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Abstract
“Infection resisters” are broadly defined as individuals who despite
significant exposure to   remain persistentlyMycobacterium tuberculosis
unreactive to conventional detection assays, suggesting that they remain
uninfected or rapidly clear their infection early on following exposure. In this
review, we highlight recent studies that point to underlying host immune
mechanisms that could mediate this natural resistance. We also illustrate
some additional avenues that are likely to be differently modulated in
resisters and possess the potential to be targeted, ranging from early
mycobacterial sensing leading up to subsequent killing. Emerging research
in this area can be harnessed to provide valuable insights into the
development of novel therapeutic and vaccine strategies against M.

.tuberculosis
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Introduction
Tuberculosis (TB) is now the leading cause of death from a  
single infectious agent, Mycobacterium tuberculosis1. An esti-
mated 1.3 million TB-related deaths were reported globally 
among HIV-negative individuals in 20171,2. Nearly 23% of the  
world’s population is estimated to have a latent TB infection  
(LTBI), and 5 to 10% are at risk for progressing to active TB dis-
ease over the course of their lifetime3–5, consequently propagat-
ing the cycle of transmission. The lack of an effective vaccine,  
poor diagnostics and treatment management, along with the emer-
gence of drug-resistant forms of M. tuberculosis have further  
sustained the global TB epidemic6. Moreover, poorly character-
ized immune mechanisms of anti-mycobacterial host defense  
continue to challenge the development of robust host-directed  
therapeutic strategies.

The common tests for TB screening include the tuberculin skin 
test (TST) and the blood test interferon gamma release assay  
(IGRA), which test for prior exposure to mycobacterial protein 
antigens. In high-burden TB settings, following frequent and  
heavy M. tuberculosis exposure, the majority of infected indi-
viduals remain asymptomatic and TST/IGRA-positive and only 
around 10% progress to active TB disease4,5. Emerging evidence  
from several TB-endemic cohort studies involving active TB 
patients and their household contacts has identified another  
group of exposed individuals, referred to here as “resister” indi-
viduals, who never acquire infection or clear the pathogen and  
remain asymptomatic and persistently negative for TST and 
IGRA reactivity4,7. The prevalence of these individuals and their  
defining characteristics are described next.

Evidence for the “resister” phenotype
Frequently exposed, persistently TST-negative “resister” indi-
viduals were identified as early as 1937 among student nurses at 
the Boston City Hospital (Boston, MA, USA) who were annu-
ally screened for TB over a five-year study period8. Around the  
same time period, they were also reported to be present 
among students who frequently dealt with TB patients in other  
hospitals such as the Wisconsin General Hospital9 and the  
University of Minnesota10. In 1966, enlisted personnel onboard 
the naval ship USS Richard E. Byrd shared the same work areas 
with an index case of pulmonary TB. About 10% were negative  
for the purified protein derivative (PPD) skin test despite 
being heavily and frequently exposed in a closed environment, 
while most personnel showed a positive PPD accompanied by  
LTBI or the development of active TB11. Identification of resist-
ers among close contacts of pulmonary TB patients in India,  
Pakistan, and Bahia has also been reported4. Together, these  
studies clearly indicate that there is evidence for the existence of 
resister individuals among the exposed. However, the frequency 
of occurrence of resisters has differed across such population  
studies since the defining characteristics of the resister  
phenotype have been largely inconsistent.

Identification and classification of resisters
Several caveats exist when it comes to correctly identifying  
and classifying the resister phenotype. The very definition of  
this phenotype makes the assumption of having repeated expo-
sure to infectious doses of M. tuberculosis and is based on the 

reactivity to the TST and IGRA tests4,5. However, a localized  
protective immune response within the lung mucosa may not be 
systemically detected by these tests. Furthermore, these tests do 
not reflect or quantify the level of pathogen exposure or the sta-
tus of infection and it has been argued that resisters simply have 
not had sufficient exposure to an infectious dose. Nevertheless,  
cohorts where contacts had a comparable intensity of exposure 
still identify this phenotype, suggesting that criteria for study  
enrollment need to be more stringent to avoid misclassification4,7. 
The presence and prevalence of “true” resisters thus can be rea-
sonably estimated in future cohort investigations by employ-
ing a longitudinal follow-up period that is supported by repeat  
testing to minimize false negatives and taking into account the 
duration and intensity of exposure to the index case4. Additionally,  
the influence of age, gender, co-morbidities, and environmen-
tal factors needs to be considered when evaluating the resister  
phenotype.

