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Abstract: (1) Background: Chronic increases in blood flow, as in cardiovascular diseases, induce
outward arterial remodeling. Thrombospondin-1 (TSP-1) is known to interact with matrix proteins
and immune cell-surface receptors, but its contribution to flow-mediated remodeling in the micro-
circulation remains unknown. (2) Methods: Mesenteric arteries were ligated in vivo to generate
high- (HF) and normal-flow (NF) arteries in wild-type (WT) and TSP-1-deleted mice (TSP-1−/−).
After 7 days, arteries were isolated and studied ex vivo. (3) Results: Chronic increases in blood flow
induced outward remodeling in WT mice (increasing diameter from 221 ± 10 to 280 ± 10 µm with
75 mmHg intraluminal pressure) without significant effect in TSP-1−/− (296 ± 18 to 303 ± 14 µm),
neutropenic or adoptive bone marrow transfer mice. Four days after ligature, pro inflammatory gene
expression levels (CD68, Cox2, Gp91phox, p47phox and p22phox) increased in WT HF arteries but
not in TSP-1−/− mice. Perivascular neutrophil accumulation at day 4 was significantly lower in
TSP-1−/− than in WT mice. (4) Conclusions: TSP-1 origin is important; indeed, circulating TSP-1
participates in vasodilation, whereas both circulating and tissue TSP-1 are involved in arterial wall
thickness and diameter expansion.

Keywords: thrombospondin-1; blood flow; remodeling; resistance arteries; immune cells

1. Introduction

Chronic changes in blood flow occur in physiological conditions such as exercise [1],
pregnancy [2] or post-natal development and in pathological conditions such as arterial
occlusive diseases [3], diabetes [4] or hypertension [5]. Chronic increase in blood flow
induces a remodeling of the arterial wall in order to adapt the wall strain to the new
hemodynamic conditions, as described in large blood vessels [6] and small resistance
arteries [7].

In large vessels (i.e., carotid arteries), chronic increase in blood flow induces limited
vasodilatation [6] and parietal hypertrophy [8]. In resistance arteries, a chronic rise in blood
flow triggers an increase in diameter associated with medial thickening [7]. Although the
mechanism involved in vascular diameter adaptation is well described in large arteries,
pathways implicated in arterial remodeling of resistance arteries are less described. Major
differences may, however, be expected due to dissimilar vascular wall constitution and
specific local hemodynamic parameters.

We have previously shown that pharmacological NO-synthesis blockade or genetic
deletion of eNOS in mice prevented high flow (HF)-mediated diameter enlargement in
resistance arteries, without effect on hypertrophy [9]. In addition, we have demonstrated
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that the compensatory wall thickening occurring after a chronic rise in shear stress in
HF arteries depends on angiotensin II type 1 receptor stimulation [10] but also on AT2R
dependent interleukin-17 production by T lymphocytes [11].

Other studies have demonstrated a relationship between blood flow and thrombospondin-
1 (TSP-1) gene expression/protein production [12]. TSP-1 is a matricellular protein with
multiple properties, including the modulation of NO signals [13], immune cell recruitment
and activation. TSP-1 was first discovered in platelets [14,15], endothelial cells [16], vascular
smooth muscle cells [17] and in lymphoid or myeloid cells [18,19]. Its receptor, CD47, is ex-
pressed by T [20] and B cells [21], monocytes [22], platelets [23], erythrocyte precursors [24],
vascular endothelial cells [25] and vascular smooth muscle cells [26]. Moreover, it has been
demonstrated that TSP-1 endothelial expression is stimulated by hypoxia [27] and low
NO [28]. More specifically, TSP-1 expression, autocrine and paracrine TSP-1 signaling in
vascular cells as CD47 expression are stimulated by sudden changes in shear stress [12,29].

