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Abstract: Food security has become a major concern worldwide in recent years due to ever increasing
population. Providing food for the growing billions without disturbing environmental balance is
incessantly required in the current scenario. In view of this, sustainable modes of agricultural practices
offer better promise and hence are gaining prominence recently. Moreover, these methods have
taken precedence currently over chemical-based methods of pest restriction and pathogen control.
Adoption of Biological Control is one such crucial technique that is currently in the forefront. Over a
period of time, various biocontrol strategies have been experimented with and some have exhibited
great success and promise. This review highlights the different methods of plant-pathogen control,
types of plant pathogens, their modus operandi and various biocontrol approaches employing a
range of microorganisms and their byproducts. The study lays emphasis on the use of upcoming
methodologies like microbiome management and engineering, phage cocktails, genetically modified
biocontrol agents and microbial volatilome as available strategies to sustainable agricultural practices.
More importantly, a critical analysis of the various methods enumerated in the paper indicates the
need to amalgamate these techniques in order to improve the degree of biocontrol offered by them.

Keywords: plant pathogen; biocontrol; microbes; AMF; bacteriophages; microbiome; sustainable strategies

1. Introduction

A large amount of crop loss occurs each year during both pre and post-harvest stages
due to pathogen infestation that involves a wide variety of pathogens ranging from viroids
and viruses to prokaryotic bacteria, eukaryotic fungi, oomycetes, and nematodes. These
plant pathogens are highly persistent in their attack and induce direct and indirect losses
to the tune of 40 billion dollars worldwide [1]. Over the last decade some very important
aspects of microbial applications in crop disease mitigation have been discussed [2–4] as
methods of sustainable agriculture. However, their field application is still inadequately
worked out.

Given the paramount importance of the methods for controlling plant pathogens and
diseases caused by them to improve productivity not only in terms of food but also for
other materials obtained from plants like fibre, timber, oils, medicines, etc. and to meet
the food demands of the exponentially growing world population, food production needs
to increase by 70% by the year 2050 to address the internationally growing food security
concerns [5]. It is high time when we need to shift to sustainable methods of agriculture
so as to reduce biodiversity loss and greenhouse gas emissions that are currently placed
at 60% and 25%, respectively [1]. At present, most of the methods employed for plant
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protection from pathogens primarily involve the use of antibiotics and chemicals [6].
Even though these shotgun [6] methods deliver immediate protection, they ultimately
lead to resistance and bioaccumulation of harmful chemicals in the crop systems. It is
these drawbacks that emphasize the importance of sustainable and environment-friendly
crop management practices to control diseases [7]. Such practices help to improve the
quality and quantity of agricultural produce that also includes organic crops. The organic
systems exploit various naturally occurring plant protection resources like micro- and
macro-flora and fauna found in the soils, protective products made from plant extracts,
use of physical methods like weeding, mulching, and choice of cultivars, etc. to support
organic produce [8]. Hence ingredients of organic agricultural practices can serve as model
tools in establishing sustainable methods of agriculture as a whole. Overall, due to the
growing concerns of environmental pollution and ecological toxicity resulting from the
indiscriminate use of chemical formulations, there is an immediate need to base modern
plant protection strategies on natural resources [1].

The terms biological control or biocontrol used extensively in scientific literature, cause
tremendous confusion. Biological control, in its most basic form, is the employment of any
living organism to combat a specific plant disease or pest through parasitism, antibiosis, or
competition for resources or space [9]. In order for a disease or pest to thrive on a plant,
three important criteria need to be fulfilled. These include the invader (the plant pathogen
or pest), the environment, and the plant itself. Therefore, there are complicated processes
at several levels that not only produce the diseases and pests, but also modulate them [10].
As a result, a broader definition of biological control is necessary, one that encompasses all
levels, to realize its full potential in disease and pest management. This broad definition will
involve the use of species and their byproducts to manage pests and diseases in crops, either
via hostile reactions or through the development of immunity against them [11]. Despite
extensive studies devoted to field trial effectiveness of biocontrol agents (BCAs), this area is
restricted due to changes in ecological characteristics, such as the host‘s physiological and
genetic state, climatological circumstances, and other factors that enhance the variability of
the desired BCA impact [12–14]. As a result, most biocontrol applications are limited to
greenhouse crops, where environmental conditions are monitored and supervised [15]. It
is suggested here that combinations of BCAs and fungicides are able to control pathogens
more effectively [16]. However, this area is entirely barren and extensive research studies
need to be conducted to come out with meaningful conclusions. In the current study, we
examine several biocontrol approaches against plant diseases and upcoming strategies that
offer improved biocontrol potential against a diverse population of pathogens that might
possibly assist in the attainment of long-term sustainability goals.

2. Plant Disease Management
2.1. Chemical Control

There has been high dependence on chemicals to control diseases and pests in agri-
culture and even today, they continue to remain the main component of Integrated Pest
Management (IPM) as demonstrated by the ever-increasing use of fungicides since the
1960s [17]. These chemical formulations, even though crucial to prevent large scale losses
and spread of diseases in crops, come with several drawbacks such as, ecotoxicity, bioaccu-
mulation, adverse effects on nontarget plants and animals, and human health. Exposure to
these chemical-based pesticides, fungicides, etc. is known to cause various types of cancers,
respiratory disorders, and hormonal imbalances in humans [16]. Apart from these, data
from FAO-WHO and US Food and Drug Administration shows that persistent organic
pollutants (POPs) do not degrade easily and remain deposited on fruits and vegetables,
ultimately entering animal-based food sources like dairy products, poultry, and meat [6].
Furthermore, the use of chemical pesticides has led to continued rise of resistant pathogens
resulting into reduced efficacy of most chemical control methods [16].
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2.2. Resistant Varieties