Host innate immune responses against Mycobacterium 
tuberculosis
Conventionally, experimental models have shown that, follow-
ing exposure and infection of the airways and lung parenchyma,  
the early host immune response to M. tuberculosis involves 
an influx of phagocytic cells such as mononuclear cells and 
neutrophils5,12. Alveolar macrophages (AMs) are the primary  
cellular niche for intracellular M. tuberculosis survival and 
chemokines secreted by infected AMs initiate immune cell  
recruitment to the lungs for bacterial clearance during early  
infection13,14. Induction of anti-mycobacterial mechanisms, such 
as production of pro-inflammatory cytokines, reactive oxygen  
and nitrogen intermediates, anti-microbial peptides, phagosome 
acidification, and autophagy induction then facilitate bacterial  
killing5,13,15. Infected macrophages are also known to undergo  
apoptosis to restrict M. tuberculosis growth and enhance antigen 
presentation by dendritic cells, inducing an early M. tuberculosis– 
specific interferon gamma (IFN-γ)-mediated type 1-helper (Th1)  
T-cell response16–18. Recent studies in mice and non-human  
primate models suggest that innate-like T cells19–21 and humoral 
immunity22–24 also play a protective role in the control of  
intracellular pathogens.

Since resisters display persistent TST/IGRA negativity, it can 
be postulated that robust innate immune responses enable early  
mycobacterial clearance in these individuals and circumvent 
the need for the conventional IFN-γ–dependent T cell–mediated  
adaptive immunity observed in LTBI. Additionally, the screen-
ing tests have been widely regarded as incomplete measures 
of an anti-mycobacterial response because they do not detect  
unconventional IFN-γ–independent cytokine responses, anti-
body-mediated responses, or immune responses directed against  
non-protein mycobacterial antigens4,5,25. Despite repeated expo-
sure to M. tuberculosis, mycobacterial resistance could be  
established as a result of such largely overlooked immune  
responses and remain uncharacterized. Although genetic sus-
ceptibility to M. tuberculosis assessed by genome-wide analyses  
has associated factors such as polymorphisms and mutations 
in influencing TST reactivity or Toll-like receptor (TLR) path-
ways, the broad functional effects of such elements are unknown 
in the context of infection4,26,27. Emerging evidence also strongly  
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indicates that genetic variation among M. tuberculosis strains  
significantly impacts the host immune response, enabling  
immune evasion strategies that promote mycobacterial repli-
cation, dissemination, and subsequent transmission28,29. Thus,  
understanding the mechanistic basis of the early events leading  
up to the establishment of resistance will allow the identification  
of correlates of protection which can be harnessed to develop  
novel host-directed therapeutic strategies.

This review will further summarize recent advances in the con-
text of resistance to M. tuberculosis infection and also high-
light the potential involvement of alternate pathways that might  
contribute to rapid mycobacterial clearance observed in fre-
quently exposed, persistently TST- and IGRA-negative individuals.  
We will also discuss the implications of such findings and 
how they pertain to the development of robust host-directed  
therapeutic strategies.

Recent findings from tuberculosis-endemic cohort 
studies
Owing to the severity of infection observed in the absence of  
IFN-γ30, it is often thought to be the chief mechanism by which 
the host controls M. tuberculosis infection. However, as discussed 
earlier, there is increasing evidence that IFN-γ is not a robust  
correlate of protection31 and that alternate mechanisms of induc-
ing protective immunity exist in resisters. In this section, we  
will further highlight recent reports from various cohorts that 
have sought to identify and elucidate some of these protective  
immune mechanisms in resisters, providing significant insights  
into factors that potentially mediate mycobacterial resistance.

Transcriptional response of monocytes (Kampala, Uganda)
A longitudinal cohort established in Uganda identified 872 
index cases and 2585 household contacts, of whom 255 (9.9%)  
were persistently TST-negative on repeated testing over two 
years of follow-up32. Genome-wide transcriptional profiling was 
conducted by using peripheral blood monocytes from resister  
and LTBI individuals who were infected ex vivo with M. tuber-
culosis H37Rv. With a systems biology approach, gene sets  
associated with the histone deacetylase (HDAC) function were 
found to be the top differentially activated genes among these 
groups. Treatment of U397 monocytes with small-molecule  
inhibitors of HDAC, depsipeptide, and sodium butyrate sup-
pressed the secretion of pro-inflammatory cytokines interleukin-1  
beta (IL-1β), IL-6, and tumor necrosis factor (TNF) against  
M. tuberculosis infection32. These data further indicate that HDAC 
function might be a vital player modulating the early innate  
immune response in resisters, and whether epigenetic modifi-
cations in response to infection lead to distinct transcriptional  
modifications should be further explored.

Functional response of innate T-cell subsets (Port-au-
Prince, Haiti)
Between 2015 and 2017, a cross-sectional study conducted in  
Haiti enrolled 92 household contacts of pulmonary TB patients 
and 591 community controls which were sampled to obtain 
an age-, sex-, and IGRA-matched subset of 31 TB household  
contacts and 45 unexposed community controls33. Exposed but 

uninfected IGRA-negative resisters (12 out of 31; 39%) showed 
no IGRA-positive conversion after a 6-month follow-up. The  
abundance and functional profiles of innate T cells including 
Mucosal-associated invariant T (MAIT) cells that recognize ribo-
flavin pathway metabolites; γδ T-cell receptor (TCR) T cells that 
recognize phosphoantigens; and invariant natural killer T (iNKT) 
cells that recognize glycolipids via their CD1 molecules, were 
compared among contacts and their community controls. There  
were no differences in the abundance of innate T cells in con-
tacts compared with controls; however, resisters were shown to 
have robust CD8+ MAIT cell IL-2Rα chain (CD25) expression 
and granzyme B production upon CD3-TCR stimulation, which  
also was associated with a depressed CD69 and IFN-γ response 
when compared with LTBI controls33. Additionally, M. tuber-
culosis exposure was found to be associated with differences  
in gut microbial composition across households, correlating 
with MAIT cell abundance and function, also suggesting a role 
for the intestinal microbiome in modulating innate T-cell subset 
responses33.

