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Background. Understanding the functions of different brain areas has represented a major endeavor of neurosciences. Historically,
brain functions have been associated with specific cortical brain areas; however, modern neuroimaging developments suggest
cognitive functions are associated to networks rather than to areas. Objectives. The purpose of this paper was to analyze the
connectivity of Brodmann area (BA) 37 (posterior, inferior, and temporal/fusiform gyrus) in relation to (1) language and (2)
visual processing. Methods. Two meta-analyses were initially conducted (first level analysis). The first one was intended to assess
the language network in which BA37 is involved. The second one was intended to assess the visual perception network. A third
meta-analysis (second level analysis) was then performed to assess contrasts and convergence between the two cognitive domains
(language and visual perception).TheDataBase of Brainmap was used. Results.Our results support the role of BA37 in language but
bymeans of a distinct network from the network that supports its secondmost important function: visual perception.Conclusion. It
was concluded that left BA37 is a common node of two distinct networks—visual recognition (perception) and semantic language
functions.

1. Introduction

Understanding the specific function of different brain areas
has represented one of themajor challenges of neurosciences.
Based on the correlation between neurological deficits and
cerebral postmortem findings, the nineteen-century neuro-
anatomists developed the brain function localization model.
Brodmann gave a strong support to this model in 1909 [1]
by describing 52 pairs of brain cortical areas characterized
by different laminar organization. Despite the subsequent
development of more detailed cortical maps such as the map
published by Economo andKoskinas [2], the so-called “Brod-
mann areas” (BA) have become broadly used in contempo-
rary neuroanatomy providing a topographical substrate to
specific brain functions.

Traditional models of language (e.g., [3–5]) consider lan-
guage in terms of specific brain areas (such as Broca’s and
Wernicke’s area) devoted to specific functions (e.g., language
production and language understanding); contemporary

neuroscience, however, emphasizes the idea of brain systems
including the traditional language areas as well as other areas
which could not be exclusively associated to language but are
involved in language processing (e.g., [6]), such as BA37.

During the last decades the concept of “connectome” has
become particularly important in understanding the brain
systems of interconnections [7, 8]. The term “connectome”
was introduced in 2005 to refer to the comprehensive descrip-
tion of the brain connections among the different areas pro-
vided by cortical parcellation maps [9]. Parcellation maps
may vary in number of discrete independent areas (e.g., by
gyri, cytoarchitectonic criteria as proposed by Brodmann [1]
orC.Vogt andO.Vogt [10]). As a result the connectome dimen-
sionmay also vary.Thebrain connectomemay be represented
as a matrix [9], as a complex graph of nodes and edges [11],
or as a collection of fiber tracts derived from diffusion tensor
imaging tractography [12]. These models parcel the brain in
a new manner. An intricate collection of volumes, virtual
shapes, and geometries arises, giving ground to paths for data
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flow through different processing centers. Here resides the
importance of describing brain connectivity.

Several BA have been extensively studied while others
have received less attention. Language areas are probably the
most frequently analyzed. Language production is related to
the activity of BA44 andBA45, also known as Broca’s area [13–
21]. Of note is that whereas Broca’s area is a well delimited
anatomical region encompassing the pars triangularis and
opercularis of the left inferior frontal gyrus, the extension
and limits of the receptive language area or Wernicke’s area
are not so well defined. Usually it is accepted that Wernicke’s
area includes BA22 and probably BA21 [22, 23]. However,
several neuroimaging studies have reported left BA37 activa-
tion associated with different language tasks (see [24]). Dif-
ferent reports support the involvement of BA37 in semantic
categorization, that is, using a particular word to refer to
a collection of objects (i.e., many different objects can be
named with the single word “chair,” because they have certain
commonality) (e.g., [5, 25]). Finding and producing words
(word retrieval and word generation) are potential functions
of BA37 considering that the destruction of this area is
associated with word selection anomia [16, 20]; some studies
indeed have found that word search results in an increased
activity in this area [26, 27]. Moreover, the involvement of
BA37 in naming has been well documented [21, 28–34].

The functions of this area are not limited to oral language
but extend to written language as well. The activation of
BA37 has been reported during reading, taking into account
that left occipital-temporal lesions are strongly associated
with alexia [35–39]. The function of linking orthography
to phonology reported by Hashimoto and Sakai [40] con-
sequently points to the seemingly core function of BA37
area: associating visual information (orthography—written
language—or whatever visual representation) with auditory
linguistic information (phonology or spoken words). There-
fore, BA37 has a visual perceptual function as well as an
auditory linguistic function. Despite all these oral andwritten
language functions, it is not a pure language area. It is also
involved in visual processing [41, 42] as part of the ventral
stream, or what system, which also includes the occipital
striate (BA17) and prestriate (BA18 and BA19) areas.

