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Bacopa monnieri (BM) is a herbal supplement that increases signaling molecules
implicated in synaptogenesis. Combined with cognitive stimulation, it may be a viable
supplement to enhance long-term potentiation (LTP) and improve cognitive health in
older adults. This randomized, double-blind, placebo-controlled trial asked 28 healthy
adults aged over 55 years to complete cognitive training (CT) 3 hours weekly for
12 weeks. Fifteen consumed a standardized extract of BM and 13 consumed a placebo
daily. Cognitive tasks, life-satisfaction, memory complaints and mood were assessed,
and bloods analyzed for serum brain-derived neurotrophic factor (BDNF) before and
after 12-weeks of the intervention. Diffusion tensor imaging (DTI) and neurite orientation
dispersion and density imaging (NODDI) in gray (GM) and white matter (WM) were also
analyzed. Results demonstrated slower reaction time in an image discrimination task
in the BM group and faster reaction time in a spatial working memory task (SWM-
O RT) in the placebo group. Mean accuracy was higher in the BM group for these
tasks, suggesting a change in the speed accuracy trade-off. Exploratory neuroimaging
analysis showed increased WM mean diffusivity (MD) and GM dispersion of neurites
(orientation dispersion index, ODI) and decreased WM fractional anisotropy (FA) and GM
neurite density (ND) in the BM group. No other outcomes reached statistical significance.
An increase in ODI with a decrease in MD and ND in the BM group may indicate
an increase in network complexity (through higher dendritic branching) accompanied
by dendritic pruning to enhance network efficiency. These neuroimaging outcomes
conflict with the behavioral results, which showed poorer reaction time in the BM group.
Given the exploratory outcomes and inconsistent findings between the behavioral and
neuroimaging data, a larger study is needed to confirm the synaptogenic mechanisms
of BM.
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INTRODUCTION

Aging is associated with poorer cognitive outcomes (Singer
et al., 2003; Deary and Der, 2005; Schaie and Willis, 2010;
Singh-Manoux et al., 2012) and wide-scale re-organization of
neuronal networks that decrease the efficiency of neuronal
interconnectivity (Hedden and Gabrieli, 2004; Grady, 2012). This
may be due to the reduced capacity for activity-dependent long-
term potentiation (LTP) and a decrease in synapse number
(Burke and Barnes, 2006).

Cognitive training (CT) may enhance LTP by encouraging
persistent neuronal activity (Rebok et al., 2007). As neuronal
activity causes the excitation of presynaptic neurons, which
in turn, strengthens the connection between neurons (termed
synaptogenesis), this may lead to enhanced cognitive ability after
training (Zito and Svoboda, 2002; Nicholson and Geinisman,
2006). CT has shown to improve (Chapman et al., 2015;
Lampit et al., 2015) and/or maintain (Cao W. et al., 2016;
Luo et al., 2016) brain function/connectivity in older adults.
Differences in brain structure have been observed between
those who complete CT compared to controls, (Lövdén
et al., 2010; Engvig et al., 2012; Chapman et al., 2015;
Cao X. et al., 2016), and this difference is due to the
maintenance of white matter (WM) microstructure after
CT compared to deterioration in these regions in controls
(McPhee et al., 2019). CT may, therefore, provide a means
for protection from age-related brain structural and functional
deterioration, but additional interventions are needed to produce
greater benefits.