Protective antibody responses in health-care workers 
(Beijing, China)
In a study conducted at the Beijing Chest Hospital, IgG antibod-
ies were isolated from 48 health-care workers (also comprising  
exposed yet IGRA-negative workers) who worked at the hos-
pital for at least three years and who were compared with 12 
patients with active TB24. Health-care workers were categorized  
as having LTBI or “highly exposed but uninfected” (HEBUI) on 
the basis of enzyme-linked immune absorbent spot (ELISpot)  
testing. Importantly, antibodies from seven health-care work-
ers passively conferred moderate protection against a low-dose  
M. tuberculosis mouse aerosol infection model, three of whom 
were IGRA-negative while the rest had evidence of LTBI. 
With an in vitro whole blood assay, three donors (including one  
HEBUI donor) were shown to neutralize M. tuberculosis and 
offer 2- to 3.3-fold protective antibody responses. These antibody 
responses were targeted against mycobacterial surface antigens  
and were shown to be dependent on immune complexes and  
CD4+ T cells for their functional efficacy24. Their findings fur-
ther suggest that since CD4+ T cells were required for efficacy,  
they either are not specific for conserved antigens ESAT-6 or  
CFP-10 or do not secrete IFN-γ in response to antigen.

Innate cells and cytokines associated with early clearance 
(Bandung, Indonesia)
Among 1347 exposed TB case contacts enrolled in a cohort study 
in Bandung, Indonesia, 317 were identified as “early clearers”  
who remained persistently IGRA-negative and 116 were identi-
fied as “converters” at 2-week and 14-week post-enrollment by  
repeat IGRA testing34. Flow cytometric analysis of immune cell 
populations demonstrated a profile associated with the resolv-
ing innate cellular response from 2 to 14 weeks in persistently 
IGRA-negative contacts but not converters. There were no dif-
ferences in cytokine responses to mycobacterial stimuli among 
these two groups of individuals, but compared with convert-
ers, persistently IGRA-negative contacts produced more pro- 
inflammatory cytokines when stimulated with other pathogens  
such as Escherichia coli and Streptococcus pneumoniae. The 
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authors further hypothesize that early clearance is mediated by  
epigenetic and cellular metabolic changes that may be a con-
sequence of trained immunity34. The authors also empha-
size that early clearers in this cohort had a lower exposure to  
M. tuberculosis when compared with converters and would 
have led to misidentification, highlighting the need to have  
stringent criteria to identify and define resisters.

Interferon gamma–independent responses (Kampala, 
Uganda)
Recently, IFN-γ–independent response was the subject of inves-
tigation in a re-tracing study of the Ugandan cohort described 
previously. Of the 441 (63.8% of the original 2014–2017 cohort) 
individuals who consented to the re-tracing study, 82 resist-
ers and 195 LTBI individuals were definitively identified on the 
basis of concordant reactivity to repeat TST and IGRA testing23.  
It was demonstrated that “resisters” possess IgM and class- 
switched IgG antibodies that were skewed toward IgG1 as 
observed in subclass ratios when compared with LTBI controls, 
further indicating that resisters possess affinity-matured antibodies  
in response to prolonged exposure to M. tuberculosis. PPD- 
specific, Fc-glycan profiles were different across the groups, and 
resisters demonstrated elevated levels of singly galactosylated 
(G1), highly fucosylated, bisected, and decreased sialylation.  
Importantly, these resisters also displayed detectable ESAT6/
CFP10-specific CD4+ T-cell responses characterized by the 
absence of IFN-γ but the presence of TNF+IL-2+CD40L/ 
CD154+, IL-2+CD40L/CD154+, CD40L/CD154 alone or CD107a 
alone T-cell subsets, indicating the involvement of an uncon-
ventional IFN-γ–independent adaptive immune response23. The  
authors propose that a distinct Th pathway (T-follicular, Th2,  
Th17, Th1) is likely induced in response to differential expo-
sure that influences major histocompatibility complex–mediated  
antigen processing and presentation in response to M. tuberculosis 
infection.

Collectively, these reports strongly suggest that resisters possess 
distinct immunological mechanisms that allow them to remain 
uninfected. However, whether a single dominant mechanism or 
multiple complementary mechanisms give rise to the protec-
tive response in resisters is still unclear. In the next section, we  
discuss additional immune mechanisms that could also mediate 
early and rapid clearance of M. tuberculosis.

