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Introduction
Familial cardiomyopathies often result from single point mutations within the genes encoding the proteins 
of  the cardiac sarcomere, the primary functional contractile unit in striated muscle. The 2 most commonly 
observed forms of  these cardiomyopathies, hypertrophic (HCM) and dilated (DCM), are clinically charac-
terized by complex, progressive, and largely divergent patterns of  left ventricular remodeling (1, 2). While 
the original reports detailing the clinical expression of  HCM included familial cases, initial genetic linkage 
studies were first published in 1990 (MHY7, encoding the myosin heavy chain), closely followed by compo-
nents of  the cardiac thin filament (CTF) and myosin binding protein C (3, 4). Recent advances in low-cost, 
high-throughput sequencing of  genomes and exomes have increased testing and diagnostic sensitivity, with 
a concomitant increase in the identification of  variants of  unknown significance (VUS; ref. 5). Recently, 
a 5-tier system of  variant classification has been recommended using the base term “variant” with either 
pathogenic, likely pathogenic, uncertain significance, likely benign, or benign modifiers appended (6, 7).

A significant proportion of  VUS are located in the genes encoding the CTF, including TNNT2 and 
TPM1 (8). The CTF is composed of  3 protein complexes, tropomyosin (Tm), troponin (cTn), and actin, that 
act together to activate muscle contraction via the allosteric binding of  calcium to site II of  cardiac troponin 
C (cTnC; ref. 9). Tm blocks myosin binding sites on the actin surface until calcium binds to cTnC, causing 
conformational changes within the CTF to allow Tm to traverse the actin surface, revealing the binding sites 
for myosin association. This process, originally proposed by Geeves and McKillop, is referred to as the three-
state model of  myofilament activation (10, 11).

Numerous studies have probed effects of  mutations within the CTF with respect to dynamics and 
structure of  the sarcomere (4, 12–18). Despite these extensive efforts, many of  the fundamental, primary 

Point mutations within sarcomeric proteins have been associated with altered function and 
cardiomyopathy development. Difficulties remain, however, in establishing the pathogenic 
potential of individual mutations, often limiting the use of genotype in management of affected 
families. To directly address this challenge, we utilized our all-atom computational model of the 
human full cardiac thin filament (CTF) to predict how sequence substitutions in CTF proteins might 
affect structure and dynamics on an atomistic level. Utilizing molecular dynamics calculations, 
we simulated 21 well-defined genetic pathogenic cardiac troponin T and tropomyosin variants to 
establish a baseline of pathogenic changes induced in computational observables. Computational 
results were verified via differential scanning calorimetry on a subset of variants to develop an 
experimental correlation. Calculations were performed on 9 independent variants of unknown 
significance (VUS), and results were compared with pathogenic variants to identify high-resolution 
pathogenic signatures. Results for VUS were compared with the baseline set to determine induced 
structural and dynamic changes, and potential variant reclassifications were proposed. This 
unbiased, high-resolution computational methodology can provide unique structural and dynamic 
information that can be incorporated into existing analyses to facilitate classification both for de 
novo variants and those where established approaches have provided conflicting information.
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mechanisms that lead to the complex, progressive pathogenic cardiac remodeling that defines the clini-
cal disorder remain elusive (19). Enduring challenges remain, including the ability of  mutations in single 
components of  the multiprotein complex to affect myofilament function in distant functional units and the 
difficulty in linking primary structural and dynamic molecular perturbations to morphological manifes-
tations of  a progressive cardiomyopathy. To address the molecular component of  this challenge, we have 
previously developed an atomistic model of  the CTF that includes all protein components and regions. To 
our knowledge, this is the only full atomistic model and is critically important as one addresses mutations 
near “unstructured” regions not resolved in any previous experiment, where most variants arise (20). The 
full atomistic model has previously been used as a mechanistic probe to simulate structural and dynamic 
changes induced by mutations that are not addressable by experiment. These studies have revealed that 
point mutations in the CTF can result in structural and dynamic changes propagated over hundreds of  
angstroms (4, 9, 21–23). While elucidating the primary mechanisms underlying pathogenic remodeling 
is crucial, from the clinical standpoint, rigorous assignment of  pathogenic potential to de novo variants 
or those where existing information is conflicting has emerged as a central challenge to the use of  genetic 
information in the care of  families with HCM (7).

In the current study, we now apply our all-atom computational model of  the CTF coupled to biophys-
ical metrics of  structure and dynamics to develop a robust, nonbiased approach to classifying HCM VUS 
as benign, likely benign, likely pathogenic, or pathogenic. A set of  15 well-defined pathogenic variants on 
cardiac troponin T (cTnT) and 6 pathogenic variants on Tm were simulated using the fully atomistic mod-
el previously created by our group to determine a “baseline” of  primary structural and dynamic effects. 
Molecular dynamics simulations were run on 9 cTnT and Tm VUS, and results were compared with the 
baseline pathogenic behavior previously determined. Variants that exhibited similar metrics in simulations 
as well-defined pathogenic mutations were expected to be pathogenic or likely pathogenic while variants 
that rendered significantly different signatures than pathogenic mutations were expected to be benign or 
likely benign. It is important to note that while this new, unbiased addition to current metrics in use to 
assess VUS pathogenicity is meant to be additive and not proposed to be the “sole” determinant of  classi-
fication, we conclude that this approach can play a potentially important role in adding to the rigor of  this 
complex, and highly clinically relevant, multimodal assessment.