The anatomical and clinical evidence of the visual and
auditory processes mediated by BA37 suggest that this area
does not work in isolation, but rather it may be part of multi-
ple neural networks [43, 44]. To improve our understanding
on how this region interacts with other brain regions we used
a recent application of neuroimaging methods to develop a
connectivitymodel of this brain area. Knowing these cerebral
interactions has the potential to significantly advance our
understanding of brain organization of healthy and deviant
language and visual processing. The association between dis-
crete cortical areas and specific cognitive functions has been
useful in explaining clinical syndromes and in understanding
brain organization underlying cognitive processes. However,
the observation that most of the BA, including BA37, seems
to participate in more than one specific function suggests a
need for further explanatory models. That is why modern
neuroimaging studies have tackled this issue focusing on
linking function to networks, rather than to specific brain

areas. Noteworthy, BA37 has not overt anatomical limits.The
posterior segment of the fusiform gyrus and the inferior and
medial temporal gyri composes it.

Currently, there are several techniques that can demon-
strate brain networks. These techniques are grouped under
the term “brain connectivity.” Fiber tractography, based on
diffusion tensor imaging, demonstrates structural connectiv-
ity or direct connection of brain areas through associative
tracts. Remote temporal correlation of the BOLD-signal
history of a voxel or cluster, based on resting state sequences,
demonstrates the functional connectivity through direct or
indirect pathways.

Functional connectivity has been shown to be dynamic
as it changes from task to task [45, 46] while structural
connectivity is rather stable. Resting state-based functional
connectivity represents a powerful tool to study and char-
acterize different networks, but it has the limitation that it
reflects the brain in a passive status and hinders important
networks.

Recently, an alternative approach to study the brain
connectivity has been proposed by Robinson et al. [47],meta-
analytic connectivity modeling, or MACM. MACM allows
examining task independent coactivation patterns of a spe-
cific anatomically defined brain region. MACM is based on
automatic meta-analysis done by pooling coactivation pat-
terns. The technique takes advantage of the Brainmap.org’s
repository of functional MRI studies [48, 49] and of a special
software (Sleuth) provided by the same group, to find, filter,
organize, plot, and export the peak coordinates for further
statistical analysis. Sleuth provides a list of foci, in Talairach
or MNI coordinates, each one representing the center of
mass of a cluster of activation. The method takes the region
of interest (for instance, a given Brodmann area), makes it
the independent variable, and interrogates the database for
studies showing activation of the chosen target. The query is
easily filtered with different conditions (such as age, normal
versus patients, type of paradigm, and domain of cognition).
By pooling the data with these conditions, the tool provides
a set of coactivations that can be statistically analyzed for
significant commonality. As a final step, Activation Like-
lihood Estimation (ALE) [50, 51] can be performed using
GingerALE; this is another software that is also provided by
Brainmap; it generates the probability of an event to occur at
voxel level across the studies. Areas of coactivation will show
a network related to the function and domains selected as
filter criteria.Thenature of the analysis that is performedwith
hundreds to thousands of subjects signifies an improvement
in generalizability and power but, overall, allows looking
into global brain connectivity when the brain is at work, in
contrast with functional connectivity that is mostly explored
having the subject at rest (as in resting-state fMRI). Effective
connectivity, another popular technique, may also look into
brain connectivity at work, but it looks into specific task base
related networks.

The aim of this work is to characterize the networks of
language and visual perception in which BA37 is involved in
normal samples, utilizing MACM. We aim to find possible
commonality, divergences with findings from clinical, ana-
tomical, and histological previously established knowledge.
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Although previous studies have indirectly analyzed in neu-
rological samples the functionality of BA37 using functional
MRI (fMRI) and diffusion tensor imaging (DTI) [52–54]
their results have limited generalizability due to the method-
ologies (e.g., task-specific fMRI which is not generalizable
and DTI which is influenced by deeply myelinated regions
and fails where fibers cross) being employed [47]. Thus,
strong empirical evidence is lacking as to how BA37 is func-
tionally connected to the rest of the brain, despite the impor-
tance of this multimodal brain area in visual and cognitive
processes. Recently Caspers et al. [55] using a meta-analytic
connectivity modeling based on the Brainmap database
observed that the fusiform gyrus is involved in different
cognitive tasks, including object recognition, visual language
perception, or visual attention.

It was hypothesized that BA37 represents an important
cortical hub involving either language or visual processing
depending on the specific cognitive computational load.

2. Materials and Methods

TheDataBase of Brainmap (http://brainmap.org/) [48, 49, 56]
was accessed on October 10, 2013, utilizing Sleuth 2. Sleuth is
the software provided by Brainmap to query its database. Two
meta-analyses were initially conducted (first level analysis).
The first meta-analysis was intended to assess the language
network inwhich BA37 is involved.The secondmeta-analysis
was intended to assess the visual perception network in
which BA37 is involved. A third meta-analysis (second level
analysis) was then performed to assess contrasts and con-
vergence between the two cognitive domains (language and
visual perception). The anatomical localizations of the meta-
analysis foci have been taken verbatim from the GingerALE
output. All the studies were full brain coverage; a priori based
studies were excluded. In an effort to avoid the effect of
uncontrolled variables, clinical populations were excluded
and only normal subjects entered in our study.