Additional effector mechanisms modulating the 
establishment of mycobacterial resistance
Responses mediated by the lung mucosa
The respiratory epithelium is essentially the first line of defense 
against pathogens since it serves as a physical and functional  
barrier that is actively involved in pathogen clearance. The innate 
pulmonary host defenses are supplemented by the anatomical 
structures of the conducting and peripheral airways which are  
lined by diverse populations of epithelial cells and submucosal 
glands35. Additionally, epithelial cells recognize pathogen- 
associated molecular patterns and danger-associated molecular  
patterns via their pattern-recognition receptors (PRRs) that include 
plasma membrane TLRs and soluble cytosolic Nod-like recep-
tors and initiate signaling to recruit immune cells36,37. Following  

inhalation, the most common route of M. tuberculosis transmis-
sion occurs following the deposition of bacilli in the alveolar sacs  
within the lung. The alveolar compartment is lined with pneumo-
cytes such as squamous type I alveolar epithelial cells (AEC I) 
and cuboidal type II alveolar epithelial cells (AEC II)20. While  
AEC I facilitate gas exchange and take part in sensing micro-
bial products, AEC II also function as non-professional antigen- 
presenting cells and secrete a broad variety of cytokines and 
chemokines that are involved in activation and differentiation of 
immune effector cells20,38. It is unclear whether M. tuberculosis  
can invade and replicate within AEC II or other respiratory epi-
thelial cells during natural infection; however, A549 lung epi-
thelial cells infected with M. tuberculosis bacilli have been  
observed to be rapidly killed in vitro39,40. Such initial mycobacte-
rial interactions with the lung epithelium could shape the course  
of the ensuing innate immune effector response, thus establish-
ing early mycobacterial resistance. Genetic susceptibility to  
M. tuberculosis has been associated with polymorphisms in  
pathogen-sensing TLR pathway mediators such as  
Toll-interacting protein (TOLLIP) and TST1 and TST2 loci 
that influence TST reactivity4,26,27. Inhibition of M. tuberculosis 
uptake to prevent infection is an obvious target for host-directed  
therapy; however, the presence of extracellular bacilli  
would likely dampen the host’s ability to kill these bacilli. In addi-
tion to surface PRRs, cytosolic detection of microbial DNA and 
cyclic di-nucleotides occurs via cGAMP synthase (cGAS) binding 
of microbial DNA to produce 2’3’-cyclic GMP-AMP (cGAMP) 
and activates stimulator of interferon genes (STING), making 
both STING and cGAS key targets of investigation for poten-
tial therapeutic manipulation of responses from the lungs41. It  
remains unclear whether inhibitors of surface PRRs and  
cytosolic sensors are sufficient to impair subsequent bacterial 
pathogenesis and warrant comprehensive examination.

Lung epithelial cells are known to secrete soluble surfactant 
proteins (SPs) complement proteins, lysozyme, and anti- 
microbial peptides (APs) such as cathelicidin peptide LL-37 and 
β-defensins into the alveolar space, further indicating that such 
secretory proteins possess the potential to aid in early patho-
gen clearance42,43. SP-A and SP-D polymorphisms are known 
to be associated with susceptibility to TB disease44. In fact, in  
a case-controlled study of 364 patients with TB and 177 control 
subjects in Taiwan, the SP-D 92T homozygous genotype was  
found to be a risk factor for TB45. In vitro assays further sup-
plemented this finding by demonstrating that this variant had a 
lower binding ability to Mycobacterium bovis as well as a lower  
capacity to inhibit phagocytosis, resulting in less inhibition of 
intracellular growth of M. bovis45. It remains to be elucidated 
whether such polymorphisms exist in resisters and the consequent  
functional effects on early clearance. Additionally, APs such  
as the β-defensins HBD-2 and HDB-4 are expressed in response 
to activation of epithelial TLRs and decreased levels of these  
APs were shown in airways of individuals with chronic obstruc-
tive pulmonary disease35,46. Although the protective roles  
of APs are well characterized in the context of inflammatory 
skin disorders47–49, there is emerging evidence that APs do play 
a dynamic role in M. tuberculosis control50–52. AP expression  
has been shown to be induced by the IL-17/IL-22 cytokine 
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axis as well as IL-1 cluster of cytokines such as IL-36γ47,53,54.  
These cytokines have also been shown to induce Th1 immune 
responses, which are critical for controlling intracellular  
bacterial pathogens55–57. In THP-1 alveolar macrophages,  
IL-36γ–induced APs restrict M. tuberculosis H37Rv growth58. It 
is likely that pathogen sensing by the respiratory mucosa induces 
distinct functional pathways resulting in the production of APs 
that are able to successfully restrict M. tuberculosis growth 
early on following exposure, either via direct neutralization or  
via indirect pathways, and need to be mechanistically  
defined in resisters. In this regard, vitamin D (Vit D) has been 
the subject of several investigations in its ability to induce cathe-
licidin anti-microbial peptide (CAMP) via signaling through  
the Vit D receptor59. Some studies have demonstrated that Vit 
D deficiency was associated with an increased risk of TB and  
that Vit D supplementation in fact improved M. tuberculosis  
growth restriction in patients when compared with controls60. 
Class I HDAC inhibitors that modify chromatin and cell signaling  
are also known to induce cathelicin production and restrict  
M. tuberculosis growth by synergizing with Vit D4,61. A summary 
of findings from clinical trials evaluating Vit D therapy62 details 
insights from other respiratory infections, providing inferences 
to strengthen future experimental designs and investigations for  
M. tuberculosis. Natural and synthetically engineered APs  
represent potential therapeutic agents that should be evaluated  
for their potential to neutralize or restrict M. tuberculosis growth63.