It has been previously established that vascular inflammation in resistance arter-
ies subjected to high flow was responsible for diameter enlargement and perivascular
macrophage accumulation (2 days) preceding vascular wall remodeling. Macrophage
accumulation is observed in mesenteric arteries upon chronic blood flow increase [30,31]
and outward hypertrophic remodeling does not occur after macrophage depletion [31]. The
contribution of immune cells to many cardiovascular diseases is now recognized, such as in
ischemic diseases [32], hypertension [33], uterine under perfusion with preeclampsia [34]
or intra-uterine growth restriction [35] and stroke [36,37]. However, their role in outward
hypertrophic remodeling remains to be clarified.

The aim of this study is to identify the early triggers of vascular remodeling in
resistance arteries and the first stimuli at the origin of inflammatory recruitment and
oxidative stress in the acute phase of blood flow increasing [38].

Although the implication of immune cells in flow-induced remodeling has been
partly described, the early mechanism of immune cells recruitment and the ignition of the
inflammation remains unknown. A better understanding of remodeling mechanisms may
provide new therapeutic opportunities for pathologies associated to flow disturbance and
many ischemic disease settings [39].

2. Results
2.1. TSP-1 Modulates Flow-Mediated Remodeling

In WT mice, the diameters of arteries submitted to a chronic increase in flow (high flow,
HF) were greater than the diameters of control arteries under normal flow, NF (Figure 1a,c).
This increase in diameter in HF arteries was accompanied by significant wall thickening
and cross-section area increase in WT mice (Figure S3a,b), evidenced by the absence of
significant changes in media-to-lumen ratios (Figure 1b,c). In TSP-1−/− mice, the diameters
of HF arteries failed to expand (Figure 1a,c); their media-to-lumen ratios remained constant
(Figure 1b,c) as the cross-section area (Figure S3b).

2.2. Circulating TSP-1 Induces Arterial Diameter Enlargement, but Tissue TSP-1 Participates in
Arterial Parietal Thickening

To determine if the origin of the TSP-1 implicated in HF remodeling was from tissue or
circulating cells, we have made bone marrow cells (BMC) transfer after full body irradiation,
to generate circulating cells from WT or TSP-1−/− mice in the other genotype. Indeed, we
grafted to define two groups:

(1) We transferred WT bone marrow cells to TSP-1−/− mice to have WT circulating cells
in TSP1−/− mice. The TSP-1 is only present in circulating cells but not in mice tissues.
This group is named “WT BMC in TSP-1−/−“.

(2) We transferred TSP-1 bone marrow cells to WT mice to have TSP-1−/− circulating
cells in WT mice. So, TSP-1 is only present in mice tissues but not in circulating
cells. This group is named “TSP-1−/− BMC in WT“. Seven days after ligation, the
HF/NF diameter ratio of mesenteric arteries in WT BMC in TSP-1−/− was increased
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compared to TSP-1−/− BMC in WT. Strikingly, there was no significant difference
in TSP-1−/− BMC in the WT mice group (Figure 2a), showing a curve belonging
to 0% of change. The two curves that were statistically different demonstrated that
circulating WT cells, i.e., expressing TSP-1, were necessary for HF diameter expansion.
Histomorphometry analysis revealed that media/lumen ratio (Figure 2b) and the
cross-section area (Figure S3d) were not significantly different in NF and HF arteries of
TSP-1−/− BMC in WT and WT BMC in TSP-1−/−. Media thickness was significantly
increased in HF arteries in WT BMC in TSP-1−/− compared to TSP-1−/− BMC in WT.
Furthermore, no differences were found between NF and HF arteries in TSP-1−/−

BMC in WT or in WT BMC in TSP-1−/− (Figure S3c).