The process of crop selection and plant breeding are well known and proven criteria
that are applied in agriculture to improve crop varieties and produce disease-resistant
cultivars. These practices are used even today and have proven to be beneficial in the fight
against various types of disease-causing plant pathogens [6]. The genetic route is one of
the most favored biotechnological applications in our never-ending strive to increase food
production. Genetically modified (GM) varieties are not only disease resistant, but also
produce better quality crops and greatly reduce the need for external inputs of costly chem-
icals, thereby making their production economically viable. Despite these advantages, GM
crops require approval from regulatory agencies at a high cost and are not readily accepted
by the consumers. Moreover, these crops can also exhibit susceptibility to pathogens within
a few years of their cultivation due to a number of causes like mutations occurring in the
targeted pathogens, reduction in field resistance due to various recombination events, and
lack of genetic uniformity within the GM crops [18]. Many crops have shown indications
of resistance breakdown, including rice blast resistance, cotton leaf curl disease, grapevine
downy mildew, and yellow wheat rust [18]. Nevertheless, encouraging results are being
achieved in the labs by using genome editing by CRISPER/Cas9 and insertion of gene
cassettes using intragenic technologies and it is expected that in the near future, these
approaches may be the way forward and can be used at par with conventional plant breed-
ing technologies [6]. Other breeding methods involving gene pyramiding, gene rotation,
and multiline varieties also offer advantages in controlling resistance. It is imperative that
newer and better biotechnological tools are developed and applied in order to accelerate the
production of improved disease-resistant cultivars so as to manage the newer aggressive
pathogens [18].

2.3. Biological Control

Among the non-chemical methods of pest and pathogen control, biological control or
biocontrol seems to be the most suited for organic cultivation. It is environmentally safe,
sustainable, economically viable, and highly specific (Table 1). A number of such methods
are currently being employed, like the use of naturally occurring soil microbes against
various pests and pathogens [2]. A deeper understanding of the relationships between
plants and pathogens along with the environmental factors prevalent in a particular area
needs to be understood prior to biocontrol implementation, particularly under widespread
disease conditions. In plant pathology, biocontrol is defined as the interaction of numerous
environmental elements with the goal of reducing the negative impacts of harmful species
while promoting the growth of beneficial crops, helpful insects, and microbes [19]. Biologi-
cal control is dependent on numerous agonistic and antagonistic interconnections between
plants and microbes living in the rhizosphere and phyllosphere [20] and their application
to minimize disease and subdue pests. Organisms from the rhizosphere can be harnessed
from the surrounding environment (the black box approach) or can be introduced into the
field from external sources (the silver bullet approach). It is beneficial to apply a consortium
of microbes with collaborative properties rather than relying on a single organism since
microbial consortia make up a stable rhizosphere that offers more effective control against
pathogens [21]. Apart from microbial applications, the utilization of other plant products
like extracts, biofertilizers, and biopesticides, natural enemies of pests and pathogens, and
gene products also aid in carrying out biological control [6].

Table 1. Examples of plant pathogens and their biocontrol strategies.

Pathogen Host Biocontrol Strategies References

Phytophthora sojae, Pythium heterothallic,
Pythium irregulare, Pythium sylvaticum, and
Pythium ultimum

Glycine max
Pseudomonas water derived strain,
06C 126, effectively
inhibited oomycetes

[22]
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Table 1. Cont.

Pathogen Host Biocontrol Strategies References

Soilborne fungal pathogens
Pulses, grapes, cotton, onion,
carrot, peas, plums, maize,
apple, etc.

The fungal genus Trichoderma has
biocontrol activity against fungi
and nematodes

[23]

Salmonella sp., Staphylococcus aureus,
Escherichia coli, Mycobacterium tuberculosis,
Shigella sp., Listeria monocytogenes and
Pseudomonas aeruginosa along with bacteria
like Yersinia pestis, Burkholderia mallei,
Francisella tularensis, Brucella sp. and
Bacillus anthracis that pose a
bioterrorism risk

Bacteriophage and natural extracts [24]

Phytopathogenic microorganisms in
agriculture or even in other areas

Endophytic Bacillus
toyonensis BAC3151 [25]

Phytopathogenic fungi Trichoderma spp. potential
biocontrol agents [26]

Phytophthora spp. and Pythium spp. Aquaponics Antagonistic microorganisms [27]

Soil-borne pathogens Pathogen-suppressing
microorganisms [28]

Broad range of plant pathogens

Antibiotics, lipopeptides, and
enzymes with antagonistic
properties against a range of plant
pathogens are produced by Bacillus
species. These bacteria also
influence resistance development in
plants and stimulate plant growth

[29]

Ralstonia solanacearum, R. pseudo
solanacearum, and R. syzygii subsp.
indonesiensis causative agents of
bacterial wilt

Hosts include tomato, potato,
banana, tobacco, and peanuts.
Losses range from 100% in
banana, 90% in potato and
tomato and around 20–30% in
peanuts and tobacco

Bacteriophage-based bacterial wilt
biocontrol methods [30]

Fungal and bacterial phytopathogens Many crops
Streptomyces spp. as Endophytes
mediated biocontrol of
phytopathogens

[31]

Pathogens in the crop residues Cereal crops Microbiome-based
biocontrol strategies [32]

Fungal pathogens Cereal crops

Streptomyces species produce a
range of secondary metabolites that
can inhibit the growth of
phytopathogens

[33]

Plant fungal pathogen

Improved control obtained with by
combinations of fungicides and
BCAs (Trichoderma spp.
or Bacillus spp.,)

[34]

Diseases caused by fungi, bacteria, viruses,
viroids, nematodes, and oomycetes Citrus sp.

Employment of antagonists
produced by Bacillus sp. offers
superior capacity to restrict diseases
in citrus plants

[35]

Rhizoctonia solani that induces stem canker,
Fusarium solani causes tubers dry rot, and
black scurf and Alternaria solani that
induces early blight

Potato

Endophytic bacteria from
Romanian potato tubers isolate 6T4
identified as B. atrophaeus/subtilis
revealed promising perspectives for
biocontrol strategies

[36]
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Table 1. Cont.