Results
Molecular dynamics (MD) simulations are an invaluable method to investigate protein conformations, 
dynamics, and thermodynamic data. These approaches are essential for detecting high-resolution changes in 
biological systems, such as proteins, that are not readily accessible by experimentation. MD allows all atoms 
within a model to interact for a fixed period, providing visualization of  the dynamic motion of  the system. 
Initial placement of  atoms is determined from published structures in the protein data bank. MD then allows 
the location at a later time and the movement of  atoms over time to be determined. This motion is obtained 
by numerically solving Newton’s equations of  motion, where forces between particles and potential energies 
are calculated using molecular mechanics force fields. Once locations and movement over a fixed period 
have been obtained, data analysis can be performed to extract important atomistic-level details, such as dis-
tances between proteins. Since distances from different regions will all be on different scales, they cannot be 
directly compared to each other during analysis. Therefore, standardization of  distances (z scores) is needed, 
which allows for the direct comparison of  variables that are on different scales (24).

Using the full atomistic model our group previously created to probe structural and dynamic changes 
due to mutations linked to HCM, we have evolved the use of  computations in this report to develop an 
unbiased approach to classify de novo or reclassify indeterminate VUS based on the possession of  similar 
structural characteristics to established pathogenic CTF mutations. To determine a baseline of  pathogenic 
structural changes in the CTF, we constructed a list of  21 independent and highly curated HCM-linked 
variants that cause pathogenic missense mutations in Tm and cTnT, the protein linking Tm to the cTn 
complex. The mutations and their locations on the CTF are grouped according to the protein in which they 
occur as well as their location on the CTF, as shown in Table 1.

Conformational and dynamic changes throughout the CTF were calculated for all 21 mutations to 
create a data set designed to provide high-resolution pathogenic signatures. Conformational changes were 
defined by the physical distances between cTnT and Tm in the overlap region of  the CTF (cTnT 90–140; 
Tm 1–20, 250–284), between the N-terminal Tm dimer and directly adjacent actin monomer, and between 
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the N-terminus Tm coils, as shown in Figure 1. Changes were calculated using center of  helix distances and 
compared with WT results to identify trends (Supplemental Tables 1 and 2; supplemental material avail-
able online with this article; https://doi.org/10.1172/jci.insight.154350DS1). We note that these structural 
parameters are presented as single numbers, but they are derived from extensive MD simulations and thus 
represent averages of  dynamic structures. We have found such averages to be sufficient for reclassifying 
VUS here, but the full simulation is available for further algorithmic development in the future.

The CTF was divided into 2 regions of  mutations based on prior studies, the natural clustering of  genet-
ic mutations, and the secondary structure of  cTnT and Tm in the respective region (20). Region A (cTnT 
80–150; Tm 1–50, 250–284) contains the overlap region, which consists of  fully alpha-helical secondary 
structures for both cTnT and Tm, while region B (cTnT 155–220, Tm 160–230) contains an “unstructured” 
cTnT interacting with the Tm coiled coils.

Following analysis of  known pathogenic mutations, 9 individual cTnT and Tm VUS located in the same 
regions as the pathogenic variants analyzed were simulated using the full atomistic model of  the CTF. Struc-
tural and dynamic changes were subjected to the same analysis as pathogenic mutations with respect to WT. 
All structural changes were standardized with respect to the local region (region A or B). Using the z scores, 
the Euclidean distance from the origin (average pathogenic value) was calculated to determine if  a given 
VUS possessed similar or different structural characteristics from pathogenic mutations (Tables 2 and 3).

The 3D scatter plots of  the structural variable z scores calculated for each variant in region A and B 
are shown in Figure 2. The plots reveal a natural clustering of  several pathogenic variants along with VUS 
A22TTm, D28HTm, A277TTm, K97NcTnT, and A104VcTnT from region A and L178FcTnT from region B. The 
VUS M281VTm was separated from the cluster from region A. Similarly, the VUS V218LcTnT in region B was 
separated from the cluster of  pathogenic variants.

To confirm whether VUS were outliers from pathogenic mutations, the Euclidean distances from the 
origin were calculated (Tables 2 and 3). This allows for a direct comparison of  a single number representing 
the distance each variant lies from the average pathogenic values. By plotting all pathogenic variants within 
each region together, the distribution of  variants in a given region is revealed (Figure 3). All pathogenic 
mutations have been clustered together regardless of  specific phenotype. Therefore, predictions proposed 
in this manuscript are focused on determining whether VUS are predicted to be pathogenic, not what the 
morphological development may look like. The interquartile range (IQR) represents the middle 50% of  
pathogenic mutations. Therefore, VUS that lie in this region are predicted to be pathogenic. Any VUS that 
fall outside the IQR but still align with pathogenic variants (upper and lower 25%) would be reclassified 
as likely pathogenic. Any VUS that fall outside the boundaries of  the pathogenic distribution, but are not 
statistically considered outliers compared to pathogenic variants, are predicted to be likely benign, while 
those that are statistical outliers from the pathogenic boundaries are proposed to be reclassified as benign. 

Table 1. Protein and region location of all variants used throughout the study

cTnT Tm
Region A Region B Region A Region B

D86A Δ160E D20N D175N
F87L R173Q A22T E180G
R92L R173W D28H S215L
R92Q L178F A277T D230N
R92W Δ210K L278F
R94C V218L M281T
R94H M281V
Δ96E
K97N

A104V
F110L
R130C
R141W

Regular font indicates HCM phenotype, bold indicates DCM phenotype, and underlined indicates VUS. cTnT, cardiac 
troponin T; Tm, tropomyosin.
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Outliers are defined as variants that are farther than 1.5 × IQR above the upper quartile or below the lower 
quartile (Q3 + [1.5 × IQR] or Q1 – [1.5 × IQR]).

