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Bacteria are a source of a large number of secondary metabolites with several biomedical and biotechnological applications. In
recent years, there has been tremendous progress in the development of novel synthetic biology approaches both to increase the
production rate of secondary metabolites of interest in native producers and to mine and reconstruct novel biosynthetic gene
clusters in heterologous hosts. Here, we present the recent advances toward the engineering of novel microbial biosensors to detect
the synthesis of secondary metabolites in bacteria and in the development of synthetic promoters and expression systems aiming
at the construction of microbial cell factories for the production of these compounds. We place special focus on the potential
of Gram-negative bacteria as a source of biosynthetic gene clusters and hosts for pathway assembly, on the construction and
characterization of novel promoters for native hosts, and on the use of computer-aided design of novel pathways and expression
systems for secondary metabolite production. Finally, we discuss some of the potentials and limitations of the approaches that are
currently being developed and we highlight new directions that could be addressed in the field.

1. Background

Microorganisms have provided a variety of natural prod-
ucts (NPs) or secondary metabolites (SMs) with interesting
chemical structures and bioactivities [1]. Typically, bacteria
biosynthesize a range of distinctmolecules, andmany of them
present remarkable biological activities acting as bioregula-
tors, quorum-sensing/signalingmolecules, and antimicrobial
drugs [2]. However, the preponderance of NPmolecules with
clinical relevance was derived from Gram-positive bacteria,
highlighting the Streptomyces genus [3]. Althoughmany hun-
dred thousand differentNPs have been described (Dictionary
of Natural Products 19.2, Copyright © 2011 Taylor & Francis
Group), those molecules arising from four generic classes
of biosynthetic systems have been reported most frequently.
These are the (i) polyketides (PK), (ii) nonribosomal peptides
(NRPs), (iii) isoprenoids, and (iv) shikimate derivatives [4–
6]. The core structures biosynthesized by these four systems

are generally defined as superimposed “scaffolds” whose “tai-
loring” modifications are implemented. These tailoring reac-
tions modify the final structures of NPs by multiple mech-
anisms, including oxidation/reduction, macrocyclization,
halogenation, glycosylation, acylation, phosphorylation, sul-
fation, methylation, and other chemical transformations [7].

While Gram-positive bacteria are without a doubt the
most preeminent group for the isolation of SMs, it is impor-
tant to notice that Gram-negative bacteria also represent an
exciting group for biotechnological prospection. For instance,
many clinically relevant NPs molecules produced by Gram-
negative bacteria can be found in the Minimum Information
about a Biosynthetic Gene cluster (MIBiG) database [8].
MIBiG implements robust and standard annotations for
biosynthetic gene clusters (BGCs) and their molecules. NRPs
and PKs are the most studied group of NPs in bacteria [9,
10]. Both form complex and diverse families of compounds
with therapeutic applicability, such as molecules presenting
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cytotoxic/antitumor, antibacterial, antifungal, antimicrobial,
cholesterol-lowering, immunosuppressant, and other activ-
ities. Briefly, NRPs and PKs are biosynthesized in modules
by enzymes known as nonribosomal peptide synthetases and
polyketide synthases, respectively [10]. Below, we present
recent advances in synthetic biology approaches toward SMs
production in bacteria.