Pathogen Host Biocontrol Strategies References

Fusarium oxysporum and other
phytopathogens Wheat

Bacillus amyloliquefaciens subsp.
plantarum XH-9 is a rhizobacterium
with antagonistic potential against a
variety of phytopathogens.
It discharges antibiotics and
enzymes that are capable of
bringing about hydrolysis in
the pathogen

[37]

Verticillium dahliae soil borne pathogen Cotton
Endophytic Fungus Fusarium solani
CEF559 against Verticillium dahliae
in Cotton Plant

[38]

Fungal Pathogens
Trichoderma is a fungal genera
having antagonistic activity against
disease causing fungal pathogens

[39]

Fusarium head blight (FHB) Wheat

Endophytic Anthracocystis floculossa
P1P1, Penicillium olsonii ML37,
Sarocladium strictum C113L, and A.
floculossa F63P exhibit the ability to
act as biocontrol agents against FHB

[40]

Fungi Ustilaginoidea virens, Alternaria
alternata, Fusarium oxysporum, Botrytis
cinerea, Fulvia fulva, and
Fusarium graminearum

Tomato Antifungal metabolites of Bacillus
velezensis NKG-2 [41]

Bacterial phytopathogen Pseudomonas
syringae pv. Tomato Tomato

Pseudomonas segetis strain P6
isolated from the rhizosphere has
the ability to induce plant growth
and inhibit quorum sensing abilities
of bacterial pathogens

[42]

Pepper gray mold caused by Botrytis cinerea Pepper
Can be controlled efficiently by the
biocontrol mediator
Bacillus velezensis

[43]

Seed and soil borne pathogens
Chaetomium globosum functions as
an effective potential
biocontrol agent

[44]

Fungal Pathogen

Endophyte and epiphyte
microbiome of Grapevine leaf as
biocontrol agents against
phytopathogen

[45]

Fungal pathogen Vitis vinifera

Bacillus licheniformis GL174
culturable endophytic strain
isolated from Vitis vinifera
cultivar Glera

[46]

Species of soil-borne fungal plant
pathogens, such as Cladosporium variabile,
Rhizoctonia fragariae, Phomopsis longicolla,
Colletotrichum acutatum, Aspergillus niger,
Sclerotinia sclerotiorum, Penicillium digitatum,
Macrophomina phaseolina, Trichoderma viride
and Botrytis squamosa

Natural wine yeast strains of
Saccharomyces and
Zygosaccharomyces

[47]

Endophytic fungal parasite of
Moniliophthora perniciosa causing Witches’
Broom Disease

Cacao
Yeasts, such as Saccharomyces
cerevisiae and
Wickerhamomyces anomalus

[48]

Cryphonectria parasitica causing chestnut
blight epidemic Chestnut Mycoviruses [49]

Closteroviridae family of plant viruses
causing leafroll disease Grapevine

Case based management, such as
use of certified planting material,
open field foundation block
vineyards on virgin soil etc.

[50]
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Table 1. Cont.

Pathogen Host Biocontrol Strategies References

Cucurbit yellow stunting disorder virus,
Cucurbit chlorotic yellows virus and Beet
pseudo-yellows virus

Vegetable crops
Integrated disease management
strategies and using
resistant varieties

[51]

Pythium ultimum Chilly, Tomato, Redgram,
Chickpea, Soybean, etc.

Trichoderma viride, T. harzianum,
T. virens and Laetisaria arvalis [52]

Wilt diseases Trichoderma spp. [53]

3. Types of Plant Pathogens

Plant pathogens are divided into three categories namely necrotrophs, hemibiotrophs,
and biotrophs depending on the way they obtain energy from the plants [6]. These inter-
connections in turn influence the way the plant responds to the pathogens [6,54].

3.1. Biotrophic Pathogens

Biotrophic plant pathogens obtain their nourishment from living cells of the host
plant with the help of complex mechanisms to access plant resources. They share a close
relationship with the plants’ living tissue to the extent that some of the biotrophs have
lost the ability to grow on non-living artificial media and have coevolved as obligate
biotrophs. Examples include Uromyces fabae that causes rusts and Blumeria (Erysiphe)
graminis that causes powdery mildews [55,56]. The non-obligate biotrophs on the other
hand can be grown on artificial media, are not saprophytic, and restrict injury only to
the host cells. Biotrophs form hyphae/ haustoria that penetrate the host cell wall but not
its plasma membrane. The plasma membrane at these points invaginates and gives rise
to a perihaustorial/ peri arbuscular membrane where nutrient exchange takes place [57].
Effector molecules are released by the pathogen that further helps in the invasion of the
host genotype [56,58–60]. Other examples include Ustilago maydis, which causes corn smut
and Cladosporium fulvum that causes tomato leaf mold, do not form haustoria and nutrient
exchange between the plant and the microbes is carried out via apoplast [61].

3.2. Necrotrophic Pathogens

Unlike biotrophs, the necrotrophic microbes are opportunistic, unspecialized pathogens
that kill the host rapidly and sustain on its remains [62,63]. They do not form haustoria
and enter the plant via naturally found openings or wounds and secrete lytic enzymes
and phytotoxins. They can be easily grown on artificial media. Necrotrophic pathogens in-
clude bacteria, fungi, and oomycetes that mainly attack young, weak, and damaged plants
and are capable of a saprotrophic mode of existence [63,64]. Both bacterial and fungal
necrotrophs follow similar patterns of infection that involve attachment, host penetration,
and subsequent necrosis and decay of plant tissues. Some examples of fungal necrotrophs
are Cochliobolus that causes corn leaf blight, Alternaria that causes early blight of potato
and Botrytis that causes grey mold [6,56,65,66]. Mechanisms of plant immunity against
these pathogens are in the form of phytohormones, pathogenesis proteins and secondary
metabolites [63]. Some of the important cash crops that are infected by necrotrophic fungi
like Fusarium and Rhizoctonia include wheat, maize, and rice [67–69]. Even if a percentage
of the crop genotype does not respond to the toxins produced by the necrotrophic fungi
and evades necrosis, these pathogens are still capable of inflicting a much greater loss of
productivity and overall destruction in comparison to the biotrophs [63].

3.3. Hemibiotrophic Pathogens

Hemibiotrophic pathogens are an interesting group of pathogens as they display
characters of both biotrophs and necrotrophs and are capable of switching between the
two modes. The transition from the asymptomatic biotrophic phase to the destructive
necrotrophic phase is accompanied by suppression of the host’s immune response at the
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required time resulting in extensive damage to the host leading to its decay and death [6].
Hemibiotrophic characteristics are shown by fungi like Magnaporthe grisea, Phytophthora,
Pythium, Fusarium, Colletotrichum and Venturia, and the bacterium Pseudomonas syringae all
of which are capable of a prior biotrophic existence with the host but ultimately shift to a
necrotrophic mode of nourishment by killing the host cells [56,58–60,64,70,71].