Noteworthy, BA37, or Brodmann’s area 37, is defined
internally in the application based on the MNI template
(we did not use Talairach demon as a separate application).
Therefore, the area of activation is provided automatically by
the tool. All Brodmann’s atlases are schematic segmentations
of anatomical templates that are necessarily an approximate
estimation of functional boundaries. Of note is the fact that
BA37, as the vast majority of Brodmann’s areas, does not have
overt anatomical boundaries.

2.1. First Level Analysis

2.1.1. Query 1: Language. The search conditions were (1) studies
reporting BA37 activation; (2) studies using fMRI; (3) con-
text: normal subjects; (4) activations: activation only; (5) hand-
edness: right-handed subjects; (6) age 20–60 years; (7) domain:
cognition; and (8) subdomain: language. Twenty papers with
28 suitable experiments with a total of 403 subjects and
413 foci were obtained (Table 1). Coactivation coordinates in
MNI space were exported to text files.

ALE meta-analysis was then performed utilizing Ginger-
ALE. ALE maps were thresholded at 𝑃 < 0.01 corrected for
multiple comparisons and false discovery rate. Only clusters

of 200 ormore cubicmmwere accepted as valid clusters. ALE
results were overlaid onto an anatomical template suitable for
MNI coordinates, also provided by Brainmap.org. For this
purpose we utilized the Multi-Image Analysis GUI (Mango)
(http://ric.uthscsa.edu/mango/) [90], Mosaics of 5 × 7 insets
of transversal fusioned images were generated, utilizing a
plugin of the same tool, selecting every other image, and
starting on image number 10, and exported to a 2D jpg image.

2.1.2. Query 2: Visual Perception. Search conditions were the
same used in Study 1, except that instead of subdomain lan-
guage, subdomain visual perception was entered. Thirteen
papers with 20 suitable experiments, 130 subjects, and 185 loci
were obtained (Table 2).

Subsequently, ALEmeta-analysis was performed utilizing
the same technique and settings described for the first meta-
analysis.

2.2. Second Level Analysis. Contrast analysis of the two
datasets was performed utilizing theGingerALE tool. For this
purpose Language and Visual perception thresholded data
imageswere uploaded into the software asData Set 1 andData
Set 2, respectively.The foci coordinates of both domains were
pooled in a single text file. Results were thresholded at 0.01
corrected formultiple comparisonswith FalseDiscovery Rate
method. To correct for study sizes [91], GingerALE creates
simulated data to find after many permutations of possible
subtraction a voxelwise𝑃 value image, to showwhere the true
data’s values sit on the distribution of values in that voxel.
ALE values are converted to𝑍 scores to show the significance
of the difference. Three outputs were obtained: (1) visual
perception: perception contrast subtracted from Language
contrast; (2) language contrast subtracted from visual percep-
tion contrast; and (3) conjunction of activations map.

Thefirst output shows statistically significant activation in
the network of language not present in the visual perception
one. The second output shows the reverse, and the conjunc-
tion map shows areas in common between the networks.

3. Results

3.1. BA37 in Language. ALE score varied between 1.809E-
20 and 0.0487 (maximum). For the threshold selected the
minimum ALE value included was 0.0146. Table 3 presents
the main loci of BA37—connectivity related to language, by
MACM. Twelve different clusters were found, 6 related to the
left hemisphere and 6 to the right hemisphere. Significantly
higher connectivity values, as represented by higher ALE
scores, are located in the left hemisphere. BA37 presents sig-
nificant connection with left inferior temporal lobe (BA20);
left prefrontal cortex (BA9, BA46, BA45, and BA47), insula,
bilateral precuneus (see limitations ahead), cerebellum, and
occipital areas. Figure 1 shows the areas of connectivity in a
brain template.

3.2. BA37 in Visual Perception Functions. Table 4 and Fig-
ure 2 present the main loci of brain connectivity of BA37
by MACM for the second meta-analysis. Sixteen different
clusters were found, 8 related to the left hemisphere and 8
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Table 1: Primary studies of language-related paradigms included in the first meta-analysis.

Publication Paradigm 𝑛 Foci
Binder et al., 1996 [57] Passive listening words 12 6

Booth et al., 2002 [58, 59] Auditory rhyming 13 7
Visual meaning-rhyming 13 3

Palmer et al., 2001 [60] Overtly or covertly generate words 10 26
Crosson et al., 1999 [61] Repetition emotional neutral words 17 7

Devlin et al., 2003 [62] Semantic + phonological 12 26
Phonological > semantic 12 34

van Turennout et al., 2003 [63] Naming novel, repeated objects 10 11
Binder et al., 2003 [64] Stimuli were words or nonwords 24 26
Booth et al., 2002 [58, 59] Visual words spelling 13 9
Gold and Buckner, 2002 [65] Semantic decision on words 24 3
Mechelli et al., 2006 [66] Naming black and white objects 12 22
Saccuman et al., 2006 [67] Word class-semantic reference 13 18
Pihlajamäki et al., 2000 [68] Category fluency 14 9
Jobard et al., 2007 [69] Word reading 10 12

Damasio et al., 2001 [70] Action tool word retrieval 20 1
Concrete entities 20 5

Simmons et al., 2008 [71] Word association 10 32
Property generation 10 26

Davis et al., 2004 [72] All words versus letter strings 12 9
Verbs versus noun 12 1

Liljeström et al., 2008 [73]
Action naming 15 30

Object naming action images 15 24
Object naming simple images 15 12

Chee et al., 2003 [74] Low and high frequency 12 7
Low and high frequency 12 10

Sabsevitz et al., 2005 [75] Concrete > abstract nouns 28 26
Bedny andThompson-Schill, 2006 [76] Nonwords > words 13 11

Table 2: Primary studies of visual perception paradigms included in the second meta-analysis.

