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Abstract

Betel nut chewing (BNC) is prevalent in South Asia and Southeast Asia. BNC can affect

host health by modulating the gut microbiota. The aim of this study is to evaluate the effect

of BNC on the gut microbiota of the host. Feces samples were obtained from 34 BNC indi-

viduals from Ledong and Lingshui, Hainan, China. The microbiota was analyzed by 16S

rRNA gene sequencing. BNC decreased the microbial α-diversity. Firmicutes, Bacteroi-

detes, Actinobacteria, and Proteobacteria were the predominant phyla, accounting for

99.35% of the BNC group. The Firmicutes-to-Bacteroidetes ratio was significantly increased

in the BNC group compared to a control group. The abundances of the families Aerococca-

ceae, Neisseriaceae, Moraxellaceae, Porphyromonadaceae, and Planococcaceae were

decreased in the BNC/BNC_Male/BNC_Female groups compared to the control group,

whereas the abundances of Coriobacteriaceae, Streptococcaceae, Micrococcaceae,

Xanthomonadaceae, Coxiellaceae, Nocardioidaceae, Rhodobacteraceae, and Succinivi-

brionaceae were increased. In general, the gut microbiome profiles suggest that BNC may

have positive effects, such as an increase in the abundance of beneficial microbes and a

reduction in the abundance of disease-related microbes. However, BNC may also produce

an increase in the abundance of disease-related microbes. Therefore, extraction of prebiotic

components could increase the beneficial value of betel nut.

1. Introduction

Betel nut chewing (BNC) is prevalent in South Asia and Southeast Asia [1, 2]. Betel nut is the

fourth most addictive consumer product globally, surpassed only by tobacco, alcohol, and cof-

fee [3]. Betel nut is consumed widely by approximately 600 million people worldwide [3]. The

southern part of China, especially Hainan, is the main production and consumption area for

betel nut [4].

Betel nut is a traditional Chinese medicine used to treat parasitic diseases, various gastroin-

testinal disorders (abdominal distension, abdominal pain, dyspepsia, and diarrhea), and jaun-

dice [5]. Modern pharmacology shows that betel nut has various pharmacological properties,

including antifatigue, antioxidant, antibacterial, antifungal, antihypertensive, antidepressant,
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anti-inflammatory, analgesic, and antiallergic properties; betel nut also promotes digestive

function, inhibits platelet aggregation, and regulates blood glucose and blood lipids [6]. How-

ever, many studies have shown that betel nut may be harmful to health, including increasing

the risk of cancers, obesity, cardiovascular disease, diabetes, and chronic kidney disease [7–9].

Thus, it is necessary to consider the effects of BNC on health from multiple perspectives, such

as by investigating gut microbiota.

Hundreds of millions of bacteria colonize the human intestine [10]. Gut microbiota can

affect body weight, digestive ability, disease occurrence, and drug response [10]. Gut micro-

biota can affect host health in multiple ways, such as by synthesizing a variety of vitamins nec-

essary for human growth and development, using protein residues to synthesize essential

amino acids, participating in carbohydrate and protein metabolism, and promoting the

absorption of iron, magnesium, zinc and other mineral elements [11, 12]. Moreover, gut

microbiota are affected by various factors, such as the intestinal microenvironment, mental

state, and diet [13]. Diet is one of the most critical factors [14]. Therefore, we hypothesized

that BNC plays a role in modulating gut microbiota and thereby affects host health.

2. Materials and methods

2.1. Subjects

Participants were recruited from Ledong and Lingshui, Hainan. Fecal samples were collected

from 18–60 age adults who self-reported physical health during the six months between March

and September 2020. A total of 34 subjects who chewed betel nuts every day and 37 subjects

who have never chewed betel nuts were selected from this cohort. The individuals were

matched by age (within three years), sex, and body mass index (BMI). No individual had used

antibiotics within two months of enrollment in the study. Individuals with diabetes, hyperten-

sion, diarrhea and other diseases were also excluded from the study cohort. The values of the

parameters of age, sex, BMI, history of smoking, alcohol intake, betel nut intake, and labora-

tory results were collected and compared. Ethical approval for the microbiota studies was pro-

vided by Hainan Medical University (HNMU 2020-02-09-01). All participants consented to

the study, and the potential consequences of the study were explained in detail to the partici-

pants. This study complied with all applicable institutional and government regulations on the

ethical use of human volunteers.