Differential scanning calorimetry. While MD simulations can be used alone to recategorize VUS as 
benign/likely benign/likely pathogenic/pathogenic, it is critical to establish that this observation can be 
attributed to experimentally verifiable predictions of  structure and dynamics of  the CTF. Thus, to verify 
the computational results, differential scanning calorimetry (DSC) using fully reconstituted thin filament 
proteins containing cTnT, cardiac troponin I (cTnI), cTnC, Tm, and actin was used to measure the heat 
capacity (kJ/mol × K) during unfolding of  the CTF over a temperature range. Four of  the analyzed vari-
ants were located in region A and in close proximity to one another, while the last VUS, S215LTm, was 
located in region B (Table 1) yet was still relatively close to the other mutations analyzed.

The most basic thermal unfolding processes are “two-state” such that, as temperature rises, the pro-
tein, or protein complex, transitions from the native “folded” state to the denatured “unfolded” state with 
a Gaussian distribution. When an increase in the full-width half-maximum (FWHM) of  the transition is 
observed, it becomes less “two-state-like” with more intermediate complexes possible (25, 26). This, in 
turn, is consistent with an expected increase in conformational flexibility of  the protein (or decreased coop-
erativity of  unfolding). As the FWHM decreases, the opposite is true, suggesting a decrease in flexibility 
(27, 28). It is important to note here that our use of  the terms cooperativity of  unfolding and (inversely) 
conformational flexibility is established terminology used in calorimetry to describe the thermal outputs 
reported in our DSC (thermal stability and FWHM; refs. 9, 25–33). By “unfolding,” we are referring to 
broad changes in structure that may be a single protein dissociation or global complex dissociation (e.g., 
Tm dissociating from actin) induced by heat absorbed in the calorimeter. We and others have shown that 

Figure 1. The complete model of the CTF. (A) Actin (gray), Tm (orange and green), cTnC (red), cTnI (blue), and cTnT 
(yellow). The zoomed-in view of region B (B) containing Tm (residues 160–230) and the unstructured linker region of cTnT 
(residues 155–220). The zoomed-in view of region A (C) containing the overlap region (cTnT 80–150; Tm 1–50, 250–284) 
where Tm dimers overlap in a head-to-tail fashion. (D) The overlap region of the CTF along with the center of mass of the 
respective helices (black dots) used to calculate the distances between proteins. Four specific cTnT residues are labeled, 
with arrows showing the closest Tm residue used to calculate the overlap distance and distribution plots.
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DSC is a valuable technique for studying thin filament thermodynamics, giving regionally specific informa-
tion on thermal stability and conformational flexibility of  these proteins in complex (9, 29–31, 34). Here we 
used DSC as a method to biophysically confirm the model-derived changes in root mean square fluctuation 
(RMSF), a related standard measure of  flexibility that calculates the fluctuation of  each alpha carbon in 
a protein and can then be compared with the WT structure (23). Our data show that D20NTm, a mutation 
linked to HCM, significantly increased the FWHM of  the Tm-Tn array unfolding (Figure 4), consistent 
with an increase in conformational flexibility of  the proteins in the overlap region. These experimental 

Table 2. Standardized computational results and Euclidean distance for mutations located on cTnT and 
Tm in region A

cTnT Standardized Δoverlap 
distance

Standardized Δactin-Tm 
distance

Standardized ΔN-Tm coil 
distance Euclidean distance

D86A 0.688 1.187 1.106 1.762
F87L –0.869 –0.198 0.676 1.119
R92L –0.595 0.309 1.109 1.296
R92Q 2.264 1.766 0.491 2.913
R92W 0.934 –1.252 –1.214 1.978
R94C –0.011 1.352 –0.172 1.363
R94H –0.557 0.269 –0.654 0.900
Δ96E –0.866 –0.843 1.335 1.801
K97NA 0.258 –0.276 1.426 1.475

A104VA –0.313 –1.571 0.198 1.614
F110L 0.748 –0.024 0.292 0.803
R130C –0.301 0.000 –1.411 1.442
R141W –0.631 –0.259 0.131 0.694

Tm
D20N 0.955 –1.905 –0.454 2.179
A22T –0.202 0.270 0.796 0.865
D28H –0.289 0.549 0.286 0.683

A277TA –0.239 1.487 –0.505 1.588
L278F –0.228 –0.639 0.621 0.920
M281T –1.532 0.238 –1.857 2.419
M281V 0.132 0.310 –3.634 3.650

All distances are standardized with respect to WT values calculated. Regular font indicates HCM phenotype, bold 
indicates DCM phenotype, and underlined indicates VUS. AVUS predicted to be pathogenic. Tm, tropomyosin.

Table 3. Standardized computational results and Euclidean distance for mutations located on cTnT and 
Tm in region B

cTnT Standardized ΔOverlap 
distance

Standardized Δactin-Tm 
distance

Standardized ΔN-Tm coil 
distance Euclidean distance

Δ160E –0.878 –0.716 –0.385 1.197
R173Q –0.173 0.654 0.741 1.003
R173W 1.798 0.453 –0.958 2.087
L178FA –0.933 0.278 –0.414 1.058
Δ210K –0.500 –0.174 1.445 1.539
V218L 0.022 3.602 –0.711 3.671