The study of the immune cell infiltration by confocal microscopy showed that the
mean fluorescence intensities of immunostaining for CD45 (Figure 2c), F4/80 (Figure 2d)
and Ly6G (Figure 2e) were decreased in both NF and HF arteries of WT BMC in TSP-1−/−

compared to TSP-1−/− BMC in WT, meaning that tissue-secreted TSP-1 is important for
proper immune cell infiltration.
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Figure 1. Remodeling of TSP-1−/− and WT mesenteric arteries after seven days of chronic increase
in blood flow. Graphs show (a) the passive diameter of HF arteries in percent of NF arteries and
(b) the histomorphometry analysis as media-to-lumen ratio. TSP-1−/− (n = 7) mesenteric arteries are
represented in white and WT (n = 5) in black. (c) shows representative images (×10 magnification,
scale bar = 100 µm). All results are expressed in means ± sem. * p < 0.05, WT vs. TSP-1−/−.
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Figure 2. Remodeling study after seven days of chronic increase in blood flow and BMC transfer
experiments. Graphs show (a) the passive diameter of HF mesenteric arteries in percent of NF
mesenteric arteries diameter, (b) histomorphometry analysis of these arteries as media-to-lumen
ratio. TSP-1−/− BMC in WT, n = 9 and WT BMC in TSP-1−/−, n = 9. The mean fluorescence intensity
(MFI) of the peri arterial zone representing the total immune cells (c), the macrophages (d) and the
neutrophils (e) is measured after four days of ligature in TSP-1−/− BMC in WT (n = 5) and in WT
BMC in TSP-1−/− (n = 7). TSP-1−/− BMC in WT arteries are represented in black and the WT BMC
in TSP-1−/− in white. All results are expressed in means ± sem. * p < 0.05, ** p < 0.01, TSP-1−/−

BMC in WT vs. WT BMC in TSP-1−/−.

2.3. Hydralazine Does Not Improve Flow-Induced Remodeling in TSP-1−/− Mice

The non-selective vasodilator hydralazine did not significantly affect HF-remodeling
in WT mice and failed to improve it in TSP-1−/− animals (Figure 3). Furthermore, the
non-selective vasodilator hydralazine did not improve media thickness or cross section
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area in TSP1−/− mice (NF vs. HF, Figure S3 e,f), suggesting that a change in shear stress
sensitivity is not responsible for the absence of remodeling in TSP-1−/− mice.
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Figure 3. Remodeling study after seven days of chronic increase in blood flow and hydralazine
treatment. Graphs show (a) the passive diameter of the HF mesenteric arteries in percentage of
the NF mesenteric arteries diameter, (b) histomorphometry analysis of these mesenteric arteries
as media-to-lumen ratio. (c) shows representative images (×10 magnification, scale bar = 100 µm).
TSP-1−/− (n = 10) mesenteric arteries are represented in white and WT (n = 6) in black. All results
are expressed in means ± sem. * p < 0.05, *** p < 0.001, WT vs. TSP-1−/−.

2.4. TSP-1 Mediates Flow-Induced Immune Cell Recruitment

To study the implication of the immune system in the early phase of flow-induced ar-
terial remodeling, we focused on neutrophils (Figure 4a,c) and macrophages (Figure 4b,d),
two myeloid cells recruited by TSP-1 which are involved in the flow-induced remodel-
ing. In WT mice, macrophages and neutrophils accumulated around HF arteries, as evi-
denced by flow cytometry (Figure 4a,b) and immunostaining (Figure 4c,d,e). No significant
macrophage and neutrophil accumulation occurred in HF TSP-1−/− arteries (Figure 4c,e),
confirming the role of tissue TSP-1 production previously observed in Figure 2c,d.