Publication Paradigm 𝑛 Foci
Hasson et al., 2002 [77] Faces > letters and buildings 13 4
Vaidya et al., 2002 [78] Pictures versus words 8 2
Vandenberghe et al., 2001 [79] Spatial shifting 12 17
Shen et al., 1999 [80] Spatial recognition > visual recognition 9 12
Kesler-West et al., 2001 [81] Facial emotion processing 21 17
Vingerhoets et al., 2002 [82] Mental rotation 12 3
Vanrie et al., 2002 [83] Mental rotation 6 6
Wraga et al., 2005 [84] Imagined rotations 11 7

Giesbrecht et al., 2003 [85]
Foveal, location spatial attention 10 12

Peripheral, color 10 12
Peripheral, color > location 10 4

Dolan et al., 1996 [86] Matching faces 8 4

Vuilleumier et al., 2001 [87] Attention, faces > houses 12 3
Attention, houses > faces 12 7

Creem-Regehr and Lee, 2005 [88]

Representation of objects 12 10
Shapes > scrambled shapes 12 1
Tools, imagined grasping 12 15

Imagined grasping 12 13

Blonder et al., 2004 [89]
Brain responses to faces 14 10

Images versus human faces 14 14
Dog faces versus house 14 12
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Table 3: Main loci of brain connectivity of BA37 in language tasks by meta-analytic connectivity modeling (MACM).

Region (BA) 𝑥 𝑦 𝑧 ALE Volume (mm3)
Cluster number 1
L fusiform gyrus (37) −46 −58 −14 0.048781

9,568L subgyral grey matter (37) −54 −48 −4 0.03231
L occipital-temporal gyrus (37) −48 −70 −2 0.028959
L inferior temporal lobe (20) −60 −52 −14 0.017783
Cluster number 2
L inferior frontal gyrus (9) −42 8 28 0.041418

7,552

L middle frontal gyrus (9) −48 20 24 0.028233
L middle frontal gyrus (46) −44 28 18 0.027926
L inferior frontal gyrus (46) −46 38 8 0.022982
L insula (13) −46 14 14 0.022624
L inferior frontal gyrus (45) −46 34 −4 0.019394
L middle frontal gyrus (47) −46 36 −12 0.016915
Cluster number 3
L middle frontal gyrus (32) −4 14 48 0.027447 2,184
L middle frontal gyrus (6) −2 8 60 0.023249
Cluster number 4
L precuneus (19) −30 −64 48 0.033621 1,872
Cluster number 5
L inferior frontal gyrus (47) −34 28 −6 0.023995 1,336
Cluster number 6
R precuneus (7) 30 −66 44 0.025861 1,304
Cluster number 7
R fusiform gyrus (37) 46 −60 −18 0.01576 1,168
Cluster number 8
R occipital temporal gyrus (37) 52 −68 2 0.026111 824
Cluster number 9
R posterior lobe of the
cerebellum and pyramid of
vermix

30 −68 −32 0.020669 424

Cluster number 10
R middle occipital gyrus (18) 34 −86 8 0.022077 400
Cluster number 11
R anterior lobe 40 −58 −30 0.020532 288
Cluster number 12
L inferior frontal gyrus −52 20 −2 0.017183 240

to the right hemisphere. The main connections are within
left and right BA37 and with the left visual association area
(BA19). Significant connections are also observed with the
cingulate gyrus (BA30), the medial aspects of the temporal
lobe (parahippocampal area, BA36), and premotor cortex
(BA6). A tiny cluster in right BA47 is also obtained. The
connection found with the right anterior lobe of the cere-
bellum and culmen may be actually an artifact produced by
the signal smoothing. The fusiform gyrus is adjacent to the
culmen of the cerebellum, only separated by the tentorium.
Since the clusters are the result of 3D spatial smoothing of
the peaks of activation a “spread” to this structure should be

expected.Maps of activationwere automatically smoothed by
the processing software.The analysis of the fused image seems
to support this view (Figure 2).

3.3. Contrast Analysis. The subtraction of the language con-
trast minus the visual perception contrast (areas network
specific for language involvement of BA37) produced two
significant clusters. The largest cluster was localized in the
lateral aspect of the left BA37 (center of mass MNI: −54, −45,
0); the smaller was localized in the left inferior frontal gyrus
(center of mass MNI: −44, 17, 22) (BA45). The contrast of the
visual perception contrast minus the language contrast (areas
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Table 4: Main loci of brain connectivity of BA37 in visual perceptual tasks by meta-analytic connectivity modeling (MACM).