4. Biocontrol Management
4.1. Microbial Biocontrol

The rhizosphere is the soil area that surrounds the roots and is composed of microbes
capable of repressing plant pathogens. It, therefore, aids in providing natural protection to
the plants against a variety of organisms either directly by synthesizing metabolites antago-
nistic towards the pathogens or indirectly by suppressing pathogen growth and improving
the host‘s defense mechanisms. Antibiosis caused by the release of antibiotics, organic
compounds, toxins, and various hydrolytic enzymes like beta-xylosidase, chitinase, pectin
methylesterase, β-1,3-glucanase, etc. is one of the mechanisms employed by the rhizosphere
microbial population to carry out the destruction of the pathogen including disintegration
of the glycosidic linkages in its cell wall [6]. Plant growth-promoting rhizobacteria (PGPR)
residing in the rhizosphere also perform biocontrol by reducing the incidence of plant
disease thereby assisting in plant growth. The PGPR also promote antibiosis, competition,
production of metabolites that induce systemic acquired resistance (SAR) and induction of
systemic resistance (ISR), parasitism, production of hydrolytic enzymes such as cellulase,
glucanase, chitinase, and protease that break down the cell wall along with a number of
antibiotics like oomycin A, 2,4-diacetyl phloroglucinol (DAPG), pyoluteorin etc against the
pathogens [72]. For example genus, Serratia belonging to Enterobacteriaceae is a PGPR that
produces secondary metabolites having attractive biocontrol properties [73].

Rhizobia are symbiotic microbes found on the roots of leguminous plants that not
only play an important role in nitrogen fixation but also in biocontrol. They promote plant
growth by secreting antibiotics, mycolytic enzymes, siderophores, and hydrocyanic acid
(HCN) that prevent the growth of pathogenic fungi belonging to genera like Fusarium,
Rhizoctonia, Sclerotium, and Macrophomina. They enhance plant immunity by increasing the
expression of defense-related genes and instigating systemic resistance.

Seed quality can be improved by bacterization with the correct rhizobial strain to cause
activation of various enzymes involved in isoflavonoid and phenylpropanoid pathways,
accumulation of phenolic compounds and isoflavonoid phytoalexins that enhance the
biocontrol capability of the cultivars thereby improving plant growth and productivity [74].
Examples of protection by rhizobia can be seen in the use of a colloquium of Pseudomonas
strains that were isolated from potato phyllosphere and rhizosphere and used to fight
the late blight of potato caused by Phytophthora infestans. The colloquium of different
strains proved to be far more effective compared to the use of individual strains [75]. Plant
disease management also engages endophytes as biocontrol agents. These microbes can
reside asymptomatically in different parts of a plant like a shoot, leaves, or roots [76–81].
Potential antagonistic strains of endophytes can be screened for biocontrol capability as
all strains do not exhibit similar activity. This was exhibited by Gonthier et al. [82] on the
use of Suillus luteus against the fungal pathogens Heterobasidion irregular and Heterobasidion
annosum that infect Scots pine (Pinus sylvestris) that resulted in diminished susceptibility
to only H. annosum, and not to H. irregular. They can also be engaged as control methods
against threats such as the spotted lanternfly that causes severe economic loss in North
America [83,84]. Endophytes use varied mechanisms like lytic enzymes, activation of host
defenses, synthesis of antibiotics, and mycoparasitism against pathogens. In-depth research
on their biocontrol activity is much required in order to exploit their full potential as future
disease and pest management agents [85,86].
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4.2. Fungal Biocontrol

Apart from their ability to improve nutrient uptake and nitrogen use in plants, fungi
also have biocontrol capabilities. They can aid in the fight against pests like nematodes
and microbial pathogens that infect various parts of the plant such as roots, foliage, and
fruits. They offer protection against diseases with the help of processes like mycopara-
sitism, competition for resources with pathogens, antibiosis, conferring ISR to the host
plant, and mycovirus mediated cross-protection or MMCP [87]. Some of the well-known
fungal biocontrol agents include the Trichoderma species, ectomycorrhizas, arbuscular
mycorrhizas (AMF), yeasts, and endophytes. Even the nonvirulent strains of certain
pathogens can utilize hypovirulence-associated mycoviruses in order to function as bio-
control fungi [88]. With improved biotechnological and genetic advances, it is not only
possible to introduce beneficial fungal genes into the genomes of the host plants but also
to interrupt or overexpress these genes in order to improve biocontrol ability [88]. A re-
view by Thambugala et al. [89] provides a comprehensive list of fungal biological control
agents that were used against fungal plant pathogens according to modern taxonomic
concepts, and clarifies their phylogenetic relationships. Furthermore, they clarify that this
is important in view of the wrong names are frequently used in the literature of biocontrol.
They list details of some 300 fungal antagonists belonging to 13 classes and 113 genera
together with the target pathogens and corresponding plant diseases. According to them,
Trichoderma is identified as the genus with greatest potential of biocontrol and it comprises
25 species as biocontrol agents that have been used against a number of plant fungal dis-
eases. In addition, nine more genera were recognized by them as significant in this regard
that comprise five or more known antagonistic species, namely, Alternaria, Aspergillus,
Candida, Fusarium, Penicillium, Pichia, Pythium, Talaromyces, and Verticillium. Majority of
the plant growth-promoting fungi (PGPF), viz., Trichoderma, Penicillium, Aspergillus and
Fusarium spp. are reported for their abilities to stimulate the plant immune responses upon
enemy attack and are considered as one of the safest modes for induced systemic resistance
(ISR) and growth promotion in crop plants [90,91]. In addition, PGPFs are also known
for being beneficial to plants in reducing the impacts of various fungi, bacteria, viruses
and nematodes [91] by eliciting ISR. Trichoderma species are soil-borne filamentous fungi
known for its utility in many plant health benefit applications [92]. Its strains deploy a
complex mechanism in pathogen control that includes colonizing the soil and root of the
host, inhabiting a physical space and evading the multiplication of the phytopathogens
while concomitantly producing cell wall-degrading enzymes, antimicrobial metabolites to
kill the pathogens, inducing plant defense mechanisms, promoting plant development and
improving plant tolerance to biotic and abiotic stressors [93].