The subjects were grouped by gender (Table 1). The individuals in the BNC group included

17 males (the BNC_Male group) and 17 females (the BNC_Female group). The control (Ctr)

group included 18 males (Ctr_Male) and 19 females (Ctr_Female).

Table 1. Demographic and anthropometric characteristics.

BNC Control

Male Female Male Female

Number 17 17 18 19

Age 31.47±11.19 46.52±9.83 30.94±12.85 40.57±12.72

BMI 22.98±3.16 22.18±5.25 22.57±1.65 21.04±2.07

Frequency Daily Never

BN number/DAY 5.23±1.85 5.35±1.74 Not Applicable Not Applicable

Duration (year) More than four years Not Applicable

Smoking (%) 82.35 11.76 55.55 0

Drinking (%) 76.47 35.29 61.53 10.52

https://doi.org/10.1371/journal.pone.0258489.t001
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2.2. Fecal samples and DNA extraction

The fecal samples were frozen at -20˚C immediately after defecation and stored at -70˚C for less

than 24 hours. Within one month, DNA was extracted from the fecal samples using the QIAamp

DNA Stool Minikit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

2.3. Microbiota analyses by 16S rRNA gene sequencing

According to the manufacturer’s instructions, total fecal microbiota DNA was extracted by a

QIAamp DNA Stool Minikit (Qiagen, Hilden, Germany). The V3-V4 variable region (~450

bp) of the 16S rRNA was amplified using the forward primer 341F (5’-CCTACGGGNGGCWG
CAG-3’) and the reverse primer 802R (5’-TACNVGGGTATCTAATCC-3’) attached to a

barcode [50-A-adapter-N (10) + 16S primer-30]. PCR was performed as follows: 10 ng of the

purified DNA, 15 μl of Phusion1High-Fidelity PCR Master Mix (New England Biolabs), 200

nmol/L of the forward and reverse primers, and nuclease-free water were mixed and made up

to a final volume of 25 μl. The PCR cycling conditions consisted of initial denaturation for 5

min at 95˚C, followed by 30 cycles of 30 s at 95˚C, 30 s at 50˚C, and 5 min at 72˚C. The PCR

products were detected by 1% agarose gel electrophoresis and purification with a nucleic acid

purification kit (Agencourt AMPure XP) and used for Illumina HiSeq/MiSeq platform

sequencing to a depth of at least 30,000 reads per sample.

After MiSeq sequencing, the paired-end (PE) sequence data were subjected to quality con-

trol processing, and high-quality FASTA data were finally obtained. The quality control of

fastq data was performed by Trimmomatic (v0.36) and PEAR (v0.9.6). A sliding window strat-

egy was used in Trimmomatic. The window size was set to 50 bp, the average quality value was

20, and the minimum reserved sequence length was 120. Pear was used to remove the

sequences with N. FLASH (v1.20), and PEAR was used to merge the two end sequences based

on the PE overlap relationship. The minimum overlap was set at 10 bp, and the mismatch rate

was 0.1 to obtain the FASTA sequence. VSEARCH (v2.7.1) was utilized to remove chimeras by

the UCHIME method. After removal of the barcode and primer and splicing, raw tags were

obtained and then removed from the chimeras and short sequences to obtain high-quality-

sequence clean tags.

The sequences were classified by similarity into operational taxonomic units (OTUs) using

the Greengenes database and the UPARSE algorithm. A bioinformatics analysis of OTUs was

performed at a 97% similarity level. The RDP classifier algorithm was used to compare and

analyze the OTU representative sequences. The community species information was annotated

at each level (phylum, class, order, family, genus, and species).

The diversity of a microbial community can be measured using the Chao1, Simpson, and

Shannon indexes. Chao1 is a species richness index and was used to estimate the number of

OTUs in the community. The following formula was used: Chao1 = OBS+n1(n1-1)/2(n2+1),

where Chao1 and OBS were the estimated and observed number of OTUs, respectively; and

n1 and n2 were the number of OTUs with only one and only two sequences, respectively. The

Simpson index was obtained as a 1-D value. The following formula was used: 1-D = 1−∑(Ni/

N)^2. The D value was the total number of individuals (Ni) of a particular species found

divided by the total number of individuals found (N). The following Shannon’s formula was

used: H = −∑(Pi) (ln Pi), where Pi was the proportion of individuals belonging to species i in

the sample.