2. Synthetic Biology Application for
the Design of Novel Biosensors

Recent years have been particularly productive for the gener-
ation of tools and approaches to enhance SM synthesis in bac-
teria. Under the umbrella of synthetic biology, many works
have focused on the reconstruction of biosynthetic gene clus-
ters in native or heterologous hosts or on the engineering of
the regulatory network of the host itself, allowing an increas-
ing expression of the genes of interest.These approaches have
been extensively used for both Gram-positive and Gram-
negative bacteria and have been expanded to nonmodel
organisms through the generation of new genetic tools, as
presented below. In terms of engineering or rewiring of the
regulatory networks controlling biosynthetic gene clusters,
there has been a tremendous effort to engineer new inducible
systems in bacteria to use these elements either as control
systems for gene pathway expression or as biosensors tomon-
itor the production rate of the compounds of interest [11]. In
this sense, Figure 1 represents schematically some of themain
approaches developed recently, many of which are discussed
below. The classical approach to enhance the production of a
biosynthetic gene cluster is to place these elements under the
control of a strong regulatory element such as the T7 RNA
polymerase/T7 promoter system [12], which is highly used for
large-scale protein production in Escherichia coli. Using this
approach, Ross and coworkers captured a 34 kb gene cluster
encoding the synthesis of an alterochromide lipopeptide
from Pseudoalteromonas piscicida and expressed it under
the control of a T7 expression system in E. coli [13]. This
approach is particularly useful since the T7-based expression
system allows an orthogonal expression device that can be
introduced into a number of host strains [14], eliminating the
necessity of redesigning native regulatory elements from the
original host. Also, T7-based systems can be easily adapted
for cell-free setups [15], such as the one generated for in vitro
production of SM in Streptomyces [16]. Additionally, the use
of strategies aiming at the assembly of artificial gene clusters
could enhance even more the production of compounds of
interest.This is the case of the AGOS (Artificial Gene Operon
assembly System) presented by Basitta and coworkers (2017).
This strategy allows not only the optimization of the pathway
of interest, but also the introduction of gene diversity that
could lead to the production of SM with different chemical
modifications [17].

When the engineering of a particular host is intended, a
frequent limitation is the lack of efficient genetic tools and
induction systems essential for the success of the circuit of
interest. In this sense, Phelan and coworkers (2017) have
recently reported a set of new vectors for use in Strepto-
myces venezuelae aiming at the enhanced production of SMs

[18]. By the same token, DeLorenzo and colleagues (2017)
performed an extensive characterization of genetic parts
related to fluorescent reporter systems, inducible systems,
and biosensors for utilization in Rhodococcus opacus [19].
In that work, the authors were able to optimize inducible
systems responsive to arabinose (Pbad), anhydrotetracycline
(Ptet), and acetamide (Pacet), while also combining genome
mining and transcriptomic analysis to identify endoge-
nous expression systems responsible for compounds such
as phenol [19]. In fact, genome mining combined with
transcriptomic analysis seems to be a very interesting way
to find novel expression devices for use in synthetic biology
projects in nonmodel organisms, and similar attempts have
been reported for Streptomyces [20, 21]. In a very elegant
report, Li and coworkers (2017) applied a statistical analysis
to investigate the optimal condition for SM production in
Streptomyces coelicolor. After finding the optimal conduc-
tions, the authors combined genome mining and transcrip-
tomic profiles to identify native promoters with expression
dynamics similar to those required to obtain the optimal SM
production. By replacing the inducible system for the nearly
identified native promoters, the authors generated stable
strains producing enhanced amounts of the metabolites of
interest [20]. Another example is presented by Khalid and
collaborators (2017), who used a reassembled terpenoid-
production pathway from Streptomyces initially placed under
the control of the native regulator Fur22 and lately redesigned
with native promoters from the primary metabolism of
the bacterium, resulting in an optimized production strain
[22]. These works thus demonstrate the power of combining
approaches (statistical, induction, and mining) to enhance
SM production in nonmodel organisms.