Tm
D175N –0.280 0.331 –0.177 0.469
E180G 0.921 –1.785 –0.574 2.089
S215L 1.014 –0.391 –1.808 2.109

D230N –0.888 1.237 1.391 2.062

All distances are standardized with respect to WT values calculated. Regular font indicates HCM phenotype, bold indicates 
DCM phenotype, and underlined indicates VUS. AVUS predicted to be pathogenic. Tm, tropomyosin.
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results agree with the MD simulations, which revealed an increase in the RMSF of  cTnT (Supplemental 
Figure 1) and a concomitant increase in the overlap distance between cTnT and Tm compared with WT 
(Supplemental Table 1). R92Q and Δ96E, pathogenic variants in cTnT associated with HCM, both signifi-
cantly decreased the FWHM of  the Tm-Tn unfolding with respect to WT (Figure 4), indicating a decrease 
in flexibility and increase in cooperativity with the proteins in the overlap region. MD simulations revealed 
that the RMSF of  R92Q in the Tm termini decreased slightly (Supplemental Figure 2), in agreement with 
the DSC experimental data. For Δ96E, MD data showed the average distance between actin-Tm signifi-
cantly decreased (Supplemental Table 1), suggesting a compaction of  the overall Tm-Tn overlap complex, 
which likely explains the observed decrease in flexibility. S215L, a Tm-linked VUS, exhibited a significant 
decrease in FWHM of  the Tm-Tn array (Figure 4), indicating a decrease in conformational flexibility. MD 
calculations showed the average distance between actin-Tm and the average distance between Tm coils 
decreased, suggesting the protein assumed a more compact structure in this region, leading to a decrease in 
overall flexibility of  the Tm-Tn overlap complex (Supplemental Table 2).

Figure 2. 3D scatter plots of standardized structural distances calculated from MD simulations for VUS (green) and pathogenic mutations, HCM (red) and DCM 
(blue). All distances were calculated with respect to WT values and then standardized with respect to the region they are located in, region A (A) or region B (B).

Figure 3. Violin plots using the Euclidean distance from the origin of standardized distances calculated in MD simulations. Mutations in regions A and B, 
respectively, are standardized separately. VUS are plotted separately from pathogenic mutations to determine overlap with pathogenic distribution. Data are 
shown with median and interquartile range (dashed black lines).
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The combination of  experimental and MD data strongly supports the hypothesis that mutational 
effects on the conformational flexibility of  Tm and cTnT depend on changes apparent in both structure and 
dynamics. Importantly, while DSC offers regionally specific thermal information and experimental confir-
mation of  our model-derived values, it is a cumulative measure of  heat capacity in calorimetric unfolding 
of  a reconstituted thin filament, and thus, is not precise enough to determine the exact structural change or 
predict resultant pathology. An advantage of  combining DSC with our computational methods is that we 
can differentiate dominant structural factors for each individual variant that led to these cumulative chang-
es in conformational flexibility and inform predictions of  pathogenicity for independent VUS.

cTnT and Tm variants. To test our computational approach to assigning pathogenicity, we chose 9 inde-
pendent cTnT and Tm VUS and performed MD as noted above (Table 1). These VUS were selected on the 
basis of  a lack of  definitive assignment as per ClinVar and/or found to be primarily observed in combination 
with other variants such that their independent pathogenic potential could not be assessed. In other words, 
they were not clinically actionable based on established criteria. Note that all “test” VUS were provided in a 
blinded fashion to the computational group.

In region A, the VUS A22TTm had a Euclidean distance of  0.865 (Table 2). This falls outside the IQR but 
in line with pathogenic mutations R94HcTnT (0.900), F110LcTnT (0.803), and L278FTm (0.920). Based on the 
calculations, A22TTm is suggested to be likely pathogenic, similar to the established HCM-linked mutations 
R94HcTnT, F110LcTnT, and L278FTm. D28HTm had a Euclidean distance of  0.683 (Table 2), placing this VUS 
outside the pathogenic boundary regions (Figure 3). Based on these results, it was not statistically considered 
an outlier; therefore, D28HTm was predicted to be likely benign. A277TTm had a Euclidean distance of  1.588 
(Table 2), placing it inside the IQR of the pathogenic variants plot (Figure 3). Pathogenic mutations D86AcTnT 
(1.762) and R130CcTnT (1.442) were proximal. Therefore the VUS A277TTm was predicted to be pathogenic, 
similar to D86AcTnT and R130CcTnT, both HCM-causative mutations. M281VTm had a Euclidean distance of  
3.650 (Table 2), making it an outlier from the pathogenic behavior of  variants in region A. In addition, this 
variant was far removed from the cluster of  pathogenic variants in Figure 2, further solidifying the prediction 
that this mutation does not show characteristics aligning with pathogenic mutations in MD simulations. Giv-
en this observation, the recommendation would be to reclassify M281VTm as benign. K97NcTnT had a Euclid-
ean distance of  1.475 (Table 2), which is within the IQR of the pathogenic mutations. Therefore, this VUS is 
suggested to be pathogenic similar to R130CcTnT and R94CcTnT, both HCM-linked mutations that are proximal 
to K97NcTnT in the violin plot (Figure 3). Finally, A104VcTnT had a Euclidean distance of  1.614 (Table 2), 
falling inside the IQR (Figure 3). Due to this, we would expect A104VcTnT to be pathogenic, similar to the 
adjacent pathogenic mutations D86AcTnT and R130CcTnT, both established HCM-linked mutations.

In region B, the VUS S215LTm had a Euclidean distance of  2.109 (Table 3), placing it outside the region of  
defined pathogenic parameters for this region. Statistically, it was not sufficiently distant to be considered an 
outlier, and therefore we expect this variant to be likely benign. The cTnT VUS, L178F (1.058), lay within the 
IQR of the defined pathogenic mutations in region B. It was closest to the DCM-causative variant R173QcTnT. 
Therefore, L178FcTnT is suggested to be reclassified as pathogenic. Finally, the VUS V218LcTnT had a Euclidean 
distance of  3.671 (Table 3). This was sufficiently distant from the defined pathogenic boundaries for region B, 
classifying it as an outlier. Therefore, we would suggest V218LcTnT be reclassified as benign.