2.4. Ethics statement

Ethical approval for the microbiota studies was provided by Hainan Medical University

(HNMU 2020-02-09-01). The data and sample collector introduced the purpose of the study
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to the participants. Oral informed consent was obtained from all participants. This study com-

plied with all applicable institutional and government regulations on the ethical use of human

volunteers. To ensure confidentiality, the names and detailed addresses of the participants

were not recorded during the data collection process.

2.5. Statistics

A partial least squares discrimination analysis (PLS-DA) was carried out to study similarities

or differences in the microbial community composition. Metastats analysis and LDA effect

size analysis were carried out to determine the difference between the two study groups. First,

ANOVA was used to detect species with significant differences in abundance among the differ-

ent groups using a threshold of 0.05. The Wilcoxon rank-sum test was used to analyze the sig-

nificantly different species obtained in the previous step using a threshold of 0.05. Finally,

linear discriminant analysis (LDA) was used to evaluate species’ influence with significant dif-

ferences (i.e., in terms of the LDA score) using a threshold of 3.

All data were presented as the mean±SEM. A statistical analysis of physiological and bio-

chemical data was conducted using GraphPad Prism version 7.0 (GraphPad Software, San

Diego, CA).

3. Results

Seventy-one subjects (34 in the BNC group and 37 in the control group) were analyzed. The

two groups were comparable in terms of age, sex, BMI, betel nut intake frequency and quan-

tity, history of smoking, and alcohol intake (Table 1). Sequencing of 16S bacterial RNA

retrieved an overall number of 5,292,428 reads after filtering, clustered in 1,282 operational

taxonomic units.

3.1. The effect of BNC on gut microbial diversity and composition

The α-diversity analysis showed that the observed_species and the Chao1, Shannon, and Simp-

son indexes of the BNC group were lower than those of the Ctr group (P>0.05) (Fig 1A). The

BNC and Ctr groups could be separated on the PLS-DA plot (Fig 1B).

The community structure was compared among groups. Firmicutes, Bacteroidetes, Actino-

bacteria, and Proteobacteria were the predominant (99.35%) phyla in the BNC group (Fig 1C).

The abundance of Bacteroidetes was significantly lower in the BNC group compared to the Ctr

group (S1 Table). Moreover, the Firmicutes-to-Bacteroidetes ratio was significantly higher in

the BNC group (9.52) than the Ctr group (4.75).

At the family level, Lachnospiraceae, Ruminococcaceae, Streptococcaceae, Coriobacteria-

ceae, Enterobacteriaceae, Peptostreptococcaceae, Prevotellaceae, Veillonellaceae, Bacteroida-

ceae, and Erysipelotrichaceae were the 10 most abundant (93.37%) fecal microbiota BNC

group (Fig 1D). Significant changes for 20 families were identified for the BNC group com-

pared to the Ctr group (S1 Table). That is, compared to the Ctr group, the BNC group exhib-

ited a significant increase in abundance for 14 families and a significant decrease in abundance

for six families.

At the genus level, Blautia, Streptococcus, Faecalibacterium, Ruminococcus_tor-

ques_group, Ruminococcus_gnavus_group, Subdoligranulum, Prevotella, Bacteroides, Rom-

boutsia, and Collinsella were the 10 most abundant (56.03%) fecal microbiota in the BNC

group (Fig 2). The abundance of 11 genera were significantly increased and the abundance of

11 other genera were significantly reduced (S1 Table) for the BNC group compared to the Ctr

group.
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The Metastats analysis was combined with the linear discriminant analysis effect size

(LEfSe) method to identify the specific microbial taxa associated with BNC. Compared with

the Ctr group, the abundances of Coriobacteriaceae, Streptococcaceae, and Clostridiaceae_1

Fig 1. The effect of BNC on microbial diversity and composition. BNC did not affect the (A) α-diversity in terms of the observed_species and

the Chao1, Shannon, and Simpson indexes. The BNC and Ctr groups could be separated on the PLS-DA plot (B). BNC affected the (C) phylum-

level, (D) family-level, and (E) genus-level taxonomic distributions of the feces of the microbial communities.

https://doi.org/10.1371/journal.pone.0258489.g001
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were significantly increased in the BNC group, whereas that of Acidaminococcaceae was sig-

nificantly decreased (Fig 2).