Bacopa monnieri (BM) is a herbal extract of the water hyssop
plant. Animal studies have demonstrated BM increases signaling
molecules involved in synapse formation and maintenance
(Aguiar and Borowski, 2013), including increases in protein-
kinase activity (Saraf et al., 2010; Prisila et al., 2012),
neurotrophins (Preethi et al., 2016; Kwon et al., 2018), and
phosphorylated CREB (Preethi et al., 2012; Kwon et al., 2018).
These molecules are integral to synaptic plasticity, including
the formation of new dendritic spines (Jourdain et al., 2003),
increasing the concentration of post-synaptic receptors (Colbran
and Brown, 2004; Opazo et al., 2010), and regulation of synapse
proliferation and apoptosis through gene transcription (Lonze
and Ginty, 2002; Wiegert and Bading, 2011). Human studies
have observed BM-related cognitive improvements (Pase et al.,
2012), including improved immediate (Kumar et al., 2016)
and delayed memory recall (Roodenrys et al., 2002; Barbhaiya
et al., 2008; Calabrese et al., 2008; Morgan and Stevens, 2010),
processing speed (Stough et al., 2001), and sustained attention
(Stough et al., 2008). These effects were observed after similar
periods of time including 12 weeks (Stough et al., 2001;
Barbhaiya et al., 2008; Calabrese et al., 2008; Morgan and
Stevens, 2010), 90 days (Stough et al., 2008), and 3 months
(Roodenrys et al., 2002), suggesting BM-specific improvements
to cognitive outcomes might be observed after a relatively
short period of supplementation. In addition, three of these
studies (Stough et al., 2001, 2008; Roodenrys et al., 2002),
and two acute studies (Downey et al., 2013; Benson et al.,
2014) have observed effects after using a standardized form of

BM called CDRI-08, which was first developed by the Central
Drug Research Institute in India and is standardized to contain
55 ± 5% bacoside content (Stough et al., 2013). Bacosides have
been suggested to be the main bioactive component of BM
(Majumdar et al., 2013) and have shown to enhance the activity
of enzymes implicated in downstream synaptogenic cellular
processes (Liu et al., 2013). Using a standardized form such as
CDRI-08 may, therefore, be a viable addition to CT regimes
to supplement the neuroprotective properties CT provides to
older adults (McPhee et al., 2016). The aim of the study was to
determine whether the addition of BM (CDRI-08) to older adults
regularly completing CT over 12 weeks improved cognitive and
microstructural outcomes.

MATERIALS AND METHODS

Participants
Participants were healthy, older (≥55 years), right-handed
adults with no diagnosis of a psychiatric, neurological
or food metabolism disorder, no history of repeated head
injury or substance abuse, non-smokers, didn’t consume ≥15
standard alcoholic drinks weekly and didn’t have hypertension
(≥140/90). Participants were excluded if they were taking
any cognitive- or mood-altering medications or supplements,
had any implanted electronically- or magnetically-activated
devices, scored ≤23 on the Mini-Mental State Examination
(Folstein et al., 1975) or ≥20 on the Beck Depression
Inventory-II (Beck et al., 1996). The study was registered
with ANZCTR (ACTRN12617001101370) and approved by the
Swinburne University Research Ethics Committee (SUHREC
2017/047) in accordance with the Declaration of Helsinki
and Good Clinical Practices. All participants provided written
informed consent.

Study Design
The study was a randomized, double-blind and placebo
controlled for BM supplementation study. Participants were
randomized to receive either BM or placebo using a computerized
random number generator by a disinterested third party who was
not involved in testing participants or data analysis. Treatment
group allocation was also stratified by gender by the disinterested
third party. All participants were required to complete CT.

Given the majority of research assessing the effects of BM in
humans have demonstrated 12 weeks of BM supplementation
produces cognitive effects (e.g., Roodenrys et al., 2002; Barbhaiya
et al., 2008; Calabrese et al., 2008; Stough et al., 2008, 2001;
Morgan and Stevens, 2010), participants were required to
complete 12 weeks of the intervention. Participants attended
three visits: a screening visit, baseline visit 1–2 weeks later, and
a final visit 12 weeks later. During these visits blood samples were
collected, questionnaires, cognitive testing, and MRI conducted.
At baseline, all participants were shown how to use the CT
program and were randomized to take either placebo or BM.
Participants were contacted in the first 2, 4, and 8 weeks from
baseline to discuss study progress and to record any significant
lifestyle or health changes.
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Interventions
The active treatment was two capsules of KeenmindTM (CDRI-
08). Each capsule contained 160 mg of BM extract equivalent
to 2.16 g of dried herb. Placebo capsules contained inactive
ingredients and were matched to the treatment capsules in color
and size. Participants took two capsules each morning with
breakfast for 12 weeks.