Once native promoters can be identified by a series
of approaches, achieving the optimal production usually
requires fine-tuning of the expression system used. This
scenario makes the availability of sets of promoters with
varying strengths imperative, allowing thus the construction
of the circuits of interest. With this aim in mind, Yang
and colleagues (2017) used promoter design together with
randommutagenesis and selection to construct novel broad-
host range promoters able to trigger gene expression in E.
coli, Bacillus subtilis, and Saccharomyces cerevisiae [23]. This
elegant work opened a new venue of possibilities to construct
universal synthetic clusters that could be tested in several
Gram-negative and Gram-positive hosts, and even across
life kingdoms. While the work of Yang et al. provided a
limited number of promoter variants analyzed by classical
approaches, Rohlhill et al. (2017) used FluorescenceActivated
Cell Sorting (FACS) coupled to next-generation sequencing
(NGS) technologies to identify enhanced promoter variants
generated by random mutagenesis of the formaldehyde-
inducible promoter of E. coli [24]. This Sort-Seq technology
could expand the existing capabilities to experimentally
address novel promoters for SM-production engineering.
Alternatively, novel computational approaches have been
developed recently that allow in silico design of regulated
promoters in E. coli [25, 26]. In combination with novel
experimental approaches for the construction of combi-
natorial promoters with complex behaviors [27] and with
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Figure 1: Main strategies to engineer novel control systems for SM production/discovery. As a central approach, several works have focused
on the development of novel transcriptional control modules such as those based on the strong T7 RNA polymerase/T7 promoter. On a
different perspective, natural or engineered small metabolite-responsive regulators have been used to control gene expression in response
to a ligand of interest. More sophisticated approaches have focused on combining engineered ligand-binding and DNA-binding domains
to create new expression devices. An entirely novel approach has been the usage of VHH antibody domains to couple ligand recognition to
gene expression elements. Additionally, gene expressionmodulation usingmodified CRISPR/Cas9modules is becomingmore frequent every
day. Finally, posttranslational regulation of protein production has been addressed through either the engineering of novel ligand-specific
riboswitches or temperature responsive regulatory elements (thermometers). A full description of these main cases is presented in the text.
GOI: gene of interest; O: operator, a cis-regulatory element; T7P: T7 promoter; RBS: ribosome binding site.

models of transcriptional-factor/promoter interaction [28],
these technologies could drastically simplify the way novel
expression systems are engineered. However, a very drastic
alternative for single-input promoter induction in bacteria
has been the use of a mutated version of the CRISPR/Cas9
system not able to cleave DNA. In these systems, a nuclease-
deficient Cas9 variant is used to block promoter activity by
expressing a guide-RNA targeting RNAP binding site into the
promoter, or by activating gene expression through the fusion
of an RNAP subunit to Cas9 [29]. In fact, this strategy has
been used to enhance the production of the lipodepsipeptide
WAP-8294A in Lysobacter enzymogenes OH11 [30].

While tremendous progress in the identification/opti-
mization of promoters has been achieved in the past years,
there has also been an intensive search for novel transcrip-
tional factors able to recognize new molecules of interest. As
represented in Figure 1, these approaches have been based
on (i) the design of biosensors by simply implementing an
endogenous/heterologous regulator into a host of interest,
(ii) the random or rational engineering of regulator variants
to change the inducer specificity, or (iii) the reconstruction
of novel transcriptional factors by fusing unrelated protein
modules, generating new-to-nature, fully synthetic inducible
systems. In the first case, Liu and coworkers (2017) used
a Lys-type regulator named ShiR from Corynebacterium

glutamicum to develop a shikimic acid biosensor in this
organism. The use of this new biosensor in combination
with FACS allowed optimizing the expression of the tktA
gene, encoding a transketolase [11]. But while Liu et al.
used a regulator able to recognize the compound of inter-
est, there is currently a deficiency in the availability of
regulators responsible for compounds of interest. In these
cases, an alternative is to engineer by random mutagenesis
or rational design novel regulators with improved response
to a particular compound, and several examples have been
reported over the years [31]. Of particular interest, Kasey
and colleagues (2017) used the crystal structure of the TetR-
type MphR regulator to select five candidate residues for
saturation mutagenesis. Upon selection based on FACS,
the authors were able to identify several regulator variants
including a new pikromycin responsive transcriptional factor
[32]. Again, while this approach allows the improvement in
sensitivity toward suboptimal inducers, it still is restricted
to compounds structurally similar to those recognized by
the transcriptional factor of interest. In light of all the
improvement on the engineering of synthetic regulators with
specific ligand of DNA-binding selectivity, it is important to
notice that the final sensitivity of the circuit is dependent
not only on the sensitivity of the ligand-domain engineered,
but also on the arrangement of DNA-binding sites existing
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in the target promoter [33]. Another radical approach is to
construct novel transcriptional factors from the assembly of
protein modules of interest. In this context, Younger and
collaborators (2017) fused several zinc-finger DNA-binding
modules to a maltose binding protein (MBP) domain to
create novel synthetic regulators responsive to maltose [34].
In this context, this approach could be extended to other
ligands of interest andwould strongly facilitate the generation
of novel inducible regulatory systems with different DNA-
and ligand-binding specificities. In an even more drastic
approach, Chang and colleagues (2017) fused the well-known
DNA-binding domains (from LexA and CadC) to single-
domainVHH(variable domains of camelid heavy chain only)
antibodies to construct both cytosolic and transmembrane
receptors for caffeine [35]. Once more, the potential of such
technologies is tremendous as it allows the coupling of
VHH domains (selected either naturally or from techniques
such as phage display) to construct functional biosensors
for molecules that could be internalized by the cell or that
could be present only on the extracellular medium. While
the progress on the engineering of novel transcriptional
factors has been remarkable, it is important to notice that the
single-cell behavior of the resultant expression system is often
neglected. This is particularly important since many natural
responsive systems can display a graded or bimodal expres-
sion behavior in single cells depending on the arrangement
of the genetic circuit used [36].