Distributions. The values presented in Tables 2 and 3 are clearly a composite result of  subtle changes 
in dynamics of  the overall CTF complex. To better visualize the origin of  the values, one must investigate 
more closely the changes in data that give rise to average distance changes. In Figure 5, we show binned 
distributions of  distances for specific residue pairs in the overlap region. Individual graphs in Figure 5 are 
labeled via a specific residue in cTnT and represent the distribution between that residue and the cognate 
closest Tm residue across all MD trajectories. In this figure it is clear that the overall distance reported is 
the result of  a basic shift in the overall distribution of  distances. In general, uni- or bimodal distributions 
of  distances become skewed and more broadly distributed across the distance spectrum. There are no error 
bars on these plots because these are exact numbers, which result from integrating the equations of  motion 
within our model. This shift in distribution was due to the crafted evolution of  the WT CTF with 1 or 2 free 
energy minima for each cTnT-Tm residue pair, resulting in 1 or 2 favored distances with small fluctuations 
around these favored positions. Mutations induced a shift in the protein dynamics, which, in turn, was 
apparent in the basic shapes and distributions as shown. Thus, the distance values reported in Tables 2 and 
3 are manifestations of  mutation-induced changes in protein dynamics. Plots for all variants are included in 
the data supplement (Supplemental Figures 3–9).
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New model. Recently, a new CTF structure was published and subsequently refined (35–41). To further 
verify the results presented here, we corrected specific errors in the Fujii structure (e.g., an incorrect helical 
pitch in Tm) and added our verified structure in regions unresolved in this cryo-electron microscopy (cryo-
EM) approach (35). Using the new model, 6 pathogenic mutations located on cTnT in region A were used 
to verify the defined pathogenic behavior in this region as presented above. The mutations simulated include 

Figure 4. FWHM results from DSC experiments for fully reconstituted thin filaments of WT, D20NTm, S215LTm, R92QcT-

nT, and Δ96EcTnT. Sample sizes of n = 4 for WT and each mutant. The error bars represent mean ± SEM. Significance 
assessed by 1-way ANOVA with Dunnett’s correction for multiple comparisons and defined by P < 0.05 (*), P < 0.01 (**), 
P < 0.005 (***), P < 0.0001 (****).

Figure 5. Binned distributions of distances across all trajectories between the specified cTnT residue and the 2 Tm 
chains for WT and all variants on Tm in region B (D175N, E180G, S215L, and D230N). These distances were incorporat-
ed in the overall average distance between cTnT and Tm in the overlap region.
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D86A, F87L, R92L/Q/W, and R141W (Table 4). Following the same analysis technique described above 
with the previous model (Supplemental Table 3), the results showed the average pathogenic characteristics 
were similar to those defined above (Figure 6). Plotting all pathogenic mutations from the old model and 
new model allowed comparison of  the mean and distribution of  data around the mean, which revealed no 
difference between the 2 models. The smaller variance in the new model is likely due to analyzing 6 variants 
versus the 14 variants analyzed in this region using the original model. Thus, our results remain consistent 
with the analysis presented herein and maintain a high level of  overall accuracy, demonstrating that new 
structural information can easily be continuously incorporated into the methodology as it becomes available.

Discussion
Pathogenic cTnT and Tm variants pose significant risk for significant cardiac remodeling (1, 4). Genetic test-
ing to screen for these variants is used significantly more often. However, for an ever-expanding number of  
variants, understanding of  pathogenicity remains insufficient. The specific molecular and organ-level mech-
anism(s) whereby most variants result in pathogenic or benign phenotypes are still unclear, further obscuring 
the ability to both treat patients and improve the care of  potentially affected family members (7). Moreover, 
because the ability to identify patients in the preclinical state (genotype+, phenotype–) facilitates the eventual 
possibility of  earlier treatments to change the natural history of  these complex disorders, additional, rigorous 
approaches to further clarify the limbo of  the VUS state is of  significant clinical importance.

A variety of  approaches have been proposed to predict potential pathogenicity of  clinical variants, such 
as the PolyPhen-2 algorithm, the Single Amino Acid Polymorphism Data Analysis Predictor (SAAPdap) 

Table 4. Standardized computational results and Euclidean distance for mutations located on cTnT 
using the updated Fujii model

cTnT Standardized Δoverlap 
distance

Standardized Δactin-Tm 
distance

Standardized ΔN-Tm coil 
distance Euclidean distance

D86A 0.730 0.968 0.634 1.368
F87L 1.718 –1.039 0.203 2.018
R92L –0.563 1.290 0.132 1.414
R92Q –0.644 –0.496 1.316 1.547
R92W –0.539 –0.998 –1.455 1.845
R141W –0.702 0.276 –0.830 1.122

All distances are standardized with respect to WT values calculated. Regular font indicates an HCM phenotype; bold 
indicates a DCM phenotype. Tm, tropomyosin.