4.3. Plant Virus and Biocontrol

Qu et al. [94] have elucidated the effects of a single-stranded DNA virus, Sclerotinia
sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) that infects the fungus
Sclerotinia sclerotiarum, a disease causative agent of many crops [94]. Qu et al. [94] have
further elucidated the altered expression of phenotype related genes upon SsHADV-1
infection by using digital RNA sequencing.

Some common and well characterized useful viruses that harbour the plants are those
that are known to enhance the beauty of ornamental plants. Tulip breaking virus was the
first of this lot. However, many other prized ornamentals owe their value to some extent
to the viruses that infect them [95]. Other examples of beneficial plant viruses include
several acute viruses, such as Brome mosaic virus, family Bromoviridae, Cucumber mosaic
virus, family Bromoviridae, Tobacco rattle virus, family Virgaviridae, and Tobacco mosaic
virus, family Virgaviridae, which confer tolerance to drought and freezing temperatures in
various crops, and persistent viruses, such as White clover cryptic virus (family Partitiviri-
dae), which can suppress nodulation in legumes during proper supply of nitrogen [96].
Roossinck, [96] elaborates further by stating that the mild symptom causing plant virus
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strains have been used for cross-protection against more severe strains and this attribute is
utilized in pathogen-derived transgenic resistance strategies.

A good number of literature reveal that plant infected with viruses do not show any
apparent ill effects on their hosts in the beginning [96,97]. However, their persistence as
displayed by the virus families Chrysoviridae, Endornaviridae, Partitiviridae and Totiviri-
dae that are a group of the most common viruses found in wild plants, has got significance
from scientific perspectives pertaining to biocontrol of plant diseases [97]. These viruses
are considered as having very long relationships with their plant hosts. Persistent viruses
are also common in crops, including peppers, rice, beans, carrots, figs, radish, white clover,
melons, barley and avocados [98].

Plant viruses are controlled either by host resistance, e.g., Plum Pox Virus (PPV) by
activation of members of a cluster of meprin and TRAF-C homology domain (MATHd)-
containing genes that were designated as possible PPV resistance genes [99], mild strain
cross protection, e.g., Pepino Mosaic Virus (PepMV)-based cross protection in the crops [100],
or by biocontrols of their insect vectors, e.g., parasitoids of mealybugs that vector GLRaV-3.
The latter approach has been tested for vine mealybug, Planococcus ficus that feeds through a
membrane feeding system on GLRaV-3, which was blocked with some blocking molecules
in a test study for such molecules tapping the feeding membrane system of the parasitoid
vector [101]. Pechinger et al. [100] have provided a detailed list of protective virus isolates
and their respective challenging isolates tested for their mild strain cross-protection capa-
bilities. In case of host resistance, host R genes typically induce race-specific resistance in
response to the Avr genes of pathogens [102,103]. During plant–virus interactions occurring
in a single cell, an R gene triggered HR response is vital that kills infected cells and restricts
the viral invasion and this phenomenon is associated with several molecular events, such
as the activation and expression of salicylic (SA), jasmonic acid (JA), mitogen-activated
protein kinase signaling [103], calcium ion influx, callose deposition at the plasmodesmata,
membrane permeability modification, pathogenesis-related (PR) protein expression, and
immediate accumulation of reactive oxygen species and nitric oxide [104].

4.4. Arbuscular Mycorrhizal Fungi (AMF) Biocontrol

A number of studies lay emphasis on the biocontrol abilities of Arbuscular mycorrhizal
fungi (AMF) as they have been shown to reduce the incidence of fungal diseases and
nematode attacks on host plants by 30 to 42% and 44–57%, respectively [2,3,105,106]. The
biocontrol properties of AMF are broad-spectrum and more pronounced against fungal
root pathogens in comparison to the shoot ones [107,108]. AMF offers defense against a
number of fungal pathogens belonging to the genera Colletotrichum, Alternaria, Erysiphe,
Gaeumannomyces, Macrophomina, Botrytis, Rhizoctonia, Fusarium, Cylindrocladium, Sclerotium,
and Verticillium. On the other hand, they do not offer much protection against a large
number of bacterial and viral pathogens but some bacteria like Pseudomonas syringae pv.
glycinia that causes bacterial blight on soybean can be checked by AMF. In the case of viral
pathogens, the presence of mycorrhizal fungi seems to increase the damage caused by viral
infections [87] as seen with Tomato spotted wilt virus (TSWV) [109], Potato virus Y [110],
Citrus tristeza virus and Citrus leaf rugose virus [111] and Tobacco mosaic virus [112].
Therefore the role of AMF against viral pathogens is largely unclear and mostly points
towards a supportive influence resulting in intensified disease rigor [109,113]. Moreover,
reduced colonization and spore formation is shown by the AMF when the host plant is
infected with a viral pathogen like the yellow mosaic virus [114].