Finally, another potential approach to construct tailored
biosensors is to use natural or engineered trans-acting regu-
latory RNAs. In this sense, Jang et al. (2017) used SELEX (Sys-
tematic Evolution of Ligands by EXponential Enrichment)
to construct novel riboswitches responsible for the flavonoid
naringenin. This work is particularly important since the
authors provided a defined aptamer design for optimal
arrangement of the regulatory elements [37]. Using a different
approach, Sen and coworkers (2017) used computational
models of base pairing to construct temperature responsive
trans-regulatory RNAs [38]. This type of regulatory element
is particularly useful since many industrial conditions are
prone to changes in temperature, and these elements could
be used to provide fine-tuning for engineered pathways in
bacteria. Yet, as the authors reported differences between the
predicted and the experimental behaviors of the engineered
structures, there is still room for improvements of the
computational models used. In this sense, development of
efficient in silico algorithms should permit creating functional
RNA thermometers.

3. Metagenomics as a Source of Genetic Parts
for SM Production in Bacteria

Metagenomics allows searching in the huge biochemical
array present in the genomes of microorganisms found in
environmental samples, having access to most of the genetic
material of bacteria that are recalcitrant to cultivation [39].
In this sense, novel functional gene clusters involved in
the production of bioactive compounds can be identified
by directly cloning or sequencing the DNA retrieved from
the microbial community inhabitants of an ecosystem of

interest (Figure 2) [40]. In the activity-based metagenomic
approach, the construction and subsequent screening of
metagenomic libraries allow identification of the targeted
genes encoding the desired activities [41]. Thus, large-insert
libraries, usually constructed in cosmids, fosmids, or BACs
(bacterial artificial chromosomes), would allow the recov-
ery of complete biosynthetic pathways or the functional
expression of large multienzyme clusters (as in the case
of nonribosomal peptide synthetases (NRPS), polyketide
synthases (PKS), and terpene synthases, to name a few) [42].
Normally, PKS type I and NRPS’s pathways are organized in
large assembly operons going from 20 kb to 100 kb in length
[43]. Accordingly, several examples in the literature show that
metagenomics has been successfully applied for the identi-
fication of novel pathways coding for bioactive compounds
in diverse environments [44–49]. Although the functional-
based approach allows obtaining completely original genes in
an independent-sequence way, numerous studies using next-
generation sequencing techniques and subsequent bioinfor-
matic mining of the metagenomes have also achieved novel
gene clusters involved in secondary metabolites production
[50–53].