All participants completed CT using the online BrainHQTM

portal1 designed by Posit ScienceTM. Six exercises were chosen
based on the original Brain Fitness program (Mahncke et al.,
2006). This program has shown to be effective in multiple high-
quality RCTs with older adults (Shah et al., 2017). Participants
completed 2–3, 60-min sessions per week, as this has shown to
be an effective dose to observe changes in cognitive performance
and structural plasticity in older adults (Lampit et al., 2014, 2015).

The BrainHQTM online group portal enabled the study
investigator to check the progress of each participant. CT
compliance was monitored weekly at first, and then adjusted
depending on the participant’s adherence to the CT dose and
program. If a participant was completing less than 2–3 60 min
sessions per week and/or they were consistently performing
poorly, they were contacted to encourage compliance and to
determine why the participant was not completing the CT as
required. This contact was in addition to the routine 2, 4, and
8 week contact. Participants were asked to complete a tablet
taking log throughout the 12-week period and to return any
remaining tablets to calculate treatment compliance.

Assessments
Cognitive and Psychological Assessments
Cognition was assessed using CogTrackTM, which is specially
designed to be administered over more than one timepoint
within a clinical trial context (Wesnes et al., 2017). It comprises
of a set of 10 computerized tasks designed to assess cognitive
abilities adversely affected with increasing age (Glisky, 2007;
Singh-Manoux et al., 2012). The tests include remembering 15
words immediately and after a 15-min delay (immediate and
delayed word recall), choosing words from the original 15 words
amongst distractor words after a 15-min delay (delayed word
recognition), presentation of 20 objects, and after a 15-min delay,
identifying the original objects amongst similar novel objects
(pattern separation), responding quickly to the presentation of
a right arrow (simple reaction time, SRT), pressing a left or right
arrow key when the corresponding arrow is presented (Choice
Reaction Time), responding when a digit in the middle of the
screen matches a target digit (digit vigilance), presentation of a
3 × 3 array of light bulbs with some light bulbs illuminated,
then identifying in similar arrays what light bulbs were originally
illuminated and which are novel illuminations (spatial working
memory), and responding when a digit from a set of five
target digits are presented amongst 30 distractor digits (numeric
working memory). All participants completed a practice session
during their screening visit to familiarize themselves with the
cognitive tasks.

1https://www.brainhq.com/

Life satisfaction was assessed using the CASP-19 scale (Hyde
et al., 2003), everyday memory complaints with the prospective
and retrospective memory questionnaire (Crawford et al.,
2003), IQ using the Wechsler abbreviated scale of intelligence
(Wechsler, 1999), and mood with the profile of moods states
(McNair et al., 1992).

Biochemical Assessment
Brain-derived neurotrophic factor (BDNF) was used as a
peripheral biomarker as it has shown to be involved in
neuronal growth and maintenance (Poo, 2001; Gomez-Palacio-
Schjetnan and Escobar, 2013). Blood samples were collected
by venepuncture on the morning (8:30am–12:00pm) of the
baseline and 12-week visit. Participants fasted for 12 h and did
not perform any vigorous physical activity 24 h beforehand.
Blood samples were kept at room temperature for 30 min
and then centrifuged at 1,000 × g for 10 min. Serum
was extracted, aliquoted, and stored at −80◦C until analysis.
Samples were sent frozen in one batch to Crux Biolabs
in Melbourne, Australia for analysis. Samples were thawed
and BDNF concentrations measured using the Quantibody R©

Multiple ELISA array (RayBiotech, Norcross, GA, United States)
according to the manufacturer’s instructions.

Image Acquisition
Brain data was acquired on a 32-channel head coil equipped
3T Siemens Tim Trio using a double-refocused single-shot EPI
sequence. 72 slices (2 mm3) were obtained in an anterior to
posterior direction interleaved using an MB factor of two and two
b-values: b1,000 and b2,000 s/mm2 with 64 diffusion-encoding
gradient directions each. Four b0 images were collected, one
acquired with a reversed-phase encoding direction, to allow the
estimation of susceptibility induced distortions. TE and TR were
matched across b-value shells (TR = 8,600 ms; TE = 99 ms).