3.2. Effect of BNC on female gut microbiota

The α-diversity analysis showed no significant alteration in the BNC_Female group compared

with the Ctr_Female group (Fig 3A). The BNC_Female group and Ctr_Female group could be

separated by PLS-DA analysis (Fig 3B). At the phylum level, the abundances of Firmicutes and

Euryarchaeota were significantly increased in the BNC_Female group (Fig 3C and S2 Table)

Fig 2. Characteristic microbes affected by BNC. (A) Cladogram of the microbial taxa associated with BNC. (B)

Metastats analysis.

https://doi.org/10.1371/journal.pone.0258489.g002
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compared to the Ctr_Female group. The Firmicutes-to-Bacteroidetes ratio increased dramati-

cally in the BNC_Female group (9.67) compared with the Ctr_Female group (4.35). Moreover,

a significant change was identified for five families in the BNC_Female group (Fig 3D)

Fig 3. The effect of BNC on the microbial diversity and composition of females. BNC did not affect the (A) α-diversity in terms of the

observed_species and Chao1, Shannon, and Simpson indexes. The BNC and Ctr groups could be separated on the PLS-DA plot (B). BNC

affected the (C) phylum-level, (D) family-level, and (E) genus-level taxonomic distributions of the feces of the microbial communities.

https://doi.org/10.1371/journal.pone.0258489.g003
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compared to the Ctr_Female group. The abundances of 4 families were significantly increased

and the abundance of one family was significantly decreased (S2 Table) in the BNC_Female

group compared with the Ctr_Female group. Compared to the Ctr_Female group, six genera

were significantly increased in abundance at the genus level and three genes were significantly

reduced in abundance in the BNC_Female group (S2 Table). The results of the Metastats and

LEfSe combined analysis showed that the abundance of Streptococcaceae and Succinivibriona-

ceae significantly increased and the abundance of Aerococcaceae significantly decreased in the

BNC_Female group compared to the Ctr_Female group (Fig 4).

3.3. Effect of BNC on male gut microbiota

The α-diversity analysis showed no significant alteration in the BNC_Male group compared

with the Ctr_Male group (Fig 5A). The BNC_Male and Ctr_Male groups could be separated

by PLS-DA analysis (Fig 5B). At the phylum level, there was a higher proportion of Actinobac-

teria and Cyanobacteria in the BNC_Male group than the Ctr_Male group (Fig 5C and S3

Table). The Firmicutes-to-Bacteroidetes ratio was significantly increased in the BNC_Male

group (9.39) compared with the Ctr_Male group (5.20). Significant changes were identified for

nine families in the BNC_Male group compared to the Ctr_Male group (Fig 5D). That is, the

Fig 4. Characteristic microbes affected in the Ctr_Female group. (A) Cladogram of the microbial taxa associated

with BNC. (B) Metastats analysis.

https://doi.org/10.1371/journal.pone.0258489.g004
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abundances of six families were significantly increased and the abundances of three families

were significantly decreased in the BNC_Male group compared to the Ctr_Male group (S3

Table). The abundances of 4 genera were significantly increased and the abundances of 12

Fig 5. The effect of BNC on the microbial diversity and composition of males. BNC did not affect the (A) α-diversity in terms of the

observed_species and the Chao1, Shannon, and Simpson indexes. The BNC and Ctr groups could be separated on the PLS-DA plot (B).

BNC affected the (C) phylum-level, (D) family-level, and (E) genus-level taxonomic distributions of the feces of the microbial communities.

https://doi.org/10.1371/journal.pone.0258489.g005
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other genera were significantly decreased in the BNC_Male group compared to the Ctr_Male

group (S3 Table). The Metastats and LEfSe combined analysis showed that the abundances of

Coriobacteriaceae and Rhizobiaceae significantly increased in the BNC_Male group compared

with the Ctr_Male group (Fig 6).

3.4. The alteration of microbial function

The alteration of microbial function was identified by using picrust2 to predict the metabolic

pathways. Forty-seven, 17, and 27 pathways were identified in the BNC, BNC_Male, and

BNC_Female groups, respectively (Fig 7). In total, 54 pathways were involved in BNC, whereas

eight pathways (L-arginine degradation, lactose and galactose degradation I, purine ribonucle-

oside degradation, 3,8-divinyl-chlorophyllide a biosynthesis II, peptidoglycan biosynthesis IV,

glycerol degradation to butanol, taxadiene biosynthesis, and the superpathway of thiamine

diphosphate biosynthesis I) were found for the three groups.

In general, these pathways are involved in the metabolism of various substances (Fig 7).