Alveolar macrophages, MAIT cells, and tissue-resident mem-
ory T cells represent some of the immune cell populations 
that reside within the lung20. These cell populations have been  
shown to be induced and maintained long-term follow-
ing initial pathogen exposure and are able to rapidly induce  
M. tuberculosis–specific recall responses that provide imme-
diate and effective protection at the portals of entry64–66. Thus,  
protection mediated by such lung-resident immune cells may 
not be reflected in the systemic immune response and might be 
the dominant protective immune mechanism that is employed by 
resisters. Experimental mouse models further complement this  
hypothesis and have shown that accelerating effector cell  
production and delivery to lung in primary M. tuberculosis infec-
tion improves the infection outcome65. Recently, it was demon-
strated that subcutaneous vaccination of rhesus macaques with 
cytomegalovirus vectors encoding M. tuberculosis antigen inserts 
was able to elicit and maintain differentiated, circulating, and tis-
sue-resident M. tuberculosis–specific CD4+ and CD8+ memory  
T-cell responses67. The overall extent of infection and disease  
was reduced by 68% compared with unvaccinated controls 
after intra-bronchial M. tuberculosis challenge67. Although the  
development of strong experimental models that mimic the local 
lung environment in resisters is challenging, vaccine therapies  
that are able to induce a robust effector response within the lung 
should be the subject of future research.

Macrophage-mediated Mycobacterium tuberculosis growth 
restriction
Following exposure and infection, macrophages are at the 
forefront of orchestrating the immune response against  
M. tuberculosis, facilitating immune cell recruitment from 

peripheral blood for early pathogen clearance or containment4,5.  
Furthermore, macrophages are widely regarded as the pri-
mary niche for M. tuberculosis growth and survival5 and it is 
likely that macrophage-dependent pathways could clear initial  
M. tuberculosis infection in resisters before the development 
of an adaptive immune response. While apoptosis of infected  
macrophages represents an important innate host defense modal-
ity limiting the viability of intracellular M. tuberculosis, necro-
sis is often employed as a virulence strategy by M. tuberculosis  
to promote mycobacterial dissemination16,68–70. Pro-inflammatory  
eicosanoids prostaglandin E (PGE) and anti-inflammatory  
lipoxin (LX) have been shown to modulate macrophage apop-
tosis and are critical to determining the outcome of M. tuber-
culosis infection in the host18,71. Interestingly, prostaglandin E  
synthase (Ptges)-/- mice and prostaglandin receptor EP2-/- were 
shown to have increased susceptibility to M. tuberculosis  
infection72, suggesting that PGE

2
 and the apoptotic death of 

macrophages might be critical in regulating M. tuberculosis  
growth in vivo. Another study showed that 5-lipooxygenase  
(Alox5-/-) mice lacking the enzyme required for both pro- 
inflammatory leukotriene (LT) and LX biosynthesis exhibited 
significantly lower M. tuberculosis lung burdens when compared  
with wild-type mice73. The zebrafish Mycobacterium marinum 
model identified that variations in LTA

4
H levels influence the 

balance between pro-inflammatory LTB
4
 and anti-inflammatory 

LXA
4
74. Collectively, these studies suggest that striking the proper 

balance between the levels of eicosanoids influences the modality  
of cell death and might be critical for the successful early control 
of M. tuberculosis. Extensive studies are necessary to determine 
whether the two forms of cell death are differentially regulated  
in resisters, subsequently affecting mycobacterial growth and 
pathogenesis in vivo.