In this sense, metagenomics has become a proper
methodological tool to improve and expand NPs discovery
from natural sources, contributing with novel genetic parts
(such as structural genes and regulatory sequences), acting
as an important contributor to the expansion of the synthetic
biology toolbox (Figure 2) [54, 55]. Secondary metabolite
genes are organized in clusters or operons leading to a well-
ordered biosynthesis of molecules in multiple sequential
steps by a set of functionally interconnected enzymes [56].
Novel combinations and rewiring of these enzymes per-
forming a huge repertoire of biochemical transformations,
along with proper modulation of catalytic synergy, would
permit the design and generation of innovative complex
bioactive molecules. For instance, Smanski and coauthors
(2014) developed an approach exploiting the modularity of
a refactored Klebsiella oxytoca nitrogen fixation gene cluster
that led to the functional optimization of the operon by
combinatorial design and assembly of 103 biological parts
[57]. Also, a study reported a plug-and-play pathway refactor-
ing workflow using expression cassettes for high-throughput
pathway construction in E. coli and S. cerevisiae [58]. As a
proof of principle, a total of 96 pathways for combinatorial
carotenoid biosynthesis were built successfully [58]. In an
elegant study, Freestone and collaborators (2017) discovered a
novel phosphonoacetic acid by pathway refactoring of a gene
cluster from Streptomyces sp. strain NRRL F-525 using for
expression the production host S. lividans [59]. In parallel,
efforts are conducted for the optimization of biosynthesis of
compounds through the creation of algorithms considering a
plethora of genetic and nongenetic factors [60, 61].

On the other hand, a current significant limitation in
recovery of natural products frommetagenomes is the use of
E. coli as a host, a Gram-negative bacterium that is distant
phylogenetically from microbes that are native producers
of NPs [62]. This way, the strongest producers of diverse
secondary metabolites broadly used in several therapeutic
applications are the Gram-positive bacteria belonging to the
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Figure 2: Metagenomics has become an important tool to improve and expand NP discovery from DNA retrieved from the microbial
community inhabitants of environmental samples. Novel genetic parts (structural genes, regulators, terminators, peptide signals, transporters,
etc.) are provided, which, when rewired, allow the creation of novel complex bioactive molecules.

phylumActinobacteria [63–65]. Restrictions related to codon
usage, transporters, regulatory signals, proper folding of
proteins, and cofactor availability, as well as limited precursor
availability for secondary metabolite synthesis, are some of
the main constraints that restrict E. coli usage as a host for
NPs discovery in metagenomic libraries [66]. However, a
considerable number of efforts involving systems and syn-
thetic biology approaches along with metabolic engineering
are already in progress to transformActinobacteria members
in sophisticated heterologous expression platforms for NP
biosynthesis. For instance, different strains of S. coelicolor
have been genetically engineered to enhance secondary
metabolite expression, involving deletions in endogenous
gene clusters [67], removal of transcriptional factors [68], or
modifications of native promoters [69]. Moreover, systematic
minimization of the genome of the industrial microor-
ganism Streptomyces avermitilis was carried out to remove
nonessential genes, leading to the creation of a versatile
model host for heterologous expression of NPs [70]. In
addition, different genetic tools for genetic manipulation and
genome editing (i.e., the prominent CRISPR/Cas system)
were already developed in Actinobacteria [69, 71–76]. In
conclusion, while there are still several limitations that need
to be overcome to optimize these bacteria as effective host
strains for the screening of metagenome libraries, the work
at present including synthetic biology approaches for chassis
engineering and molecular tools development seems to be
certainly promising.

4. Potential of NPs Originating from
Gram-Negative Bacteria

As stated before, while Gram-positive bacteria have the
highest potential for SM production, this topic has been
extensively reviewed elsewhere [77]. Additionally, one of
the main advantages of using Gram-negative bacteria in
comparison to Gram-positive is the abundant portfolio of
genetic tools currently available, especially those for the
metabolically versatile bacterium Pseudomonas putida [78].
Therefore, we focus here on the remarkable potential of