Region (BA) 𝑥 𝑦 𝑧 ALE Volume (mm3)
Cluster number 1
L fusiform gyrus (37) −42 −54 −18 0.043706

5,792L occipital fusiform gyrus (19) −42 −70 −6 0.025872
L Ffsiform gyrus (37) −56 −52 −16 0.013379
Cluster number 2
R ant lobe cerebellum culmen 40 −50 −20 0.031403 2,176
Cluster number 3
R occipital temporal lobe (37) 46 −66 −4 0.023151 1,232
Cluster number 4
L parahippocampal gyrus (36) −24 −46 −8 0.024606 1,000
Cluster number 5
L posterior cingulate gyrus (30) −14 −58 18 0.031237 968
Cluster number 6
R posterior cingulate gyrus (30) 16 −54 16 0.028388 856
Cluster number 7
R parahippocampal gyrus (36) 24 −42 −10 0.023156 688
Cluster number 8
L medial frontal gyrus (6) −8 0 56 0.017237 616
Cluster number 9
L precentral gyrus (4) −52 0 28 0.016724 512
Cluster number 10
L occipital fusiform gyrus (19) −26 −70 −10 0.022296 480
Cluster number 11
L cuneus (19) −30 −86 34 0.028235 440
Cluster number 12
R occipital fusiform (19) 26 −68 −10 0.021505 416
Cluster number 13
R cuneus (19) 32 −82 38 0.019212 400
R middle occipital gyrus (19) 36 −80 28 0.013487
Cluster number 14
L insula (13) −38 14 6 0.016739 376
Cluster number 15
R inferior frontal lobe (47) 30 28 −16 0.015931 240
Cluster number 16
R precuneus (7) 26 −56 44 0.01558

network-specific for visuospatial involvement of BA37) did
not render any statistically significant differences (activation).
The conjunction analysis revealed two clusters of common-
ality. The first centered at −45, −58, and 13, encompassing
left BA37, BA19, and BA20 corresponding to the inferior
temporal gyrus, middle and inferior occipital gyrus, and
fusiform gyrus.The second cluster is centered atMNI 41,−49,
and −20, encompassing right BA37 and BA20, corresponding
to right fusiform gyrus. Both clusters list also the culmen of
cerebellum that should be explained under the same bases
alreadymentioned. Figure 3 shows the statistically significant
areas of commonality between the two domains.

4. Discussion

Thepurpose of the study was to analyze the brain networks of
language and visual perception in which BA37 is involved in
normal subjects. Our results may advance the understanding
of the brain language systems as they suggest potential
convergences with previously established neurological and
neuropsychological findings.

The contribution of the paper revolves around the issue of
understanding brain connectivity. Brain connectivity is still
an evolving field, in which many questions are still unsolved.
For example we need to understand why different techniques
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Figure 1: Language-related BA37’s network. ALE results overlaid on
an axial-T1 MRI MNI-template. Left hemisphere appears in the left
side of the insets (neurological convention). ALE scores are color
coded from red (lower scores) to white (higher scores). In addition
to the left BA37 (middle and inferior temporal gyri in the convexity
and fusiform gyrus in the basal aspect) that has the highest intensity,
the following regions appear “activated”: left inferior frontal gyrus;
bilateral superior and inferior parietal lobule (intraparietal sulcus);
left SMA and posterior lobe of the cerebellum. There is also small
activation of the right fusiform gyrus and right temporooccipital
areas.

Figure 2: Visuospatial-related BA37’s network. Same conventions
and setting as described previously. The highest ALE scores are
located on the left and right fusiform gyri (3–5 insets in fourth
row) and parahippocampal and posterior cingulate gyrus (medial
posterior activation in first two columns). Smaller and less intense
activations appear in the left lateral premotor area, left SMA, left
insula, and left inferior frontal gyrus.The intraparietal sulci activate
bilaterally.

assessing brain connectivity yield distinct results. Structural
connectivity and functional connectivity may show some
similarities but also some discordant findings. A different
perspective may shed lights to understand brain connectivity
discordance, particularly if the new method explores the
brain at work.

BA37 indeed is a complex and relatively large brain area,
not only from the clinical (e.g., [5, 25]) but also from the func-
tional perspective (e.g., [55, 92]), has been demonstrated to

Figure 3: Conjunction analysis of BA37—language and visuospatial
networks. Brain anatomical template and orientation are the same
as priorly described. Intensities correspond to ALE scores. Color
coding range from red (ALE score 0.01) to white (ALEmax = 0.039).
Main activations aremostly located in the fusiformgyri and adjacent
lateral areas of the left side. A small cluster is observed in the left
SMA (inset 5 in first row). This cluster however did not pass the
volume threshold (vol = 48 cubic mm).

be involved in different cognitive abilities, including language
and visual perception.

We have demonstrated two different connectivity net-
works related to BA37 utilizing the meta-analytic connec-
tivity model. As expected these two networks are domain
specific—one involving language and the second one includ-
ing visual perception tasks. Noteworthy, our results are quite
coincidental with those results reported by Caspers et al. [55].