In contrast to apoptosis and necrosis, autophagy is a funda-
mental method of maintaining homeostasis via the degrada-
tion of cytoplasmic contents in lysosomes and has recently been  
established as an innate immune defense pathway in mouse 
models of TB autophagy75–77. Protein aggregates or defective  
organelles are sequestered by double-membrane structures 
called isolation membranes or phagophores, which mature into  
autophagosomes that are capable of fusing with lysosomes76. 
Mammalian target of rapamycin (mTOR) kinase negatively regu-
lates autophagosome generation by targeting the initiation com-
plex components such as the PI3KC3 (class III phosphoinositide 
3-kinase complex 3), ULK1 (unc-51-like kinase 1) complex,  
and ATG complex. Inactivation of the mTOR kinase is likely 
to specifically impact autophagy78. For this reason, mTOR  
inhibition therapy has recently garnered interest in inducing 
autophagy as a protective mechanism against M. tuberculosis79. 
Conventional anti-microbial peptides such as cathelicidin and 
neo-anti-microbial peptides known as cryptides are generated as a  
result of autophagy that aid in intracellular M. tuberculosis  
killing75. IL-1β induces autophagy in a MyD88-dependent  
fashion and promotes autophagosomal maturation into degra-
dative autolysosomes80, signifying a potential role for IL-1β in  
innate mechanisms of host defense, although the extent to which 
IL-1β regulates the autophagy pathway and induction remains  
to be studied.
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Interestingly, IL-1 and type I IFNs represent two major  
counter-regulatory classes of inflammatory cytokines that control 
the outcome of infection18. Induction of type I IFN is pathogenic 
in animal models of M. tuberculosis, and increased type I IFN  
activity correlates with active disease in humans81. For example, 
mice lacking IFNAR survive longer than wild-type mice after  
M. tuberculosis infection82. In infected mice and patients, reduced 
IL-1 responses or excessive type I IFN induction or both are  
linked to an eicosanoid imbalance associated with disease  
exacerbation18,83–85. In two human cohorts, patients with a lower  
PGE

2
-to-LXA

4
 ratio had worse sputum grade86. Moreover, mice 

lacking IL-1α and IL-1β expressed high type 1 IFN levels and  
treatment of these mice with a 5-LOX inhibitor, together with 
PGE

2
, led to decreased lung pathology and bacterial burden86.  

Taken together, these observations suggest that type 1 IFN  
responses might be suppressed in resisters and might instead  
play a prominent role in establishing LTBI or active TB disease  
and need to be mechanistically defined in future studies.

Responses mediated by innate-like lymphoid cells
Whereas conventional T cells exhibit a delayed onset upon pri-
mary infection and are clonally heterogeneous among human  
populations, innate-like T cells rapidly respond to pathogens and 
secrete cytokines without undergoing extensive clonal expan-
sion to induce unique anti-mycobacterial immune defenses87–89.  
The Haitian cohort described previously demonstrated that MAIT 
cells, but not iNKT cells or γδ T cells, display evidence of prior 
activation33. Recently, changes in peripheral levels of natural  
killer (NK) cells (that are known to induce non-major histocom-
patibility complex–restricted cytotoxicity) were shown to indi-
cate disease progression and treatment responses90. NK cell  
levels were found to inversely correlate with the inflamma-
tory state of the lungs of TB patients across three longitudinal 
cohort studies90. However, it is unclear how all of these cell types  
respond to M. tuberculosis infection and whether they selectively 
proliferate in response to the presence of the pathogen. Addi-
tionally, in the context of an M. tuberculosis infection, innate  
lymphoid cells (ILCs) are a lesser-studied population. ILCs  
are broadly classified into three main subsets: ILC1 (IFN-γ– 
producing), ILC2 (IL-4–, IL-5–, and IL-13–producing), and 
ILC3 (IL-17– or IL-22–producing or both). In the lung mucosa, 
ILC3s are an abundant lymphoid cell progenitor population that  
rapidly respond to microbial and cytokine signals19. A significant 
reduction in all ILC populations was reported among 44 sub-
jects with diagnosed active drug-susceptible and drug-resistant  
TB infections in comparison with healthy controls37,91. Recently, 
it was demonstrated that circulating subsets of ILCs (ILC1s 
and ILC3s) are depleted from the blood circulation in patients  
with pulmonary TB and their numbers are restored following  
treatment21. ILCs were found to be present in lung tissues from 
participants with active TB disease and transcriptional profil-
ing of ILCs isolated from these tissues further revealed genes  
associated with a coordinated response against M. tuberculo-
sis infection. Furthermore, in a C57BL/6 mouse model, ILC3s  
accumulated in the lung, coinciding with the accumulation of  
alveolar macrophages, associating with lymphoid follicle- 
containing granulomas. Their accumulation was accompa-
nied by the upregulation of CXCR5 on ILC3s and increased 

plasma levels of its ligand CXCL13. With Il17-/- Il22-/- double- 
knockout mice, IL-17 and IL-22 were found to be critical induc-
ers of CXCL13 and impaired ILC3 responses resulted in an 
increased bacterial burden21. Although collectively these reports  
implicate a role for innate-like T cells in modulating the immune 
response, the roles and extent to which these cells contrib-
ute to early mycobacterial restriction in resisters remain to be  
delineated. Moreover, alternative mechanisms such as innate-
like B1 cell mediated, T cell–independent responses92,93 are yet 
to be investigated. Such innate responses in resisters might also 
be directed predominantly against non-protein mycobacterial  
antigens94, possibly circumventing the development of the  
classic CD4+ T cell–mediated IFN-γ response, providing a 
reasonable explanation for persistent TST/IGRA negativity 
observed in these individuals. These unconventional immune 
responses involving IFN-γ–independent cytokine responses are  
described next.