Figure 6. Comparison of violin plots for pathogenic variants on cTnT in region A using the pre-Fujii model (top) and the 
new Fujii model (bottom). Data are shown with median and IQR. There was no difference between results from the 2 
models, as indicated by the medians and distribution of data. Plots were generated using Prism version 9.0.0 (GraphPad).
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algorithm, homology modeling, etiological fractions (EFs), and support vector machines. The PolyPhen-2 
algorithm uses sequence alignments and structural features of  3D proteins to predict the potential impact 
of  amino acid substitutions (42). This algorithm was designed to be easily accessed, to be widely used, and 
to enable rapid predictions but cannot predict effects of  splice variants, insertion or deletion mutations, as 
well as mutations that affect the function of  neighboring proteins within a complex. Similarly, the SAAP-
dap method utilizes structural analysis as well as machine learning to predict the gain or loss of  function 
due to a mutation within a protein (43). This method is highly focused on the local structural environment 
and therefore is more accurate than the PolyPhen-2 algorithm. However, it cannot determine alterations 
to structure or function long distances from the mutational site, which have been shown to be significant 
(9, 21, 22). Homology modeling of  pre- and postpowerstroke states of  myosin was utilized in an attempt 
to find regions of  disease-causing variants (44). This highly static approach was able to identify regions of  
variant clusters; however, it is left unexplained how these variants affect the protein function or other con-
formations of  myosin. Another technique, designed by Walsh et al., uses EFs to approach the prediction 
problem from a clinical application method (45). This technique is dependent on the location of  the variant 
within a gene/protein and estimates the probability that the variant is pathogenic. While this was designed 
to be used in a clinical setting, it uses various prediction algorithms as inputs, which have been shown to 
have widely varying values as predictors of  clinical outcomes. The authors also note that for this method to 
be accurate, it should only be applied to evaluating variants in people who are clinically affected. Finally, 
support vector machines, an artificial intelligence technique, have been utilized in an attempt to resolve 
the clinical prediction problem by using various phylogenetic and structural information descriptors (46). 
Two of  the input descriptors include PolyPhen-2 and a protein structure comparison score. All of  these 
methodologies discussed rely on a mixture of  mutation position and some degree of  structural information 
obtained from the WT proteins. None, however, directly incorporate structural changes because of  muta-
tion or how different components of  the sarcomere interact. We note that the function of  the three-state 
model requires complex allosteric interactions between the multiple components that make up the thick 
and thin filaments, with the effect propagating over long distances (e.g., Ca2+ binding; refs. 9, 21, 22). While 
each method has advantages, they all focus purely on local effects and are inherently static, neglecting fun-
damental protein dynamics and the importance of  allostery.

Recently, Pettinato et al. studied the functionality of  51 cTnT variants by comparing cardiac microtissue 
contractions and B-type natriuretic peptide reporter activity of  30 pathogenic/likely pathogenic variants and 
21 VUS (8). They found that HCM-associated variants increased contraction while DCM-associated vari-
ants decreased contraction with respect to WT controls. After finding this distinction between pathogenic 
variants and WT controls, they were able to reclassify 2 VUS as pathogenic/likely pathogenic. However, as 
noted by the authors, most human induced pluripotent stem cell cardiomyocytes used for variant modeling 
resemble neonatal cardiomyocytes in both expression and function. In particular, these cells express the skel-
etal form of  troponin I (missing the first N-terminal 30 amino acids), changing a crucial component of  the 
PKA-mediated regulation of  β-adrenergic signaling at the myofilament level. Thus, while these studies pro-
vide additional potential mechanistic insight, the use of  broad, binary functional measures may be limited as 
a classification system in a disorder defined by long-term ventricular remodeling and phenotypic variability.

The current manuscript details the ability to reclassify VUS using average structural data gathered from 
extensive MD simulations of  an all-atom model of  the CTF as a new, additive component of  VUS assess-
ment. A refinement of  the current classifications was suggested for 9 genetic VUS located on cTnT and Tm 
based on variant location and structural effects induced on the overlap region compared with a total of  21 
well-defined pathogenic mutations. DSC was used to experimentally corroborate the calculations in vitro and 
revealed that both structural and dynamic changes played a role in the change in cooperativity and flexibility 
of  the proteins in the CTF. This is the first time to our knowledge that high-resolution biophysical data from 
the entire CTF structure has been incorporated in an effort to reclassify the pathogenicity of  genetic VUS. 
The structural and dynamic data extracted in this study contribute valuable insight to further understand the 
disease states that accompany variants in the CTF.

Overall, based on analysis of  MD simulation data in region A, the suggested reclassifications of  VUS 
are as follows: M281VTm is benign, D28HTm is likely benign, A22TTm is likely pathogenic, and K97NcTnT, 
A104VcTnT, andA277TTm are pathogenic. Based on data from region B, the suggested reclassifications of  
VUS are the following: V218LcTnT is benign, S215LTm is likely benign, and L178FcTnT is pathogenic (Table 
5). Note the proposed reclassification of  S215LTm is of  interest given the multiple reports of  this variant, 
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with most occurring in the context of  other variants or known mutations, thus leading to considerable con-
troversy as to whether it is an independent pathogenic allele (47, 48).

While the approach presented is rigorous and nonbiased, there are some limitations to the current 
study. The reclassifications presented here were based on averages of  3 variables all located in the overlap 
region from 3 independent 10 ns simulations. These averages are simplifications of  more complex shifts  
in distance distributions, as shown (Figure 5). Given the previous work we have published, we acknowledge 
structural and dynamic changes induced by these variants in other regions of  the CTF as well as changes  
in interaction between the thin and thick filaments. For example, changes in Ca2+ metrics and signaling 
pathways are possible sources that may lead to disease, which might not have been captured in the structur-
al data analyzed in the current study. We also note that the 10 ns simulations have proved sufficient to accu-
rately model mutational effects in the past. These distributions and changes are difficult for an individual  
to assess, but a more automated process, such as deep machine learning, is exactly tailored to such a task 
and is a topic of  ongoing research. In addition, understanding the pathogenic effects on interactions of  
the CTF with other proteins in the sarcomere (e.g., the thick filament) is under intensive study (49, 50). 
Moreover, we hope to be able to expand this analysis to other regions of  the CTF, such as the C-terminus 
of  cTnT, and to extend the length of  simulations in the future. This region, in particular, remains poor-
ly resolved in all extant structures, including in the most recent manuscript by Risi et al. (36). In addi-
tion, identification of  well-defined pathogenic mutations in the C-terminus of  the CTF has lagged as there 
remains a high level of  uncertainty regarding the structural and dynamic landscape in this highly flexible 
domain. Given our ability to quickly iterate the CTF with new structural information and our own efforts 
to clarify the structure of  the C-termini of  cTnT and cTnI, we are optimistic that this important mutational 
“bin” will be included in future studies.