In order to identify the role of neutrophil in HF-remodeling, and because they initiate
local pro-inflammatory processes, neutrophils were depleted in WT mice using anti-Ly6G
antibody (Figure 5). Flow-mediated diameter enlargement failed to occur in neutropenic
mice (Figure 5a,c), whereas significant remodeling was observed in mice treated with con-
trol isotype antibodies (Figure 5a,c). In control mice, the media-to-lumen ratio (Figure 5b
and Supplementary Figure S3g,h) confirmed the increase in wall thickness in response to
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increased blood flow, whereas no change was observed in the neutropenic mice, suggesting
a cross talk between TSP-1 and neutrophil for wall remodeling.
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Figure 4. Immune cells recruitment in WT and TSP-1−/− mesenteric arteries after four days of chronic increase in blood flow.
Immune cells recruitment study with flow cytometry experiment (WT n = 2, TSP-1−/− n = 6) results showing neutrophils
(a) and monocyte and macrophages (b) proportion. Mean fluorescence intensity (MFI) quantification of neutrophils (c) and
macrophages (d). (e) Representative pictures of mesenteric arteries section immunostained with anti F4/80-PE, anti Ly6G-
PE, anti CD31-FITC antibodies and DAPI, magnification ×10, scale bar = 100 µm (WT n = 7, TSP-1−/− n = 7). In all results,
WT are represented in black and TSP-1−/− in white. All results are expressed in means ± sem. * p < 0.05, WT vs. TSP-1−/−.
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Figure 5. Remodeling study after seven days of chronic increase in blood flow and neutrophils depletion. Graphs show
(a) the passive diameter of HF mesenteric arteries is percent of NF mesenteric arteries diameter and (b) the histomor-
phometry analysis of these mesenteric arteries as media-to-lumen ratio. (c) shows representative mesenteric arteries
images (×10 magnification, scale bar = 100 µm). Neutrophil depleted mice (n = 8) are represented in white and isotype
controls (n = 5) in black. (d) shows mesenteric arterial zone MFI measured of cleaved caspase-3 after four days of ligature
in mesenteric arteries neutrophils depleted mice (n = 6) and isotype controls mice (n = 4). All results are expressed in
means ± sem. * p < 0.05, ** p < 0.01 isotype controls vs. neutrophil depletion. ## p < 0.01 NF vs. HF.

Four days after increasing blood flow, an immunofluorescence study was performed
on arteries in order to determine the levels of vascular apoptosis, using cleaved caspase 3
staining as the marker (Figure 5d). Fluorescence intensity was significantly increased in
HF arteries compared to NF arteries in neutrophil-depleted mice. Conversely, no statistical
difference existed between HF and NF arteries in control mice.

2.5. TSP-1 Deficiency Decreases Flow-Induced Inflammatory Gene Expression Levels

Studies have underlined the role of inflammation in the early phase of flow-mediated
remodeling. We then determined inflammatory gene expression levels in NF and HF
arteries, four days after surgery (Figure 6). As expected, the expression of the mRNA
encoding Cd68, P47phox, P22phox, Gp91phox and Ptgs2 were significantly increased in HF
arteries from WT mice, compared to NF arteries. In contrast, no such increase occurred
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in TSP-1−/− HF vessels, suggesting that TSP-1 may be involved in the flow-induced local
inflammation.
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Figure 6. Gene expression study after qRT PCR experiments performed on WT and KO mesenteric
arteries after 4 days of ligature. WT arteries (n = 6) are represented in black and TSP-1−/− arteries
(n = 5) in white. The genes studied are cd68, ptgs1, ptgs2, cybb, cyba, ncf1. Results are normalized to
the hprt housekeeping gene and expressed as relative level of expression in means ± sem. * p < 0.05,
WT vs. TSP-1−/−, # p < 0.05, NF vs. HF.

3. Discussion
3.1. TSP-1 Is Essential for Small Vessel Remodeling during Adaptation to Blood Flow Increase

A chronic increase in arterial blood flow induces outward remodeling, thus allowing
shear stress normalization [40]. Previous studies on cultured cells have linked rising blood
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flow to TSP-1 production [41]. Our aim was to investigate with in vivo experiments the
role of TSP-1 in blood flow-induced remodeling of resistance arteries.