Alternate cytokine-mediated responses
As discussed earlier, IFN-γ responses do not correlate with bet-
ter protection against M. tuberculosis infections31. For example, 
mice deficient in V(D)J recombination activating protein (RAG) 
that received bacillus Calmette–Guérin (BCG)specific Th17 cells 
from immunized IFN-γ–deficient mice had a survival advan-
tage when challenged with M. tuberculosis, levels of which were  
comparable to that seen with transfer of Th1 cells from  
IFN-γ–competent mice95. Indeed, circulating levels of IL-17 have 
been shown to be lower in patients with active TB than in those 
with LTBI96. In a study from Gambia, following whole blood  
stimulation with M. tuberculosis antigens, Th17, Vγ9Vδ2+, and 
CD161++Vα7.2+ MAIT cells were analyzed by flow cytometry97. 
The majority of IL-17 was produced by CD26+CD4+ Th17 cells, 
followed by γδ T cells (6.4%) and MAIT cells (5.8%), and  
IGRA-negative subjects demonstrated significantly higher levels 
of IL-17A, IL-17F, IL-21, and IL-23 in antigen-stimulated super-
natants. In another comparative study analyzing TST-positive  
and TST-negative subjects, TST-positive individuals showed a 
downregulation of IL-17, IL-23, and RORγt (a key transcription 
factor for Th17 cells) but no difference in Th1 and Th2 cytokines98.  
In agreement with IFN-γ–independent immune responses  
observed in the Ugandan cohort23, these reports further indicate 
that IFN-γ alone might not be sufficient for the protective immune 
response and that elevated levels of IFN-γ might instead be  
unfavorable for optimal protection. IFN-γ–independent immune 
responses that are in fact IL-17–mediated could also be  
orchestrating the establishment of resistance via IL-17– 
producing innate T cells described previously and need to be  
extensively investigated.

Other cytokines, such as the anti-inflammatory cytokine IL-10,  
are known to mitigate Th1 cell responses and minimize  
pro-inflammatory effects of TNF and IFN-γ. Cambodian pul-
monary TB patients who remained anergic to PPD following  
treatment completion displayed tuberculin antigen-specific T-cell 
responses99. These responses were characterized by the produc-
tion of IL10 rather than IFN-γ99. Another study, in Ghana, found 
that individuals with the highest association with the IL-10 pro-
moter haplotype had low circulating levels of IL10 and were  
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more likely to have TB or be TSTpositive100. In an in vitro study, 
bioactive M. tuberculosis cell wall fragments induced upon 
mycobacterial contact with human alveolar lining fluid were  
shown to prime human macrophages to better control M. tubercu-
losis infection through an increase of phagosome–lysosome fusion 
events in an IL-10–dependent manner101. Experimental models 
that recapitulate the early cytokine response to M. tuberculosis  
must be developed to identify the roles of IL-10 and other lesser-
studied cytokines involved in mycobacterial growth restriction  
in resisters, providing insights for the potential of cytokine  
manipulation as a preventive therapeutic strategy.

Trained immunity and bacillus Calmette–Guérin 
revaccination
Although adaptive immunity is widely accepted to possess 
immunological memory, recent studies have demonstrated that 
innate immune cells are able to resist reinfection with the same 
or an unrelated pathogen via a phenomenon termed “trained  
immunity” that is driven by differential gene expression induced 
by epigenetic modifications102,103. Epidemiological studies have  
further shown that BCG vaccination induces non-specific protec-
tion that is effective through early childhood (reviewed in 104). 
Moreover, it has been postulated that exposure to M. tuberculosis 
itself is likely to induce trained immunity104 and that, owing to the  
presence of environmental mycobacteria in TB-endemic set-
tings, bolstered trained immunity in resisters could likely pre-
vent mycobacterial infection. Upon BCG vaccination, peripheral  
blood mononuclear cells and isolated NK cells are known to 
produce increased levels of pro-inflammatory cytokines TNF 
and IL-1β in response to M. tuberculosis as well as other patho-
gens such as Candida albicans and Staphylococcus aureus104. 
Importantly, when healthy individuals were vaccinated with 
BCG or a placebo and subsequently with the live attenuated yel-
low fever vaccine, a decreased peak yellow fever viremia was  
observed105. This response correlated with increased production 
of IL-1β105. In another study, enhanced mycobacterial growth 
restriction was observed upon BCG vaccination in a subset of  
“responder” individuals who demonstrated a differential 
DNA methylation pattern among genes belonging to immune  
pathways106. Furthermore, it was shown that the shift of glu-
cose metabolism toward glycolysis is a fundamental process in 
trained immunity, inducing key histone modifications and func-
tional changes, emphasizing a regulatory role for metabolism in  
innate host defense107. Metabolic inhibition was shown to 
reverse epigenetic changes in human monocytes in an in vitro  
model, characterized by decreased cytokine responses upon 
re-stimulation with microbial and metabolic stimuli104,108.  
Moreover, with parabiotic and chimeric mice intravenously vac-
cinated with BCG, BCG-educated hematopoetic stem cells were 
shown to generate epigenetically modified macrophages that 
provided enhanced protection against M. tuberculosis infection  
when compared with naïve macrophages102. Such findings fur-
ther point toward a potential therapeutic strategy that involves  
boosting such non-specific immunity to prevent M. tuberculo-
sis infection. In a phase 2 randomized trial in South Africa, 990  
QuantiferonTB Gold (QFT)-negative and HIV-negative  
adolescents who had undergone neonatal BCG vaccination  
received the H4:IC31 subunit vaccine, BCG revaccination,  
or placebo109. The BCG vaccine reduced the rate of sustained 