4.1. Language. The differences in connectivity between these
two domains deserve further analysis. The greatest connec-
tivity of BA37 with BA20 in language tasks is not surprising.
Functional neuroimaging studies suggest that BA20 partici-
pates in different language-related activities, such as lexical-
semantic processing, metaphor comprehension, language
comprehension and production, and selective attention to
speech (see [24]). On the other handBA37 is also significantly
connected to the left prefrontal cortex (BA9 and BA46),
which is involved in language control, verbal fluency, lan-
guage generation, and verbal reasoning; this is the specific
prefrontal area usually damaged in cases of transcortical
motor (or dynamic) aphasia [20, 93]. So, left BA37 seemingly
participates in a broader language system, related to complex
language processing and understanding.

The significant connection of BA37 with the left insula
is intriguing, even though it has been pointed out that the
insula may have significant language and speech functions
[94–97]. Interestingly, BA37 is connected to BA45 and BA47,
areas that have been included in the so-called “Broca’s
complex” [98]. Another interesting connection is with the
cingulate gyrus (BA32) involved in language initiative [16],
as its pathology results in decreased spontaneous speech and
mutism [99]. The connection to BA6 (the largest BA) is not
surprising either; it has been established that BA6 participates
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in diverse language functions, including language processing,
language switching, speech perception, phonological pro-
cessing, object naming, word retrieval, and lexical decision
on words and pseudowords (see [24]). Considering the
involvement of BA37 in visual perception the connections
with BA19 (visual association area) seem understandable;
it emphasizes that BA37 has not only language but also
visuoperceptual functions.The connection to left BA7 points
to an involvement of the circuitry in verbal working memory
[100]. Strikingly, BA37 does not seem to be directly connected
with BA44, BA21, and BA22—the most classical expressive
and receptive language areas. However, it is prominently
connected to BA 45 (inferior frontal gyrus, pars triangularis,
currently regarded as the anterior segment of Broca’s area)
and BA20 (inferior temporal lobe) which has an evident
participation in language understanding and processing:
lexicosemantic analysis, metaphor comprehension, language
comprehension and production, and selective attention to
speech [24].

It has to be noted that quite diverse language tests
were used in the different studies entered in our meta-
analysis, including language production (e.g., overtly or
covertly generate words, category fluency), naming (e.g.,
naming objects, action naming), language understanding
(e.g., semantic decision on words, word association), repeti-
tion (e.g., repetition emotional neutral words), and reading
(e.g., word reading). This heterogeneity in the verbal tasks
that were used can partially account for the extended net of
brain interconnections that was found. However, regardless
of the heterogeneity, the core language function of BA37
seemingly refers to language semantics [101].

Noteworthy, for language tasks most of the activation
clusterswere located in the left hemisphere, whereas for visual
perceptual tasks a more bilateral—particularly posterior—
activation was observed. This of course is congruent with
left language lateralization, whereas visual perception has a
more bilateral organization; supposedly the posterior right
hemisphere has a crucial role in visual recognition, whereas
for visual naming posterior left hemisphere areas are involved
[102–106].

The right hemisphere connections are of special interest.
First, both left and right BA37 are interconnected, and hence
some coordinated activity between both areas has to be
assumed. But also a significant connection is found with
secondary visual areas of the right hemisphere, emphasizing
the involvement of BA37 in visual-perceptual functions. The
connection of BA37 with the right parietal precuneus (BA7)
is suggestive of some involvement in spatial orientation
and visual attention, considering that the pathology in this
cortical area is usually associated with significant spatial
orientation disturbances and left-hemispatial neglect [5, 102,
107].

4.2. Visual Perception. With respect to the visual perception
network, the connectivity of BA37 with the parahippocampal
gyrus suggests some involvement in memory processing as
indeed has been previously reported [108, 109]. Noteworthy,
five out of the 16 clusters involve the occipital lobe, emphasiz-
ing the participation of BA37 in visual-perceptual processing

circuits. Cluster number 14 points out that BA37 maintains
significant connection with the insular region related to
a diversity of functions. fMRI studies have demonstrated
that the insula participates not only in motor and sensory
processes, but also in pain, temperature, touch, olfaction,
taste, language, memory, emotion, and so forth (see [24]).

In this second meta-analysis (visual-spatial), two signifi-
cant connections with the frontal lobe were found: with the
left medial frontal gyrus (BA6) and with the right inferior
frontal lobe (BA47). Even though the specific functions
of right BA47 are not sufficiently clear yet, it has been
reported that during behavioral inhibition, enhanced activa-
tions are observed in the right orbitofrontal cortex (BA47)
[110]. Another interesting connection with right parietal
precuneus (BA7) as mentioned above, departing from clin-
ical observations it can be assumed that the right parietal
precuneus (BA7) is involved in visuoconstructive abilities,
spatial representation, and visual-spatial attention [5, 102,
107]; connections between right BA7 and BA37 emphasize
the involvement of BA37 (right) in visuoconstructive abilities,
such as drawing and spatial attention.

