performance in the diagnosis and prognosis of 
various diseases [19]. Therefore, to detect FLLs and distinguish their 
benign or malignant nature, this study proposes a multimodal model 
based on PET/CT images.

The model demonstrated excellent performance in the detection of 
liver lesions. The high Dice coefficient indicates that the predicted 
segmentation mask from the model trained on PET/CT images closely 
matches the pre-annotated ground truth mask, suggesting the model can 
accurately identify liver lesions in PET/CT images. The results show the 
model achieved the highest classification performance for malignant 
lesions, followed by normal images, and lastly benign lesions. This is 
likely because malignant tumors have increased metabolic activity and 
glucose uptake, resulting in 18F-FDG accumulation on PET, as well as 

Fig. 4. The ROC of the model in the validation set for the normal, benign, and malignant groups are shown. The five curves, labeled as Fold 0–4, represent the results 
of the five rounds of validation.

Table 2 
Results of model performance.

Recall(95 % 
CI)

Precision 
(95 %CI)

F1(95 %CI) AUC(95 %CI)

Normal 
training 
group

0.944 
(0.905–0.983)

0.934 
(0.894–0.975)

0.938 
(0.926–0.951)

0.987 
(0.984–0.990)

Normal 
validation 
group

0.918 
(0.865–0.972)

0.904 
(0.826–0.981)

0.909 
(0.885–0.933)

0.976 
(0.969–0.983)

Benign 
training 
group

0.910 
(0.880–0.941)

0.902 
(0.859–0.945)

0.905 
(0.886–0.925)

0.930 
(0.891–0.970)

Benign 
validation 
group

0.869 
(0.798–0.940)

0.862 
(0.801–0.922)

0.863 
(0.837–0.889)

0.928 
(0.894–0.963)

Malignant 
training 
group

0.897 
(0.847–0.947)

0.933 
(0.897–0.970)

0.914 
(0.887–0.941)

0.985 
(0.979–0.991)

Malignant 
validation 
group

0.858 
(0.789–0.927)

0.914 
(0.870–0.958)

0.883 
(0.863–0.904)

0.979 
(0.972–0.986)

Fig. 5. Examples of the model detecting normal, benign, and malignant lesions.
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structural changes in the tissue during tumor growth, such as lesion 
shape and margins, which allows the model to recognize the charac-
teristic features of malignant lesions on CT [20]. While the detection 
rate for benign lesions was slightly lower than normal, the model still 
exhibited excellent performance. This may because when the liver has 
infectious or other lesions, the liver parenchymal density may change, 
making it difficult to differentiate benign lesions on non-contrast CT 
[21]; some benign liver lesions can also have varying degrees of elevated 
glucose metabolism [8], which could be misinterpreted by the model as 
malignant.

To clinically evaluate the model, we compared its diagnostic per-
formance with two physicians. The model’s overall diagnostic perfor-
mance fell between the junior and senior physicians, and it even 
demonstrated slightly higher specificity for benign and malignant le-
sions than the senior physician. This indicates the model’s significant 
potential for classifying FLLs in actual clinical practice. In future clinical 
applications, the model will provide diagnostic support for junior phy-
sicians in their learning phase. Additionally, its use is expected to reduce 
the workload of physicians, enabling them to concentrate more on 
complex cases, thereby enhancing the overall quality of healthcare 
services.

The UNet+ + model used in this study is a deep learning architecture 
for image segmentation tasks. By introducing nested skip connections 
and SDB modules, it significantly enhances the model’s capability to 
process complex images. UNet+ + is an improvement and extension of 
the classical UNet model, fusing features at multiple levels to strengthen 
the model’s ability to capture multi-scale contextual information [22, 
23]. Through this approach, we were able to create a deep learning 
model that not only performs precise segmentation on medical images 
but also provides accurate classification predictions. In addition to 
outputting the segmentation masks, the model also predicted a mask 
type after multiple downsampling steps of the CT and PET images. This 
multi-task learning approach not only improves the model’s efficiency 
but also enhances its overall performance through cross task synergies, 
making it well-suited for complex medical image analysis tasks that 
require simultaneous segmentation and classification.