We investigated in vivo flow-mediated remodeling using a model of chronic in-
crease in arterial blood flow that does not affect systemic hemodynamics. The absence of
flow-induced outward remodeling and compensatory wall thickening in TSP-1−/− mice
suggested that TSP-1 is strongly involved in this process. These observations and this
conclusion remained valid one month after the increase in blood flow (Supplementary
Figures S1a,b and S3i,j). We concluded that genetic TSP-1 ablation did not only delay re-
modeling but completely disabled it, pointing TSP-1 as a critical initiating factor of this
process. Genetic TSP-1 depletion was associated with a decreased flow-induced dilation
and with acetylcholine-induced relaxation by NO release. Indeed, the two other signaling
pathways known to be triggered by acetylcholine (prostaglandin [42,43] and endothelium
derived hyperpolarization factor [44]) were not affected by the absence of arterial TSP-1
(Supplementary Figure S2). This probably resulted from a decrease in the adaptation to
genetic TSP-1 ablation; such a change in shear stress sensing and NO production will
likely affect flow-mediated remodeling [9]. Hydralazine administration to TSP-1−/− mice
increased blood flow and shear stress in mesenteric arteries as expected [38,45,46], but
failed to restore outward remodeling. We concluded that TSP-1 was not involved in flow
sensing by the arteries, but in regulating the consequences of changes in blood flow. Indeed,
independent pathways downstream of flow sensing appeared to be responsible for parietal
remodeling.

3.2. TSP-1 from Different Cellular Origins Impacts Small Vessel Remodeling in Different Ways

TSP-1 can be expressed by multiple types of circulating and tissue cells, including
vascular smooth muscle and endothelial cells [14–19]. Our experiments suggested that
TSP-1 secreted by circulating cells was essential for flow-mediated diameter expansion.
Conversely, TSP-1 expressed by vascular cells was necessary for immune cells recruitment
and wall thickening.

3.3. TSP-1 Participates in Blood Flow-Mediated Small Vessel Remodeling by Recruiting
Inflammatory Cells

Outward remodeling is known to rely on the initial inflammatory response triggered
by changes in blood flow, including limited but essential macrophage infiltration [31]. Here,
genetic TSP-1 ablation drastically decreased vascular CD68 expression levels (a marker of
myeloid immune cells, including monocytes/macrophages and neutrophils [47,48]) in HF
arteries and, more particularly, reduced macrophage infiltration.

Genetic TSP-1 ablation also reduced the overall oxidative stress in the vessel wall
(decreased Gp91phox, p47phox and p22phox expression) which is necessary for proper matrix
metalloproteinase (MMP) activation, which is, in turn, needed for subsequent diameter
expansion [49]. Moreover, the production of ROS by NADPH has previously been linked
to neutrophil chemotaxis [50]. Neutrophil depletion completely prevented any significant
outward remodeling or wall thickening of the HF artery.

3.4. TSP-1 as a Therapeutic Target during Small Vessel Remodeling

Hypertension, obesity, the metabolic syndrome and exposure to glucose are all thought
to enhance TSP1 expression, circulating or vascular [51,52]. Age will thus be associated
to increased TSP1 expression, either directly or through co-morbidities. Conversely, TSP1
can enhance age-related deterioration of vascular function [53] and its dysregulation
promotes angiogenesis in the eye [54]. The contribution of TSP1 to flow-mediated vascular
remodeling strengthens the concept that novel therapeutic intervention to treat vascular
remodeling should encompass an anti-inflammatory element. More specifically, novel
pharmacological inhibitors of TSP1 and its receptors signaling (primarily CD47) [55,56]
may help preserve vascular function in diseases associated to vascular remodeling and in
age-related disorders.
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4. Materials and Methods
4.1. Animal Models

The protocol conformed with European Community standards on the care and use
of laboratory animals (Authorization No. 00577) and with National Institutes of Health
Guide for the Care and Use of Laboratory Animals (NIH Pub. No. 85-23, Revised 1996).
The protocol was approved by the ethical committee (Permit No. CEEA PdL 2012.22).

For this study, mice lacking the gene thbs1, which encodes the TSP-1 protein, (tsp-1
knock-out; TSP-1−/−), were used [57,58], with wild-type (WT) litter mates as controls.
Surgery was performed as previously described in order to modulate blood flow in mesen-
teric arteries [40,59]. Briefly, three consecutive first-order arteries, equivalent in apparent
diameter, were used. Ligatures were applied to 4 s-order arterial branches. The artery
located between the two ligated arteries was designed as HF artery [60]. Other mesenteric
arteries located at distance from the ligated arteries were used as controls (normal flow,
NF), so that each mouse had its own NF and HF arteries. For hydralazine experiments
(a vasodilator compound), mice were given 200 mg/L hydralazine per day in tap water
throughout the post-surgery period [38,46].