4.5. Biocontrol Yeast

Yeasts such as Aureobasidium pullulans, Cryptococcus albidus, Candida oleophila, Saccha-
romyces cerevisiae, and Metschnikowia fructicola are currently being employed as biocontrol
agents as they are effective adversaries of various plant pathogens. Yeasts are a category
of unicellular fungi that grow in most environments, have simple culture needs and few
if any biosafety concerns. They apply competition, volatiles, enzymes and toxins, my-
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coparasitism, and initiation of immune response mechanisms for plant protection. Due
to these properties, they can be exploited as biocontrol effectors but a paucity of studies
on their role limits their full utilization [115]. Yeasts are known to exert their biocontrol
activity through Phage based competition, enzyme secretion, toxin production, volatiles,
mycoparasitism, induction of resistance activity [115]. Ferraz et al. [116] have extensively
listed the success cases of using yeasts to antagonize the spoilage of fruits by filamentous
fungi. Thambugala et al. [89] have prepared an exhaustive list of some commercialized
fungal biocontrol agents for plant fungal diseases and their specifications, that is suggested
for further reading. Some important yeast species, such as Candida oleophila, Aureobasidium
pullulans, Metschnikowia fructicola, and many others are reported to have been registered
as biocontrol agents and have been suggested to having potential for being utilized as
commercial biocontrol agents [115]. Di Canito et al. [117] suggests that Saccharomyces and
non-Saccharomyces yeasts as potential antagonists against phytopathogenic fungi of the
genera Penicillium and Aspergillus and the species Botrytis cinerea on table grapes, wine
grapes, and raisins. They suggest that several non-conventional species are largely unex-
plored till date in both basic research and for their possible utilization in commercialization.
They further say that this group constitutes a huge, untapped reservoir of yeasts having
potential for biotechnological innovations constituting selection of species and strains
with new metabolic traits, such as the secretion of proteins, adhesiveness, antimicrobial
properties, etc. that are required for yeasts to manifest their applications as biocontrol
agents. Application of yeasts in prevention of infections represent a new strategic frontier
for maintaining the post-harvest quality of table and wine grapes [117]. The genomes of sev-
eral non-conventional yeast species have been completely sequenced and their number is
growing continuously Wendland [118]. Thus, expected novel methods for the genetic anal-
ysis and their further modifications in yeasts, as well as their genomic and post-genomic
analysis before and after such modifications, will represent a platform for understanding
the molecular mechanisms underlying both the simple and complex biological features that
are supposed to be useful for the development of new and eco-compatible applications.

4.6. Phage-Based Biocontrol

Phages have been in use as biocontrol agents against bacterial pathogens for a long
time. The earliest study demonstrating their biocontrol ability was done by Mallmann
and Hemstreet in 1924 [119] in which they isolated Xanthomonas campestris pv. campestris
from plant tissues suffering from the cabbage-rot disease. Future studies showed that
phages could inhibit soft-rot caused by Pectobacterium carotovorum subsp. carotovorum in car-
rots [120], a bacterial spot of tomato by X. campestris pv. vesicatoria [121] and Pectobacterium
atrosepticum in potato slices [122]. More recent explorations into phage biocontrol usage
have focussed on improving their durability under field conditions [123]. Exploring the
use of phage cocktails and systemic acquired resistance activator in disease management
against X. citri subsp. citri and Xanthomonas axonopodis pv. citrumelo that causes citrus
bacterial canker and citrus bacterial spot respectively showed positive results in field tri-
als [124]. On the other hand, some studies showed a better disease management response
in laboratory-based bioassays rather than in field trials, like in the case of phage treatment
against Pseudomonas syringae pv. porri that causes bacterial blight of leek [125]. However var-
ious economically significant bacterial pathogens like Xanthomonas spp. and Pseudomonas
syringae can be effectively controlled by phages. Peptidoglycan hydrolases, lysins from
phages Atu_ph02 and Atu_ph03 are capable of blocking cell division in Agrobacterium
tumefaciens (causes crown gall disease) resulting in its lysis [126]. Other lysins from CMP1
and CN77 phages have also shown lytic capacity against Clavibacter michiganensis subsp.
michiganensis, that causes bacterial wilt and canker of tomato [127]. The incorporation
of phage lysins into transgenic crops can aid in their easy application and overcome pro-
duction issues [127]. Mostly, the application of phages and phage lysins in plant disease
management is a progressive step and has shown positive outcomes in a number of in-
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stances. Focus now needs to be on developing better delivery methods and guaranteeing a
longer shelf life for the phage and its enzymes on the host plant [7].

4.7. Natural Compounds against Plant Diseases

Bioactive natural compounds can be of plant or animal origin and are capable of con-
trolling plant diseases thereby promoting plant growth. A number of bioactive molecules be-
longing to phenolic, terpenoid, or alkaloid categories [128] such as chitin, laminarin, allicin,
terpenes, chitosan, naringin, and carrageenans have been identified for use as biopesticides
in organic cultivation. Allicin, acquired from garlic exhibits antibacterial and antifungal
properties under field conditions [129–131], garlic juice inhibits the growth of a number of
bacteria belonging to the genus Pseudomonas, Agrobacterium, Xanthomonas, and Erwinia and
fungi Cercospora arachidicola, Botrytis cinerea, Rhizoctonia solani, Alternaria alternata, Fusarium
moniliforme, Colletotrichum coccodes [132,133]. Naringin (40,5,7-trihydroxyflavanone-7-β-D-
α-l-rhamnosyl(1-2)-β-D-glucoside) is another potent bioactive molecule found in seeds and
pulp of grapefruit [134] that displays effectiveness against fusariosis, alternariosis, and gray
mold infections in soybean, ornamental plants, and vegetables such as potato [135–137].
Tea tree oil (Melaleuca alternifolia L.) contains terpenes like terpinen-4-ol, gamma-terpinene,
1,8-cineole and exhibits strong antimicrobial properties against a variety of bacteria and
fungi. It is particularly effective against Bremia lactucae and downy mildew that attack let-
tuce [138–140]. At times the use of bioactive compounds like garlic pulp is more beneficial
than synthetic compounds like azoxystrobin as seen in the case of sweet pepper plants [133].
Chitin which is the second most abundant polysaccharide in nature and a component of
the fungal cell wall and exoskeleton of crustaceans and insects shows bioactivity against
a number of bacterial, viral, and fungal pathogens [141]. It is known to have a strong
antifungal influence against soil-borne pathogenic fungi that infect soybean [135] and is
a fungal microbe-associated molecular pattern (MAMP) molecule that is able to activate
immune responses in the host plant [1]. It can be isolated using enzymatic reactions and
chitosan distillation [142]. Bioactive compounds, therefore, show a variety of modes of
action not only to limit pathogen growth and multiplication but also inactivation of the
host defense response [143]. They usually act via binding to the membrane receptors on
plants and produce a signal that is capable of initiating an immune response.