QFT conversion with an efficacy of 45.4% (P = 0.03) while the  
efficacy of the H4:IC31 vaccine was 30.5% (P = 0.16)109.  
Although it is unknown whether such findings hold true in other 
geographical settings, they do support a role for BCG revac-
cination and novel subunit candidate vaccines in inducing  
some level of non-specific protective immunity. Whether 
BCG revaccination can resuscitate the memory response in  
individuals to invoke similar protection observed in resisters 
needs to be systematically elucidated. Moreover, several distinct  
stable and transient changes are widely known to occur  
at the level of the epigenome that modulates the transcriptional 
landscape of immune cells. Unbiased approaches need to be  
employed to identify open chromatin regions and regulatory 
elements influencing histone modifications and differential 
DNA and RNA methylations in resisters, allowing the iden-
tification of important pathways that subsequently establish  
mycobacterial resistance.

Outlook
The lack of an effective vaccine, poor diagnostics, and treat-
ment management, along with the emergence of drug-resistant  
forms of M. tuberculosis, have sustained the global TB epi-
demic. Over the past 40 years, only two drugs of new classes have 
been approved by the US Food and Drug Administration, and  
pretomanid is the latest to be approved this year110. Although  
several new drug candidates are in the clinical stages of  
development111, the identification of pharmacological host tar-
gets that empower functional innate immune responses to rap-
idly restrict M. tuberculosis survival, without inducing cytotoxic  
effects, will provide novel adjuncts to antibiotic therapy. When 
classified using stringent criteria, infection resisters could  
represent about 5 to 15% of individuals among a given  
TB-endemic region and are invaluable targets for future research 
to decipher protective natural immunity. Inducing the right 
innate immune milieu that is likely present in resisters would  
enable the early and rapid elimination of M. tuberculosis,  
possibly instituting trained innate immune memory that can be 
investigated for vaccine strategies.

Recent observations from experimental analyses and mecha-
nistic studies focused on various stages of initial infection to  
active TB disease offer crucial insights which are further com-
plemented by large-scale TB-endemic cohort investigations  
that are aimed at interpreting the heterogeneity of host– 
M. tuberculosis interactions among resisters and infection- 
susceptible individuals. We have also discussed additional effector 
mechanisms that may be contributing to natural resistance, 
summarized in Figure 1. Emerging evidence further proposes  
that M. tuberculosis strains from various lineages evoke  
heterogeneic immune responses, associating with greater sever-
ity of disease and enhanced transmission112–114. Recently, our 
group reported that the transmissibility of strains belonging to 
the same lineage depends on their interaction with the host  
immune system leading to different trajectories in bacterial  
growth and in the development of disease pathology in the  
C3HeB/FeJ mouse model115. This indicates that the role of  
immune variation in the host and the pathogen strain variation 
together may contribute to the infection-resistant and -susceptible 
phenotype in individuals exposed to M. tuberculosis. This is an  
area that awaits further investigation.
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Figure 1. Overview of potential mechanisms and pathways contributing to the infection-resistant phenotype. Following exposure and 
infection of the airways and lung parenchyma with Mycobacterium tuberculosis, infection resisters may engage all or a combination of the 
following mechanisms and pathways to resist infection or rapidly clear infection: (1) airway epithelium defenses: secretion of soluble factors 
and anti-microbial peptides by airway epithelial cells; (2) macrophage-mediated M. tuberculosis growth restriction: programmed cell death 
or autophagy (or both) of lung-resident and recruited alveolar macrophages leading to intracellular restriction of M. tuberculosis; (3) innate 
lymphoid cells (ILCs): production of rapid and effective anti-mycobacterial responses by innate cell populations, including ILCs, mucosal-
associated invariant T (MAIT) cells, natural killer (NK) cells, and innate B cells; (4) innate cytokine response: induction of cytokines that directly 
or indirectly control M. tuberculosis growth in macrophages; (5) trained immunity: molecular reprogramming of monocytes/macrophages 
leading to enhanced anti-mycobacterial responses; (6) humoral immunity: contribution of differentially glycosylated antibodies in restricting 
intracellular M. tuberculosis.
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