4.3. Common Connection. It is noteworthy to mention that
in spite of BA37 being a rather extensive area, the functional
segregation of at least the two domains explored here does
not seem to be related to any existent local cortical landmark.
Indeed, two of the most significant peaks of the first clusters
in both ALE analyses are in close proximity. The first clusters
(L-fusiform gyrus) have a Euclidian distance of 6.9mm, and
the second (L-occipital fusiform/left occipitotemporal gyrus)
−7.2mm. Moreover, the conjunction analysis demonstrated
the overlapping of the areas, pointing to a true multimodal
function of the BA37. This is not surprising considering that
BA37 seems to have two subregions separated by histological
heterogeneity that could explain and hold functional mul-
timodality. BA37’s peripheral parts are transitional between
neocortex and allocortex, similar to the bordering auditory
and visual areas. On the other hand, BA37’s central part (the
“nucleus”) is typical neocortex, the most recent evolved of
the human cortex [111]. Linguistic categorization of objects
(naming) resides in this new type of cortex (i.e., linguistic
function) [112].

The connectivity of BA37 with BA45 (Pars triangularis)
probably points to a ventral pathway of language, as BA45
has been found to serve as a rostral terminus to the termed
extreme capsule pathway in DTI studies [113]. This pathway
is coincidental with the path of the inferior occipitofrontal
fasciculus that has been found to produce semantic para-
phasias when disrupted with intraoperatory deep electrical
pulses [114]. Interestingly, linguistic inferences alone recruit
left perisylvian regions of linguistic competence, including
BA37, 44, and 45 [44] as well as frontal regions (BA6, 9, 46,
and 47); this finding suggests that the semantic aspects of
linguistic processingmediated by BA37 is relevant in complex
thought processes. The specific connectivity between BA37
and 46 (dorsolateral prefrontal cortex) ismost likely related to
executive functions (i.e., executive control through language)
including abstraction and complex thinking.
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The participation of BA37 in both language and visual
perceptual abilities supports the multimodality of this area.
As a matter of fact, a segregation of different segments of the
fusiform gyrus has been observed. Caspers et al. [55] refer
to two distinct cytoarchitectonic areas, FG1 and FG2; FG1
appears as a transitional area between early and higher visual
cortex and FG2 as a higher-order one. FG2 is furthermore
lateralized and is associated to the visual language processing
in the left hemisphere. It has also been suggested a fusiform
face area (FFA) in the right hemisphere [115] and a visual
word-form area (VWFA) in the left [116], indicating the
multimodality of BA37. Interestingly, reading systematically
activates the left lateral occipitotemporal sulcus, frequently
referred to as VWFA. Furthermore, this observation is repro-
ducible across individuals/scripts, specific to reading-specific
processes, and partially selective for written strings relative
to other categories (e.g., line drawings); it is also well known
that its lesion causes pure alexia (inability to recognize words)
[117].

It has to be considered the possibility that the activated
sites in BA37 in language tasks were not identical with those
activated in visual processing tasks; BA37 is a relatively large
area, and in the contrast of language minus visual perception
residual clusters in left BA37were found. However, seemingly
VWFA is included in the clusters, suggesting that BA37
clearly participates in language-visual perception associa-
tions.

Damage in BA37 has been traditionally accepted to be
associated with significant word-finding difficulties (anomia)
(e.g., [20, 118–120]), impaired naming of pictures, and rela-
tively preserved word comprehension [120, 121]. This word-
finding defect associated with temporal-occipital damage has
been further proposed to correspond to a particular aphasia
syndrome named anomic aphasia [5], nominal aphasia [122],
or amnesic aphasia [20] or sometimes simply regarded as
a subtype of what is termed transcortical (or extrasylvian)
sensory aphasia [14, 16, 123].

In anomic (or nominal or amnesic) aphasia, semantic
paraphasias are abundant. As a matter of fact, the damage
in this area results in the highest amount of semantic para-
phasias observed in cases of brain pathology [16, 25, 124, 125].
Because of the location of the pathology (temporooccipital),
it is not surprising that visual agnosic defects can also be
found in these patients; indeed, they present a significant
impairment in revisualizing for him/herself the meaning of
the words (i.e., how a “book,” or a “dog” or whatever noun
looks like) [126].Thus, anomic or nominal or amnesic aphasia
can be interpreted as a language defect at the level of the
semantics of the words [14]: the patient fails in associating the
words of the vocabulary (e.g., table, chair) with their visual
meaning (revisualizing the meaning of the word table, chair,
etc.); and conversely, the visual representations (images or
pictures of tables, chairs, etc.) do not evoke a specific word but
a diversity of semantically related words (such as desk, bed,
and sofa).

de Renzi and Saetti [127] have proposed that “optic apha-
sia” (a name frequently used as synonymous of visual anomia)
and associative visual agnosia (i.e., the impaired visual
recognition or inability to assignmeaning to a stimulus when

early stage perceptual processing is preserved) reflect the
impaired access of structured representations of semantics.
The anatomical bases of the two syndromes may be very
similar (or even coincidental), and hence, optic aphasia can
to some extent be regarded as an associative visual agnosia.
As a matter of fact, optic aphasia could be interpreted
as a disconnection syndrome between visual perception
and semantic associations. In associative visual agnosia the
patients correctly recognize the primary visual characteristics
of the objects but fail in recognizing what they are; copying
figures is correct, demonstrating that the patient successfully
recognizes line orientations, curvatures, spatial distribution,
size, and so forth [103, 128]. Conversely, in apperceptive visual
agnosia patients cannot copy figures because the early-level
perceptual processing is impaired (i.e., the ability to recognize
the primary characteristics of the visual stimuli, such as
lines, spatial location, and relationship among the different
elements).