Imaging Data Processing
Diffusion Tensor Imaging
Two diffusion tensor imaging (DTI) measures, fractional
anisotropy (FA) and mean diffusivity (MD), represent the degree
of anisotropy of water molecules around neuroanatomical
structures (Wozniak and Lim, 2006; Johansen-Berg and Behrens,
2014). They infer both the presence and health of WM with an
FA decrease and an MD increase representing microstructural
deterioration (Basser, 1995; Beaulieu, 2011). A detailed
description of the DTI analysis is in the Supplementary
Material. Briefly here, the b1,000 s/mm2 shell data was pre-
processed (correction for susceptibility induced distortions,
head movements and eddy currents) using FSL (v6.0) (Smith
et al., 2004), the tensor fitted using FSL’s diffusion toolbox
(FDT) (Behrens et al., 2003, 2007) to produce FA and MD
maps for each timepoint, subjecting the data to a non-biased
longitudinal analysis procedure (Engvig et al., 2012), in which
data is non-linearly registered using Tract-based spatial statistics
(TBSS) (Smith et al., 2006) to a study-specific template that
represents the space halfway between the two time points, and
then creating difference maps by subtracting 12-week registered
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maps from baseline registered maps and using these for voxel-
wise comparisons. MD difference maps were produced in the
same method using FSL’s non-FA TBSS procedure.

Neurite Orientation Dispersion and Density Imaging
Neurite orientation dispersion and density imaging (NODDI)
was used to assess any intervention-related changes in the content
and health of neurite microstructure. The NODDI model utilizes
the movement of water molecules in and around neuronal
structures to differentiate between three tissue environments:
intracellular, extracellular and cerebrospinal (CSF) (Zhang et al.,
2012). The intracellular environment represents the space
bounded by the membrane within neurites and is modeled as
a set of sticks (cylinders with zero radius), and these sticks can
be highly parallel (such as in highly aligned WM structures) or
highly dispersed (such as fanning or bending WM structures,
or the extensive dendritic branching seen in gray matter; GM).
Two NODDI parametric maps were used; orientation dispersion
index (ODI), which measures the dispersion of sticks (0 = no
dispersion, 1 = full dispersion) and neurite density (ND), which
is the degree of neurite concentration and packing (0 = low
ND, 1 = high ND).

A detailed description of the NODDI analysis is in the
Supplementary Material. Briefly, data from the b1,000 and
b2,000 shells were combined and pre-processed using FSL and
the NODDI model fitted using the MATLAB NODDI toolbox to
produce ODI and ND maps. The same non-biased longitudinal
procedure in the DTI TBSS analysis was used to measure ODI
and ND WM microstructure using FSLs non-FA TBSS script and
difference maps created for voxel-wise analysis. GM-based spatial
statistics (GBSS) was used (Nazeri et al., 2015; Supplementary
Figure 1) to compare change in GM microstructure. GBSS firstly
segments the GM fraction using diffusion data and then utilizes
the TBSS script to accurately aligned GM voxels between subjects.
This creates a GM-skeleton representing the center of GM voxels
common to the group which is then used to register ODI and
ND maps to each time point. Difference maps are then created by
subtracting each participant’s skeletonized ODI and ND baseline
maps from their corresponding 12-week skeletonized maps and
used for voxel-wise comparisons.

Statistical Analysis
Cognitive, Psychological and Biochemical Data
Statistical analysis was conducted using SPSS v26. Pearson’s
correlation coefficients were used to identify potential
covariate baseline characteristics (such as age, gender, baseline
microstructure etc.) that were significantly associated with
outcomes at 12 weeks. Any variables not normally distributed
or showing heterogeneity of variance (Shapiro–Wilk test < 0.05
and Levene’s test < 0.05) were transformed using the Box-Cox
transformation procedure (Box and Cox, 1964). Variables with
severe non-normality not improved by transformations were
analyzed using the non-parametric Quade Rank test (Quade,
1967). Variables with severe violations of homogeneity of
variance not improved by transformations were analyzed using
the Weighted Least Squares Regression method (Rosopa et al.,
2013). To determine significant (α < 0.05) differences between

groups from baseline to follow up, separate one-way ANCOVAs
were conducted for each outcome using baseline score as a
covariate (Vickers, 2005). For significant differences, separate
paired sample t-tests for each group were then used to establish
the trajectory of change within each group.