4.2. Pressure–Diameter Relationship in Mesenteric Arteries

Arterial segments of mice were cannulated at both ends and mounted in a video
monitored perfusion system (Living Systems, LSI, Burlington, VT, USA) as previously
described [46]. Two glass cannulae were used to cannulate a 2–3 mm long arterial segment
(SIV). Arterial segments were bathed in a 5 mL organ bath containing a Ca2+-free PSS con-
taining ethylene-bis-(oxyethylenenitrolo) tetra-acetic acid (EGTA, 2 mmol/L) and sodium
nitroprusside (SNP, 10 µmol/L). Pressure steps (10 to 125 mmHg) were then performed in
order to determine passive arterial diameter. Furthermore, WT and TSP-1−/− mice were
treated during all the post-surgery period with hydralazine (200 mg/L in drinking water).
Seven days after surgery, passive diameters were measured. Continuous pressure and
diameter measurements were collected by our data acquisition system (BIOPAC MP100
and AcqKnowledge® software; La Jolla, CA, USA) [36].

4.3. Histomorphometric Analyses

Mesenteric arterial segments pressurized at 75 mmHg and fixed in 4% para-formaldehyde
solution were cut using a cryostat. Transverse sections (7 µm thick) were stained with
orcein solution. After image acquisition (Olympus T100 microscope, Sony camera), internal
and external medial circumference and surface were then measured and analyzed using
the ImageJ software. Using these values, the CSA and wall thickness were calculated, as
previously described [9]. The media-to-lumen ratio is calculated as the ratio of the external
surface on the internal surface.

4.4. Quantitative Real-Time PCR

Guts were dissected out of mice four days after mesenteric ligature, placed in a 4 ◦C
sterile PSS, and perivascular fat was carefully removed. Dissected arterial segments were
kept in RNAlater® buffer (Sigma-Aldrich, St Louis, MO, USA) at −20 ◦C. RNA extraction
was performed in RNeasy® Micro Kit (QIAGEN, Germantown, USA). Total RNA (100 ng)
extracted from each artery were subjected to reverse transcription (RT) with the QuantiTect®

Reverse Transcription Kit (QIAGEN, Germantown, USA). Real-time PCR analyses of the
target genes Ccl2, Cd68, Itgam, Nfkbia, Rela, Ptgs1, Ptgs2, Ncf2, Ncf1, Cyba, Cybb, Mmp2,
Mmp9, Timp1, Nos2, Nos3, Hif1a, Vegfa, Tgfb1, Tgfb2, Tgfb3, Ptpn6, Ppp1r12a, CD47, Akt1,
Sod2 were performed. qPCR analysis was performed using a LightCycler 480 (Roche
Life Science, Penzberg, Germany) and Power SYBR® Green PCR Master Mix (Applied
Biosystems, Illkirch, France). Gene-specific primers were designed using Primer3 online
software and validated by PCR efficiency testing. A detailed list of primers and genes
analyzed is provided in Supplementary Figure S5. Gene expression was quantified by the
comparative cycle threshold method and Hprt gene expression was used as reference.
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4.5. Neutrophil Depletion

An intraperitoneal injection of an anti-murine Ly6G antibody (clone 1A8, BioXCell,
Lebanon, USA) or control rat IgG2a isotype (clone 2A3, BioXCell) was performed 24 h
before surgery. The injections were repeated every 72 h until sacrifice. The same amount
(500 µg) of antibody and isotype was used for each injection [61].