The model used for all calculations presented in this paper was created using all structural data avail-
able to date. As more structural data become available, the model has been and will be fine-tuned if  needed 
to incorporate new information. As updating classifications for variants every few years is standard proce-
dure as more data are available and more patient screenings are performed, we propose that our approach 
can be incorporated into these reassessments when new structural insight is obtained.

As noted in the 2020 guidelines, at present, identification of  VUS is not a clinically actionable result, 
and such uncertainty is the basis for the periodic reevaluation of  variants (7). We propose here that our 
computational methodology can be incorporated into the existing assessment of  novel VUS to provide 
unbiased molecular/functional rigor that can improve the fidelity of  classification. Also note that the exclu-
sive use of  human proteins and sequences is an advantage and also overcomes some of  the challenges 
inherent in the use of  mixed-species in vitro studies in prediction, which can provide conflicting informa-
tion because of  variations in experimental protocols. Overall, the theme of  the current work and any future 
work on this topic is that both structure and dynamics determine function, or dysfunction, and detailed 
studies of  these properties may be used to inform rigorous reclassifications of  pathogenicity to facilitate the 
use of  genetic information for cascade screening and eventual management decisions.

Table 5. Summary of the VUS analyzed in this study with protein and region location and the suggested 
reclassification determined from calculations

Variant Location Allele frequency Suggested reclassification
K97N cTnT, region A 3.98E-06 Pathogenic

A104V cTnT, region A 1.59E-05 Pathogenic
L178F cTnT, region B 3.11E-05 Pathogenic
V218L cTnT, region B 1.19E-05 Benign
A22T Tm, region A 8.12E-06 Likely pathogenic
D28H Tm, region A 3.19E-05 Likely benign
A277T Tm, region A 2.83E-05 Pathogenic
M281V Tm, region A 2.84E-05 Benign
S215L Tm, region B 3.98E-06 Likely benign

Allele frequencies are reported from gnomAD v2.1.1.
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Methods
Each simulation using our original model started from the same low-temperature structure that has been 
described previously (9, 21, 22). However, the structure has been updated to utilize the CHARMM36 parame-
ters, which encompass the latest and most accurate version of  the CHARMM force field (51). Point mutations 
were incorporated into each corresponding CTF protein with the CHARMM42 program by deleting side 
chain atoms of  the desired residue and rebuilding it to the desired new residue based on the CHARMM36 
parameters (52). Deletion mutations were incorporated by deleting all side chain and backbone atoms for the 
residue of  interest and directly bonding the backbone nitrogen of  the previous residue to the backbone car-
boxyl carbon of  the next residue. These methodologies have been previously described and utilized (9, 21, 23).

Simulation parameters. Once mutations were incorporated into the protein structures, the system was 
solvated with TIP3P waters using the SOLVATE plugin in VMD1.9.3 (53), with the water box extending at 
least 15 Å from the protein surface. Potassium and chloride ions were added randomly within the water box 
to a set concentration of  0.15 mol/L with the AUTOIONIZE plugin in VMD1.9.3 (53). All simulations 
were performed with NAMD version 2.12 with the SHAKE algorithm to constrain heavy atom-hydrogen 
bonds (54). Nonbonded interactions were calculated with the particle mesh Ewald method with a cutoff  
value of  12 Å. Each system was subjected to 5000 steps of  minimization with the conjugate gradient meth-
od, then slowly heated to a temperature of  300 K at a rate of  1 K/ps. Finally, the system was equilibrated 
in an isobaric-isothermal ensemble at 1 atm and 300 K for 690 ps using a Langevin piston Nosé-Hoover 
method to control the barostat and Langevin dynamics to control the thermostat. From the equilibrated 
structure, 3 independent 10 ns production runs were performed by randomly generating velocities from a 
Boltzmann distribution. From these production runs, all statistics were measured and determined.

Structure and dynamics characterization. Average overlap distances were assessed by calculating the distance 
between the center of  mass of  the cTnT helix, residues 90 to 140, with the center of  mass of  the N-terminal 
and C-terminal Tm coiled coils throughout the production runs. Changes in distance between the N-terminal 
Tm coils were calculated using the distance between the center of  mass of  the helices, residues 1 to 20, aver-
aged throughout the production runs. Changes in distance between Tm and actin were calculated between the 
center of  mass of  the N-terminal Tm coil and neighboring actin monomer located directly below. Changes in 
flexibility were determined by measuring the RMSF of the alpha carbons in the proteins for each simulation. 
This equates to determining the SD in the atom’s position with respect to its average position.

3D scatter plots, violin plots, and distribution plots. The z scores for each variable were plotted on a 3D 
scatter plot using Matlab to visualize natural clustering of  pathogenic mutations and VUS (55). Euclidean 
distances were used to generate violin plots to determine distribution of  data using Prism version 9.0.0 
(GraphPad). Distribution plots were created by binning individual distances across trajectories for each 
variant and the WT structure. Plots were labeled with a specific cTnT residue indicating the distribution of  
the distance between the given cTnT residue and closest residue on the 2 Tm chains across all trajectories. 
Bins with a width of  0.2 Å between 15.5 and 32.3 Å were used to create all distribution plots.