Overfitting is a significant issue faced by deep learning models, 
particularly when training data is sourced from a single center, which 
limits the model’s generalization ability. To enhance the model’s 
applicability, we employed data augmentation techniques. In this study, 
we applied random noise to some training images to simulate potential 
noise introduced during the image acquisition process. The noise levels 
were randomly generated to prevent the model from becoming overly 
reliant on specific noise patterns, thereby improving its robustness 
against noise interference. Additionally, we applied random scaling to 
each image in the training set, with scaling factors ranging from 0.8 to 
1.2. This operation simulates the varying sizes of targets that may occur 
in the real world, enhancing the model’s adaptability to changes in 
image dimensions. To improve the model’s ability to recognize hori-
zontally flipped images, we performed horizontal flipping on the 
training images. This approach enables the model to learn consistent 
features even after flipping, thereby increasing its invariance to hori-
zontal transformations. We also employed random cropping techniques 
to augment the dataset. By randomly selecting a portion of the image 
and using it as a new image, we simulated local occlusions or cropping 
scenarios that may be encountered in practical scenarios. The size and 
position of the cropping areas were randomly determined to ensure that 
the model does not become overly reliant on specific image regions, 
thereby enhancing its ability to recognize local features. To further 
enhance the model’s generalization ability, we applied perspective 
transformation to the training images, simulating different viewpoints 
and depth effects by altering the image perspective. By combining these 
data augmentation techniques, we effectively expanded the training set 
and improved the model’s adaptability to various changes, resulting in 
better performance.

Male gender, middle-age, hepatitis, diabetes, obesity, and alcohol 

consumption are important risk factors for the development of liver 
cancer. Tumor markers and other liver function serum markers can 
provide adjunct diagnostic information for liver cancer [3,24]. Consis-
tent with the results of this study, age, AST, ALP, GGT, AFP, CA19–9 and 
CEA showed significant differences among liver lesions. However, ALB, 
ALT, and TB as liver function indicators did not show significant dif-
ferences in the study results. This may because some patients were in the 
early stage of liver cancer, where the tumor had not yet significantly 
impacted liver function.

This study has the following limitations. First, this is a single-center 
retrospective study, lacking diversity in the study information, which 
may constrain the broad applicability of the model. Second, due to the 
limited sample size, the model was only capable of distinguishing be-
tween benign and malignant FLLs, without further subclassification of 
specific pathological types. Most benign lesions do not require subse-
quent surgical treatment, making it challenging to conduct histopatho-
logical evaluations for all lesions. However, benignity or malignancy can 
often be assessed through typical imaging features or continuous follow- 
up. To ensure the accuracy of the results, our data were labeled based on 
the analysis of all available imaging and clinical information by two 
physicians. As this preliminary study focused on ensuring the accuracy 
of the model’s outputs, specific pathological types were not differenti-
ated. In the future, we aim to expand the sample size to gather more 
data, enabling a more detailed classification of pathological subtypes for 
better application in clinical practice. Third, the segmentation process of 
the lesions currently relies on manual annotations and physician re-
views. Despite verification and adjustments, human errors cannot be 
completely eliminated, which affects the training and performance of 
the model. Future research should focus on developing deep learning 
models capable of automatic image segmentation, incorporating unsu-
pervised or self-supervised learning techniques to reduce reliance on 
manual input. Fourth, this model is currently in the preliminary research 
stage and has not yet been applied in clinical practice. Future studies 
should further evaluate the diagnostic performance of physicians in 
conjunction with the model to clarify its value in assisting with clinical 
diagnoses.,Fifth, deep learning models have inherent limitations, such as 
sample size, overfitting, selection bias, and lack of interpretability. In 
future studies, it will be crucial to increase the sample size, improve data 
utilization efficiency, and continuously refine the learning process.

5. Conclusion

In summary, this study proposes a DL model based on multimodal 
PET/CT images for the detection and diagnosis of FLL, which demon-
strates excellent performance in identifying FLL and determining its 
benign or malignant nature.
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