4.8. Algal and Cyanobacterial Biocontrol

Apart from being an abundant source of vitamins, saccharides, enzymes, amino acids,
phytohormones and elements like molybdenum, boron, manganese, iron, iodine, and
zinc, algae and cyanobacteria extracts are a rich source of bioactive elicitors [144,145] with
antifungal, antiviral and antibacterial properties [146]. These extracts are usually applied
in agriculture to improve productivity and plant vitality. Use of extracts from the algae
Sargassum filipendula, Ulva lactuca, Caulerpa sertularioides, Padina gymnospora and Sargassum
liebmannii ease symptoms of fungal infection on tomato produced by Alternaria solani and
Xanthomonas campestris pv. vesicatoria [147,148]. Studies on tomato seedlings infected by
Macrophomina phaseolina showed improvement after the application of Kappaphycus alvarezii.
The algal action was propagated through improved levels of phytohormones (salicylic acid,
indole-3-acetic acid and abscisic acid), transcription of PR-1b1, PR-3, and PR-4 genes, and
the cytokinin zeatin [149]. The activity of polyphenol oxidase and peroxidase enzymes
important in plant defense in tomatoes was also shown to improve when extracts from Cys-
toseira myriophylloides, Laminaria digitata and Fucus spiralis were utilized against Verticillium
dahliae wilt [150].

Cyanobacteria have been applied against plant pathogens both at the levels of soil
and leaves. Employing Nostoc entophytum and Nostoc muscorum in the soil against Rhizocto-
nia solani greatly enhanced seedling endurance along with improving root and shoot dry
weight and plant length [151]. In tomato, application of Nostoc linckia in soil against Fusar-
ium oxysporum f. sp. Lycopersici decreased wilt while an improved state of similarly infected
seedlings of tomato was observed with Nostoc commune [152,153]. Usage of cyanobac-
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teria, Anabaena sp. on zucchini cotyledons infected with powdery mildew (Podosphaera
xanthii) resulted in enhanced enzymatic activity of peroxidases, endochitinase, chitin 1,4-β-
chitotriosidase, β-N-acetylhexosaminidase, and β-1,3-glucanase [154]. Similar enzymatic
activation was observed by Prasanna et al. [155] upon employing a biofilm composed by
Anabaena sp. on maize roots and shoots. Cyanobacteria, like algae are also capable of high
polysaccharide production in response to various categories of plant pathogens but there is
a lack of data which limits their use as biocontrol agents [156–158].

5. Emerging Biocontrol Strategies
5.1. Microbial Volatilome and Its Role in the Biological Control

One of the most resilient and encouraging solutions in biocontrol approaches is the
employment of microorganisms as biological control agents (BCAs). Among the several
microbiological strategies used by BCAs, the production of volatile organic compounds
(VOCs) is a method that is helpful in situations where the straightforward association
between the pathogen and its competitor is not possible. All living forms synthesize
VOCs and these can be exploited for usage in biocontrol of plant pathogens like bacteria,
oomycetes, and fungi. VOCs are a sustainable preference for synthetic fungicides due to
their ease of application, low residue deposition in the environment and on crops, and
their biocontrol efficacy [159]. According to Tahir and colleagues [160], VOCs produced by
Bacillus species are known to function at a number of levels against the tobacco wilt agent
Ralstonia solanacearum. In vitro studies indicate that Bacillus volatile compounds reduced
Ralstonia growth and viability and caused significant problems in cell integrity and motility
in addition to considerable alterations in Ralstonia genes expression that controls disease
progression [160]. Furthermore, tobacco plants treated with Bacillus emissions and purified
detected VOCs elevated transcription levels in critical defense-related genes such NPR1
and EDS1, leading to inhibition of systemic resistance [160]. It’s possible that bacterial
volatiles has a role in Bacillus reported biocontrol properties both directly and indirectly,
and that bacterial VOC bouquets function as multifactorial, sequential, or simultaneous
signals on pathogens and hosts [161].

5.2. Microbiome-Based Solutions for Plant Protection

New findings demonstrate a remarkable microbial diversity among all plants, as well
as unique phytopathogen antagonistic bacteria. Mosses, which are the world’s oldest land
plants, exhibit a unique microbial diversity, and their ecology allows them to contain a
large number of enemies [162,163]. Apart from mosses, medicinal and endemic plants are
also likely sources of rare biodiversity and enemies. A characteristic acquired by them due
to their unique metabolism, that alters the architecture of the plant microbiome [164,165].
We expect endophytes, particularly seed endophytes, to serve as sources for novel bio-
control agents as a result of new discoveries. Until now, bacteria and fungi have been
used mostly for biocontrol. Archaea have just recently been recognized as part of the plant
microbiome [166]; their effects on plants and potential for biocontrol are unknown. Micro-
bial invasion can affect the network of microorganisms that are linked with plants. These
network models of soil and plant microbiomes can be interpreted for biocontrol and present
new prospects for disease management. While single organisms were commonly utilized
in the past, their effects were often uneven, microbiome-based biocontrol techniques are
now possible [167].

In the future, microbial consortia and biocontrol agents can be employed to improve
biodiversity associated with crops via microbiome engineering so as to achieve definitive
microbiome outcomes as desired [168]. Crop-specific biological consortia can be assembled
from a pool of selected biocontrol agents in this setting. Taking a holistic approach and
incorporating microbiome-based solutions allows for targeted and predictive biocontrol
measures. Furthermore, integrated breeding and biocontrol measures are essential to
sustain ecosystem variety and health. These systemic techniques are necessary to prevent
further biodiversity losses and promote sustainable agriculture operations [167].
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5.3. Phage Cocktail

Phage cocktails are a feasible option for controlling a variety of plant diseases; how-
ever, further study and solutions to technical obstacles are needed to achieve successful
biocontrol. Thorough knowledge of interactions between plant, phage, and pathogen is
required since the habitat of each plant system is unique and complex. This can only be
achieved by conducting more extensive field experiments, as in vitro and in vivo tests
under laboratory conditions do not accurately reflect the real circumstances in the field.
More advanced protective formulations are needed to ensure the survival of phage mix-
tures during long-term storage under ambient conditions. The use of already existing
phages from the phyllosphere can provide better protection against the phytopathogens
in that environment. To improve phage persistence in the phyllosphere, light-absorbing
compounds and/or protective formulations could be added to phages that have evolved to
resist UV-induced damage. Synthetic phage cocktails with customized host ranges can also
be created using genetically engineered phages. More research is needed in order to obtain
well-characterized phages with defined and configurable host ranges. Finally, due to the
great diversity of phytobacteria, a single universal phage cocktail for all diseases is not
viable. Designing tests that can identify the disease-causing bacteria and its antagonistic
phage can greatly aid in its control. To date, no such simple and economical option is either
available or implemented [169].