The number of lipid metabolism pathways, such as mevalonate pathway I and cisvaccenate

Fig 6. Characteristic microbes affected in the Ctr_Male group. (A) Cladogram of the microbial taxa associated with

BNC. (B) Metastats analysis.

https://doi.org/10.1371/journal.pone.0258489.g006
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Fig 7. The effect of BNC on microbial function. The significant effect of BNC on microbial metabolism pathways in (A) all

individuals, (B) female, and (C) male individuals.

https://doi.org/10.1371/journal.pone.0258489.g007
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biosynthesis, were significantly increased for the BNC group compared to the Ctr group. The

synthesis of vitamins, especially vitamin B1, was significantly decreased in the BNC group

compared to the Ctr group. Compared to the Ctr group, in the BNC group, the number of

amino acid synthesis pathways (such as L-histidine degradation I and the superpathways of

polyamine biosynthesis II, L-tryptophan biosynthesis, sulfate assimilation and cysteine biosyn-

thesis, L-tyrosine biosynthesis, and L-phenylalanine biosynthesis) were significantly decreased,

whereas the number of pathways for amino acid degradation (L-arginine degradation (the

Stickland reaction) and aromatic biogenic amine degradation (bacteria)) were significantly

increased. In addition, the number of carbohydrate degradation pathways (glycolysis V (pyro-

coccus), sucrose degradation III, lactose and galactose degradation I, and glycerol degradation

to butanol) were significantly increased for the BNC group compared to the Ctr group,

whereas the number of TCA cycle pathways (TCA, TCA cycle V and incomplete reductive

TCA) were significantly decreased. Moreover, the number of nucleotide metabolism pathways,

for both biosynthesis and degradation, were significantly increased for the BNC group com-

pared to the Ctr group.

4. Discussion

BNC is a prevalent behavior in Hainan. Among the considered factors, long-term diet quality

has a predominant impact on gut microbiota [15]. The active component of betel nut enters

the intestine in the juice produced by chewing betel nut and affects the intestinal microenvi-

ronment. Therefore, chewing betel nut can affect the diversity and composition of gut micro-

biota. In this study, 16S rRNA sequencing was used to analyze the effects of long-term

chewing of betel nut on the gut microbiota of Hainanese. The BNC group consisted of individ-

uals who chewed betel nuts daily for at least one year and excluded those who chewed betel

nut intermittently. The results showed that chewing betel nut for a long time had a profound

influence on the diversity and composition of gut microbiota.

A recent study showed similar overall community-level diversity in the guts of males and

females, whereas the core species was significantly influenced by gender [16]. The evidence

showed that the differences between gut microbiota of males and females could affect the sus-

ceptibility of sex-specific diseases [17]. In the present study, the α-diversity was higher for

females than males, especially in the BNC group (P<0.05). Therefore, the results of our study

verified the difference in gut microbiota between males and females and showed that gender

interfered with the influence of long-term BNC on intestinal microflora.

Studies have suggested that changes in bacterial phyla are an essential factor in regulating

host metabolism. Compared to healthy individuals, a decrease in the Firmicutes-to-Bacteroi-

detes ratio was found in patients with obesity [18], NAFLD [19], type 1 diabetes [20], and type

2 diabetes [21]. Bacteroidetes can synthesize many carbohydrate-active enzymes and produce

vital metabolite short-chain fatty acids (SCFAs) [15]. SCFAs can be used as energy sources and

critical small molecules to regulate host gene expression and inflammation [22]. Moreover, an

increase in the abundance of Actinobacteria has usually been associated with diseases, such as

inflammatory bowel disease [23], mental disorders [24, 25], type 2 diabetes [26], and epilepsy

[27]. Cyanobacteria play a role in neurodegenerative diseases by producing a variety of toxic

metabolites, such as β-methylamino-1-alanine, 2,4-aminobutyric acid, and N-2-aminoethyl-

glycine [28]. In this study, the abundance of Firmicutes was increased and the abundance of

Bacteroidetes was decreased in the BNC group compared to the Ctr group. The Firmicutes-to-

Bacteroidetes ratio was significantly increased in the BNC group compared to the Ctr group.

In addition, the abundances of Cyanobacteria and Actinobacteria were significantly increased

in the BNC_Male group compared to the Ctr group. These results suggest that energy intake
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control could produce beneficial effects on BNC individuals by modulating the Firmicutes-to-

Bacteroidetes ratio, while promoting the growth of disease-related microbial phyla.