In summary, left BA37 damage has been associated with a
language disturbance characterized by word-finding difficul-
ties for the visually presented information (visual anomia);
additionally, these patients present some visual-perceptual
disturbances, similar to an apperceptive visual agnosia. Right
BA37 pathology usually results in prosopagnosia and viso-
constructive disturbances.

We have to be aware that “semantic” language function is
an extended language function including different elements,
such as memory, visual representations, and even executive
(frontal) functions [129]. BA37 is only related to language
visual representation, a particular aspect of language seman-
tics.

Whereas language semantics has been partially related to
left BA37, right BA37 has been associated with complex visual
functions, such as face recognition and structural judgment
of familiar objects. It is well known that prosopagnosia
(acquired inability to recognize faces) is the result of brain
pathology involving the right fusiform gyrus (temporal-
occipital) or both fusiform gyri [130–133].

Disturbances in drawing (constructional apraxia or sim-
ply visuoconstructive disorder) are also observed in cases of
right hemisphere pathology frequently involving the right
BA37 [5, 102, 134, 135]. Constructional apraxia is usually
defined as an inability or difficulty to assemble, build, or
draw objects and has been traditionally considered as amajor
right hemisphere syndrome although a milder syndrome is
sometimes observed after damage to the left hemisphere
[136]. Noteworthy, the mental imaging of drawing has been
associated with activations of both right and left BA37 [137].

Jouen et al. [129] tested the hypothesis that compre-
hension of human events engages an extended semantic
representation system, independent of the input modality
(sentence versus picture). They examined brain activation
and connectivity (fMRI andDTI) in 19 subjects who read sen-
tences and viewed pictures depicting everyday events. A com-
mon frontotemporoparietal network including the middle
and inferior frontal gyri, the parahippocampal-retrosplenial
complex, the anterior and middle temporal gyri, the inferior
parietal lobe and in particular the temporoparietal cortex
was found. DTI tractography revealed a multicomponent



10 Behavioural Neurology

network involving the temporal pole, the ventral frontal pole,
and premotor cortex. The authors concluded that “meaning”
network includes semantic memory, embodied simulation,
and visuospatial scene representation.These findings are con-
gruent with our results suggesting that the posterior temporal
and temporal-occipital area are involved in the visual repre-
sentation of the meanings of the words.

It is important to emphasize that we do not know if
current results are applicable to bi/multilingual individuals.
The use of two or more different languages can result in some
reorganization of the language in the brain [138, 139] but this
is a point for future research.

Some limitations of the current meta-analytic study
should be addressed by future research. Our thresholds may
have been quite conservative leaving out small areas of coacti-
vation and limiting the discrimination of commonalities and
differences in the two networks (i.e., language and visual)
in which BA37 has been associated with. Some limitations
are inherent to the postprocessing software (GingerALE)
that yields an automatic labeling of the activation clusters.
These limitations are insurmountable for the authors. The
ALE report lists activations in both precuneus areas (BA7
and BA19). Yet, the coregistered rendition of the activation
maps does not show such activation. Instead, there is bilateral
activation in both banks (superior and inferior) of the intra-
parietal sulcus that may explain BA7 and BA19 localization.
This activation is quite concordant with prior findings in
language function. A correction to this shortcoming has
been done in the figure captions. In addition, our study, like
most meta-analysis, has the limitation of the heterogeneity
of the pooled tasks, methods, and individuals. Despite these
limitations, this study presents a connectivity model using
BA37 as independent variable and a spectrum of coactivated
areas as dependent variables. The results found here are
quite consistent with clinical findings and highly supported
by structural connectivity findings. Although MACM is still
new, previous studies have already validated the use of
this technique to analyze the connectivity of other brain
areas [47].

5. Conclusions

Taken together the clinical and functional information about
BA37 make it clear that left BA37 participates in at least two
distinct functional domains—visual recognition (perception)
of external objects and associating the visual perception
with a word (newer BA37 segment). These two domains are
related to two distinct networks in which BA37 overlaps.
Within the first network, BA37 projects to BA46 (prefrontal
area involved in executive functions including abstraction
and complex thinking) and BA9 and BA45 (involved in
word generation, semantic categorization, and metaphor
comprehension). In the second network BA37 projects to
parahippocampal and posterior cingulate regions related to
memory; BA19 related to visual processing and BA6 and
BA47 of executive control.

Finally, it should be emphasized that current results are
congruent with our existing clinical (e.g., [5, 25, 107]) and

functional (e.g., [55, 92]) knowledge on the role of BA37 in
cognition.
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