Creating the new model. The full Ca2+ saturated structure consistent with the Yamada et al. structure was 
created by initially aligning the 30 actin monomers from our structure to the Yamada et al. structure, which 
contains 15 actin monomers (35). The cTnC proteins from our structure were translated to align with Yamada 
et al.’s, and the structural Ca2+ ions were added into the respective binding pockets. The full cTnI proteins 
from our structure (residues 1–210) were aligned to fit the Yamada et al. cTnI fragments (residues 41–166). 
The structured portions of  the cTnI proteins aligned well; however, the unstructured terminal ends clashed 
with Tm and actin. To address the clashing, dihedral angles of  a couple of  residues in the unstructured regions 
were rotated until cTnI no longer clashed with other proteins. To align cTNT, the protein was initially split 
into 2 fragments (residues 1–198 and 199–288) so that each individual fragment could be aligned to the 2 
fragments in the Yamada et al. structure (residues 99–150 and 199–272). Once the individual fragments were 
aligned, the 2 fragments were stitched together in VMD and minimized in NAMD so that the bond connect-
ing them, located in the unstructured cTnT1-cTnT2 linker region, was an acceptable length. Dihedral angles 
of  a couple of  residues in the unstructured N- and C-termini of  cTnT were rotated to eliminate any clashing 
of  atoms that occurred after alignment. In the Yamada et al. structure, the C-terminus side of  Tm in the 
overlap region contained residues 11 to 284, while the N-terminus side contained residues –1 to 29. The Tm 
structure Yamada et al. used to fit their cryo-EM data only stretched across 6 actin monomers, not 7 mono-
mers, suggesting an incorrect helical pitch, also noted in previously published structures (56). Therefore, to 
shift our Tm coils into the new location agreeing with Yamada et al., collective variables defined as distance 
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were used in NAMD to constrain segments of  the center of  mass (COM) of  our Tm dimers to the COM of  
the dimers in the Yamada et al. structure (54). This allowed for the correct placement of  Tm in the overlap 
region with respect to actin and cTnT, while maintaining the correct helical pitch in our structure. Once one 
side of  dimers was aligned correctly, they were replicated to the other side of  the CTF. Finally, an extra actin 
monomer with its respective ADP and calcium ion was added to the end of  the structure to prevent the ends 
of  the shifted Tm chains from hanging off  the end of  the structure. The final structure agreed with previously 
published refined structures, validating the structure used in this study (36, 56). Once all proteins were aligned 
correctly, the structure was minimized and heated in implicit solvent and then equilibrated in explicit solvent 
in NAMD using the same methods previously described. Mutation building and MD simulation parameters 
were performed using the same methods described above, except the overlap region average spanned between 
cTnT residues 90 and 130 because of  shifting of  the helices in the new model.

Thermal stability and cooperativity of  unfolding of  the WT and mutated CTF. The heat capacity (kJ/mol*K) 
of  WT or mutant (D20N-Tm, S215L-Tm, R92Q-cTnT, or Δ96E-cTnT) CTF (Actin/Tm/Tn in a 3:2:2 recon-
stitution ratio) was measured via DSC (1°C/min heat rate from 20°C to 70°C) and graphed as a function of  
temperature. All experiments were performed in a HEPES buffer containing 30 mM HEPES, 150 mM KCl, 
1 mM MgCl2, 200 μM NaATP, 200 μM CaCl2, and 1 mM β-ME. The complex raw thermogram generated 
contains information on 5 distinct unfolding events (in order of  denaturation temperature, low to high: C-ter-
minal Tm, Tm-Tn array away from actin, N-terminal Tm, Tn complex, actin). The raw data were then fit with 
a model generated by using 4-gaussian distribution (excluding actin denaturation) following baseline buffer 
heat subtraction and normalization to total mass of  reconstituted protein (kept at ~2 mg/mL, 7.9 μM Tn, 
7.9 μM Tm, 18.4 μM actin) using NanoAnalyze software (TA Instruments). The thermal stability results and 
a raw trace containing the first 4 unfolding events (actin denaturation excluded) after fitting can be found in 
Supplemental Figure 10 and Supplemental Figure 11, respectively. Each denaturation event (above) includes 
information on the maximum heat capacity (melt temperature, Tm, aka thermal stability) of  the protein and 
the FWHM of the peak. For these experiments, only the peak corresponding to the Tm-Tn denaturation from 
actin is reported because it is the most informative value for our purposes. We refer to this value as conforma-
tional flexibility (the inverse cooperativity of  unfolding). An n = 3 to 4 individual reconstitutions was used.

Statistics. The mean and SEM were calculated using a bootstrapping method in R (57). Values were cal-
culated using 1000 bootstraps with replacement assuming the underlying distribution of  distances is asym-
metric. Supplemental Tables 1 and 2 summarize the mean and SEM for each variant analyzed with respect 
to WT. The standardized values for each variable, or z score, were calculated for each variant in the respective 
region using

where x is the variable mean,  is the average value in the region, and σx is the SD of  the region. From 
the z scores, the Euclidean distance from the origin was calculated using

where x is the z score from the change in overlap distance, y is the z score from the change in actin-Tm 
distance, and z is the z score from the change in distance between N-terminal Tm coils.

For all DSC experiments, a 1-way ANOVA with Dunnett’s correction for multiple comparisons was 
used to compare each mutation with WT CTF using Prism version 9.0.0 (GraphPad). P < 0.05 was consid-
ered statistically significant: * P < 0.05 versus WT CTF, ** P < 0.01 versus WT, *** P < 0.005 versus WT, 
**** P < 0.0001 versus WT. Absolute P values can be found in Supplemental Table 4.
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