Studies have shown that reduced Coriobacteriaceae abundance is linked to T2DM [29] and

Parkinson’s disease [30]. Probiotic and prebiotic treatments have been shown to increase the

relative abundance of Coriobacteriaceae [31, 32]. Increased abundances of Aerococcaceae,

Neisseriaceae, Moraxellaceae, Porphyromonadaceae, and Planococcaceae have been reported

for multiple diseases, such as rheumatoid arthritis [33], enteritis [34, 35], end-stage renal dis-

ease [36], cholelithiasis [37] and constipation [38]. In addition, in previous studies, an

increased abundance of Streptococcaceae has been associated with diseases, such as kidney dis-

ease [39], atrophic gastritis [40], and depression [41]. Increased abundance of Micrococcaceae,

Xanthomonadaceae, Coxiellaceae, Nocardioidaceae, Rhodobacteraceae, and Succinivibriona-

ceae has been associated with diseases, such as breast cancer [42], obesity [43, 44], asthma [45,

46], and cholangiocarcinoma [47]. In the present study, the abundance of Coriobacteriaceae

was significantly increased in the BNC and BNC_Male groups compared to the Ctr group.

Aerococcaceae, Neisseriaceae, Moraxellaceae, Porphyromonadaceae, and Planococcaceae

were decreased in the BNC, BNC_Male, and BNC_Female groups compared to the Ctr group.

The abundance of Streptococcaceae was significantly increased in both the BNC and BNC_Fe-

male groups compared to the Ctr group. The abundances of Micrococcaceae, Xanthomonada-

ceae, Coxiellaceae, Nocardioidaceae, Rhodobacteraceae, and Succinivibrionaceae were

increased in the BNC, BNC_Male, and BNC_Female groups compared to the Ctr group. These

results suggest that BNC has two sided effects on gut microbiota. That is, BNC can increase the

abundance of potentially beneficial microbes and decrease that of disease-related microbes but

can also increase the abundance of disease-related microbes.

Microbial function prediction suggested that BNC can inhibit PWY-5676, PWY-5677, and

CODH-PWY. A previous study implicated PWY-5676 and PWY-5677 in the fermentation of

ethanol, acetate, and succinate to butyrate, whereas CODH-PWY was implicated in the fer-

mentation of acetyl-CoA to acetate [48, 49]. SCFAs, including butyrate and acetate, are mainly

produced by the gut microbiome [50]. SCFAs have been estimated to provide 60–70% of the

energy required by colon epithelial cells [51]. Studies have shown that butyrate is involved in

regulating intestinal barrier function and immune and inflammatory responses [51, 52]. Buty-

rate can have beneficial effects on blood lipid levels, diabetes, and body weight [53]. However,

some studies suggest that obese people have higher levels of SCFAs because SCFAs can provide

a considerable quantity of energy [54, 55]. Therefore, BNC could affect host health by regulat-

ing metabolites in gut microbiota.

In this study, individuals were divided into youth (18–30 years old group, BNC:

Ctr = 14:10), middle-age (31–45 years old group, BNC: Ctr = 13:11), Middle_elderly age (46–

60 years old Group, BNC: Ctr = 10:13). BNC did not affect α-diversity in all age groups. Mean-

while, metastats analysis (using q-value<0.05 as the threshold) could not find significant dif-

ferences in bacteria at the phylum, family, and genus level (S4 Table). In addition, there had no

significant difference in α-diversity among age groups. Studies had shown that the diversity

and composition of the gut microbiota changed with age [56, 57]. Therefore, more individuals

should be included in future research to consider the impact of age and diseases on gut

microbiota.

5. Conclusion

In summary, BNC may decrease microbial α-diversity. BNC was found to significantly affect

the microbial phyla level, including increasing the Firmicutes-to-Bacteroidetes ratio compared

to that of a control group. At the family level, BNC can increase potentially beneficial microbes
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and reduce disease-related microbes in the host. BNC was also found to increase the abun-

dance of some disease-related microbes. Functional prediction showed that the metabolism of

multiple substances (carbohydrates, vitamins, lipids, and amino acids) was significantly

affected by BNC, leading to alteration of metabolites and further affecting host health. There-

fore, investigating gut microbiota to analyze the possible impact of BNC on human health

showed that the role of BNC is bidirectional. Further research on betel nut is warranted, and

the beneficial components should be separated for subsequent development.
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