biosynthetic gene clusters found in Gram-negative bacteria
and on the metabolic engineering of SM production in
these organisms. In this sense, the Burkholderia genus has
a powerful enzymatic machinery for the biosynthesis of
many distinct natural products with clinical interest. Further-
more, after Actinobacteria, Burkholderia presents the second
highest percentage of clusters related to the biosynthesis of
PKS and NRPS molecules [79]. The genus Burkholderia is
cosmopolitan and has been isolated from the most diverse
types of environments, from soil and water to the human
lung [80]. This genus comprises more than 90 species,
according to the German Collection of Microorganisms and
Cell Cultures (DSMZ) database. Considering its potential for
NPs biosynthesis, several studies have demonstrated that the
Burkholderia genera are able to produce important molecules
such as rhizoxin [81], bongkrekic acid [82], thailanstatin
[83], burkholdac [84], spliceostatin [85], thailandamide [86],
bactobolin [87], and gladiolin [88] (Figure 3). Two interesting
examples of NPs isolated from Burkholderia are burkholdacs
and gladiolin. The isolation of the bicyclic depsipeptide
burkholdacs A and B was reported by Biggins (2011) as
histone deacetylase (HDAC) inhibitors. The burkholdacs
were identified as a hybrid NRP/PK; these molecules were
obtained through overexpression of a transcription factor
associated with gene clusters in B. thailandensis E264 [84].
Recently, Song et al. (2017) [88] reported the identification
of gladiolin from B. gladioli, a compound molecularly com-
parable to the unstable antibiotic etnangien [89, 90]. Like
etnangien, gladiolin inhibits RNA polymerase, providing
an antibacterial activity against Mycobacterium tuberculosis.
Moreover, purified gladiolin was tested against ESKAPE
panel of pathogens and showed also a moderate activity
against methicillin-resistant Staphylococcus aureus (MRSA)
[88]. In addition to Burkholderia, Pseudomonas is also a
cosmopolitan microorganism and possesses the ability to
biosynthesize a wide range of specific metabolites, empha-
sizing the production of NRP. Many of these NRPs showed
significant biological activities; the following antimicrobials
can be cited as examples: cichofactin [91], tolaasin [92–95],
sessilin [96, 97], kalimantacin [98–100], obafluorin [101, 102],
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Figure 3: Chemical diversity of NPs identified from Burkholderia.Themain groups of molecules belonging to NRP and PK are shown.

arthrofactin [103], xantholysin [104], poaeamide [105, 106],
and WLIP [107–110]. In this sense, while Gram-negative
bacteria have been primarily used as hosts for the assembly
of novel biosynthetic pathways, still there is a tremendous
potential for the screening and production of novel bioactive
molecules from these organisms.

5. Metabolic Engineering of Gram-Negative
Bacteria for SM Production

Over the past years, several groups have worked on the
metabolic engineering of SM production in bacteria. In this
sense, E. coli is one of the most characterized Gram-negative
bacteria and many strategies have been developed for the
geneticmanipulation and engineering of this organism. Since
the success of the first ever genetically modified E. coli
in 1973, this bacterium became the pioneer in the field of
genetic engineering [111]. One interesting example is the
use of cocultures of E. coli for the producing of flavan-3-
ols, a subclass of flavonoid molecules, which have broad
pharmaceutical applications. This approach produced a 970-
fold improvement when compared to previous attempts, and
it allowed the optimization of diverse factors such as carbon
source, induction temperature, induction point, inoculation