4.6. Confocal Microscopy

Confocal imaging was performed on NF and HF arteries after ligation as previously
reported [45]. Arterial segments were stained overnight (4 ◦C) with anti-mouse CD45-PE
(clone 30-F11, rat IgG2bκ isotype, 1:200, BioLegend, San Diego, CA, USA), anti-mouse
Ly-6G (Gr-1)-PE (clone RB6-8C5, rat IgG2bκ isotype, 1:200, eBioscience, San Diego, CA,
USA), anti-mouse F4/80-PE (clone BM8, rat IgG2aκ isotype, 1:200, eBioscience) or with
anti-cleaved caspase-3 Ab2 (1:100, Calbiochem, San Diego, CA, USA) and with F(ab’)2
donkey anti-rabbit IgG PE (1:100, 2 h, 20 ◦C, eBioscience). Samples were then washed with
PBS three times for 5 min and mounted with Mowiol. Nuclei were stained with DAPI
(Invitrogen, Waltham, MA, USA) 11 µg/mL. All dilutions were made in PBS-BSA 5%.
Pictures were taken with a Nikon Eclipse TE2000S confocal microscope and analyzed with
the MetaMorph® software (San Jose, CA, USA).

4.7. Flow Cytometry Analysis

Arteries without perivascular tissue were isolated and digested using 450 U/mL
collagenase type I and 5 U/mL elastase for 1 h at 37 ◦C, with intermittent agitation.
Cell suspensions were then passed through a 100 µm diameter filter before washing by
centrifugation (800× g). Cells were fixed with 1% (v:v) PFA. After washing, cells were
stained for 25 min at 4 ◦C with anti-Ly6G, anti-CD11b monoclonal antibodies (eBioscience)
or control isotype antibodies. Cells were sorted by an LSR-II flow cytometer with the
DIVA® driving software (Becton Dickinson Biosciences, Franklin Lakes, NJ, USA). Data
were analyzed using the FlowJo® software (Tree Star, Inc., Ashland, OR, USA).

4.8. Mouse Irradiation and Adoptive Bone Marrow Transfer

Whole body irradiation of recipient mice (30 g) was conducted in a BIOBEAM 8000
gamma irradiator in order that mice received a total dose of 9.5 gray over 10 min. The mice
were then allowed to rest for recovery. In each experiment, one irradiated mouse was kept
free of transplantation as control. Its death within 2 weeks was considered a token of near
complete bone marrow ablation. For adoptive bone marrow transfer, total bone marrow
cells (BMC) were collected by flushing the dissected tibiae and humeri of euthanized
donor mice with PBS until cells (red) were visually dissociated from bones (white). BMC
were then dispersed with a pipette. Dense, solid tissue fragments were decanted for 30 s
and eliminated in order to obtain a homogenous cell suspension. BMC collected from
2 donor mice were transplanted into 7 recipient mice by retro-orbital injection, 36 h after
irradiation. Irradiated mice were then allowed to rest for a minimum of 2 weeks before
experimentation.

4.9. Statistical Analysis

Results were expressed as means ± SEM. Statistical analysis was performed using
Prism software (v.8.0, GraphPad Software, San Diego, CA, USA). For vascular reactivity, a
2-way ANOVA for consecutive measurements was used followed by a Bonferroni post-
test. A Mann–Whitney test was used for all other results. All results were considered as
significantly different when p < 0.05.

5. Conclusions

We demonstrated (Figure 7) that TSP-1 is a cornerstone of resistance artery remodeling
in response to a chronic increase in blood flow. TSP-1 operates in two ways: Tissue-
secreted TSP-1 triggers mainly neutrophil and macrophage recruitment, whereas circulating
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myeloid cell TSP-1 is responsible for the initiation of diameter expansion. This two-edged
contribution during the acute phase of inflammation is necessary for any outward vascular
remodeling to proceed.
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Abbreviations

HF High Flow
NF Normal Flow
FMD Flow-mediated dilation
CDR Cumulative Dose Response
BM Bone Marrow
MFI Mean Fluorescence Intensity
TSP Thrombospondin
WT Wild Type
CD Cluster of Differentiation
CSA Cross Section Area
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