5.4. Genetically Modified Biocontrol Agents

To improve the efficacy of BCAs, techniques for genetic engineering of all organisms
can be used. Rhizoctonia solani infection in beans can be brought under control by transfer-
ring a gene coding for the enzyme chitinase from Serratia to a Pseudomonas endophyte [170].
While transferring a gene for glucanase to Trichoderma produced resistance to pathogens
such as Rhizoctonia, Rhizopus, and Pythium [171]. Cloning of 2,4-diacetylphloroglucinol
(2,4-DAPG) biosynthetic locus phlACBDE from strain CPF-10 into a mini-Tn5 transposon
by Zhou et al. [172] into a mini-Tn5 transposon and its insertion into the chromosome of
Pseudomonas fluorescens P32 improved resistance of wheat to Gaeumannomyces graminis var.
tritici and tomato to Ralstonia solanacearum bacterial wilt. Regardless of the findings of
this research, these newly produced BCAs are subject to the same restrictions that apply
to organisms that have been genetically changed using recombinant DNA technology.
Clermont et al. [173] employed genome shuffling to create superior Streptomyces melanospo-
rofaciens EF76 biocontrol strains. Four strains with improved antagonistic activity against
the potato diseases Streptomyces scabies and Phytophthora infestans were isolated after two
rounds of genome shuffling. Biological control ability can also be improved by employ-
ing chemical mutagenesis. Examples include the use of nitrosoguanidine mutagenesis in
Pseudomonas aurantiaca B-162 to produce a strain with better phenazine synthesis leading
to improved biocontrol activity [174] and Trichoderma harzianum strains that exhibited en-
hanced biocontrol ability after UV mutagenesis [175]. The addition of the required mutation
can at times produce altered gene expression in non-targeted genes resulting in undesired
effects. These constraints can be overcome using more recently established genome editing
approaches. We can insert mutations into specific regions in the genome with high precision
and efficiency using techniques like Crispr/Cas [176]. Another benefit is that mutations
can be induced in numerous genes at the same time, which will aid in determining the
role of different genes in biocontrol [177]. The gene editing approach could also help in
commercialization of BCA’s through ease of regulatory clearances.

5.5. Microbiome Engineering

Many researchers suggest the microbiome to be representative of a “second
genome” [178,179], but some prefer the term “holobiont” to describe the variety of microbes
linked with plant and animal hosts [180]. Microbiome engineering has the potential to have
a big impact on agriculture [181]. As a result, the creation of an altered microbiome with
the desired properties is required. Many recent investigations have revealed that certain en-
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dophytic strains can alter the structure and species richness of plant tissues [182,183]. Very
few studies have investigated the internal microbiome of plants for subsequent generations
post introduction of a specific strain(s) [181]. Moreover, little research has been carried out
on the importance of manipulated microbiomes from disease-suppressive soils on control
of phytopathogens [184]. From a practical standpoint, it would be immensely beneficial to
establish microbiomes that are durable and stress-tolerant thereby capable of increasing
agricultural output [185]. Finally, plant microbiome bioengineering is an intriguing option
for improving a plant’s biological capabilities, an approach that, while still in its infancy,
has the potential to be of immense agricultural value [186].

5.6. Mycoviruses as Biocontrol Agents

Recently, mycoviruses having capability to infect fungal pathogens are known to have
the potential to be used as biological control agents against plant diseases. The mycoviruses
were recognized to induce hypovirulence (reduced virulence) in their hosts and this notion
elicited great interest in characterization of viruses from phytopathogenic fungi as being
utilized as biocontrol agents [94,187,188]. Following this information, scores of mycoviruses
started to be worked upon and Garcia-Pedrajas et al. [187] further reports that majority of
viruses from filamentous fungi possess either double-stranded RNA (dsRNA) genomes
or positive sense (+) single-stranded RNA (ssRNA) genomes with dsRNA replicative in-
termediates, and can possess a capsid forming true virions or be sometimes capsidless.
Surprisingly, numerous plant pathogenic fungi are found to harbor mycoviruses, that
reduce the virulence of their fungal host [189]. Lacking extracellular transmission route to
other isolate, mycoviruses are transmitted primarily through hyphal anastomosis or via
conidia in vertical transmission while giving rise to progenies also [187]. Transmission
efficiencies are dependent on both the fungal host and the infecting virus and hence it was
possible to utilize artificial transfection methods to infect a variety of fungi, thus expanding
their possible use to the control of pathogens other than those where they were identi-
fied [187]. Although hypovirulence-associated mycoviruses are those mycoviruses that
reduce the pathogenicity of their inhabiting fungal hosts. However, it is difficult to transmit
these mycoviruses easily between vegetatively incompatible groups and hence it has been
difficult to develop commercial mycovirus biocontrol strategies for these phytopathogenic
fungi [188].

6. Conclusions

Finally, the ever-growing demand for food has led to dependence on chemicals in agri-
culture that are hazardous to human health. These chemical-based formulations not only
create ecological imbalance but also result in ecotoxicity. Organic methods of farming are
preferred for sustainable agriculture, but their use incurs high costs that make them inacces-
sible for most farmers in poor countries. The adoption of diverse biocontrol methodologies,
such as those used in organic agriculture, to control plant diseases is environmentally
benign, relatively inexpensive, harmless, and has enough potential to significantly boost
plant production. As a result, these biocontrol techniques offer enormous benefits for
successful rhizosphere management for a sustainable agriculture. The ultimate goal for
biocontrol agents is to integrate microbial biofertilizers, biocontrol microorganisms, phages,
and phage-based technologies and cocktails, biocontrol yeasts, algae, and cyanobacteria,
optimized microbiomes, genetically modified biocontrol techniques, and microbiome en-
gineering. An intelligent experimental trial using a combinatorial approach utilizing all
the resources from the strategies discussed would invariably provide enormous leads that
could be harnessed by the field plant growers to combat plant diseases. At present, this
is an under-researched subject that has the potential to increase crop yields while also
addressing food security in an environmentally safe and sustainable manner.
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