ratio, and strain choice [112]. Also, the heterologous expres-
sion of carotenoid genes from Pantoea ananatis in E. coli
produced great amounts of zeaxanthin [113], a carotenoid
synthesized by some plants, bacteria, and fungi [114], used
against age-relatedmacular degeneration and also in the food
industry [115, 116]. For this, the authors used the tunable
intergenic regions approach to coordinate the expression of
the crtY and crtZ genes [113]. Yet, genes related to the pro-
duction of myrcene, an acyclic monoterpene, are also being
customized in E. coli strains [117]. Myrcene, a monoterpene
compound, has been considered as a starting material for the
synthesis of more complex compounds, and it is utilized in
flavors, fragrances, cosmetics, vitamins, and pharmaceuticals
[118].Through the heterologous expression of themevalonate
(MVA) pathway, the level of myrcene increased 34 times
(58.19 ± 12.13mg/L) [117]. Additionally, recently, the US
Department of Energy has listed the glutamate derivate 2-
pyrrolidone as an important C4 “Top Value-Added Chemical
from Biomass” [119]. 2-Pyrrolidone is a high-value product
considering its great commercial applicability. It can be
used in ring-opening polymerization to produce nylon-4,
an enhanced nylon type fiber with more thermal stability
and hydrophilicity than its precursors. With that in mind, a
group from California has engineered a recombinant E. coli
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strain capable of producing 2-pyrrolidone using glutamate
as a substrate [120]. To achieve that, two ORFs of the
type I PK gene clusters were first identified by in silico
analysis, both predicted to be AMP-dependent synthetases.
Recombinant E. coli expressing a glutamate decarboxylase
and one of the synthetases showed an improvement in the
2-pyrrolidone production, with an efficiency of 25% [121].
Still, a coexpression method to produce trans-resveratrol in
E. coliwas put forward byWang et al. (2017) [122]. Resveratrol
is a secondary metabolite, member of the stilbene family
found in a wide range of plant sources [123], aromatherapy
products, and dietary supplements. Stilbenes are being used
in humans for the prevention of cancer, heart diseases, and
neurodegenerative diseases [123].

In addition to E. coli, P. putida has also been quite used
in metabolic engineering. P. putida is a Gram-negative bac-
terium that metabolizes a wide range of natural and synthetic
organic compounds, and this competence prompted many
studies to use P. putida as a biocatalytic agent in the industrial
and environmental area [124, 125]. Considering that, Simm
et al. (2016) published a study in which they transformed
P. putida with two genes from E. coli, encoding active
GGDEF and EAL domains, which are related to c-di-GMP
production and degradation, respectively [126]. The P. putida
mutants were able to control biofilm formation according to
specific catalytic needs, for example, for biodegradation of the
environmental pollutant 1-chlorobutane.The authors showed
that, by adding cyclohexanone to the culture medium, the
secondary metabolite derived from haloalkane increased
twice in the P. putida biofilm forming cells when compared
to the planktonic cells forms [127].

6. Future Perspectives

As presented here, bacteria from several groups have the gene
clusters for the production of secondary metabolites with
potential applications in biomedicine. With the advance of
postgenomic tools, there has been tremendous progress in
the development of novel technologies (i) to engineer natural
produces of bioactive compounds to increase productivity,
(ii) to reassemble novel biosynthetic pathways into native
or heterologous hosts, (iii) to mine novel clusters from
metagenomes, and (iv) tomonitor/discover novelmetabolites
using biosensors. It is important to notice that, with the
advent of synthetic biology, a number of computational tools
and approaches have emerged, which allowed the design of
novel regulatory elements and pathways for SM production.
It is reasonable to think that using strong computational tools
more and more should become routine in the field, and this
should have a remarkable impact in the area by allowing a
more accurate design or novel pathways, speeding up the
process of SM discovery. Additionally, novel genetic tools are
continually being produced, and their utilization in bacterial
species lacking an efficient genetic toolbox should allow
the exploitation of novel microorganisms and develop their
full potential. By the same token, metagenomic approaches
hold potential to provide novel genetic parts either for
the reprogramming of bacteria for SM production or as
modules for the assembly of synthetic gene clusters, and these

methodologies should be further addressed in the future.
Finally, all the aforementioned improvements once coupled
with high-throughput screening and engineering protocols
should permit a strong increase in the SM discovery rate,
allowing the identification of novel bioactive molecules.
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[124] E. Mart́ınez-Garćıa, I. Benedetti, A. Hueso, and V. de Lorenzo,
“Mining environmental plasmids for synthetic biology parts
and devices,” Microbiology Spectrum, vol. 3, no. 1, Article ID
PLAS-0033-2014, 2015.

[125] V. A. P. Martins Dos Santos, S. Heim, E. R. B. Moore, M. Strätz,
and K. N. Timmis, “Insights into the genomic basis of niche
specificity of Pseudomonas putida KT2440,” Environmental
Microbiology, vol. 6, no. 12, pp. 1264–1286, 2004.

[126] R. Simm, M. Morr, A. Kader, M. Nimtz, and U. Römling,
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