Diffusion-Weighted Data
Pearson’s correlation coefficient was used to identify if any
baseline variables were associated with mean whole-brain WM
FA, MD, ODI, ND and GM ODI, and ND at 12-weeks,
and if so were controlled for in subsequent analysis. For all
diffusion data voxel-wise analysis was performed using FSL’s
randomize (Winkler et al., 2014). Five thousand permutations
were conducted for each contrast with the threshold-free-
cluster-enhancement (TFCE) option (Smith and Nichols, 2009)
and family-wise error (FWE) rate correction for multiple
comparisons (p < 0.05). To determine significant group
differences in the change in DTI and NODDI metrics from
baseline to 12-weeks, an unpaired samples t-test was conducted
using the TBSS generated FA, MD, ODI, and ND and the GBSS
generated ODI and ND difference maps. Mean change within
significant clusters were extracted for each group to determine
the direction of change. The John Hopkins University (JHU)
ICBM-DTI-81 White-Matter Labels atlas (Mori et al., 2008), the
JHU White Matter Tractography Atlas (Hua et al., 2008) and the
Harvard-Oxford Cortical Atlas (Desikan et al., 2006) were used
to identify significant brain regions. Given the relatively novel
and under-researched intervention in this study, uncorrected
maps were also searched for significant voxels p < 0.005 within
cluster sizes of ≥10 (Lieberman and Cunningham, 2009), to
determine trends within the neuroimaging data. To see if any
clusters were related to any significant cognitive outcomes, a step-
wise regression was performed for each group using mean change
extracted from each cluster as the IV and change in cognitive
score as the DV. The criteria used for each step were based on
F-tests, with entry set at p = 0.05 and removal set at p = 0.10.

RESULTS

Baseline Characteristics and Rates of
Follow Up
Thirty-six participants were randomized to the active (n = 18) and
placebo (n = 18) groups. Seven withdrew before follow-up, one
was excluded from all analysis due to CT non-compliance and
seven excluded from specific analyses (see Figure 1). The final
sample size consisted of BM group (n = 15) and placebo group
(n = 13) (age range = 57–78 years) (Table 1).

Cognitive, Psychological, and
Biochemical Outcomes
One-way ANCOVAs showed there was a significant difference
in speed between groups at follow up after controlling for
baseline scores for SRT, for remembering novel images from a
set of similar images in the pattern separation task (PS-N RT),
and for remembering original lightbulb configurations in the
spatial working memory task (SWM-O RT) (Table 2). Follow
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FIGURE 1 | Participant enrolment flowchart. BDNF, brain-derived neurotrophic factor; POMS, profile of mood states; TMD, total mood disturbance.

up t-tests showed there was a significant decrease in SWM-O
RT in the placebo group [t(11) = −3.604, p = 0.004] and no
significant change in the BM group [t(12) = −0.002, p = 0.999;
Figure 2]; no significant change in PS-N RT in the placebo
group [t(11) = −0.934, p = 0.370] and a significant increase
in the BM group [t(14) = 2.780, p = 0.015; Figure 3]; and no
significant change in SRT in neither the placebo or BM group
[t(12) = −1.158, p = 0.269; t(13) = 1.994, p = 0.068, respectively].

Neuroimaging Outcomes
DTI
Unpaired sample t-tests showed there were no significant
differences in FA and MD change between groups after correction
for multiple comparisons. Uncorrected analysis (Supplementary

Table 1) showed significant groups differences in three clusters
for WM FA, and in 28 clusters for WM MD. Means extracted
from these clusters showed either an increase or a less severe
decline in FA and a decrease or a less severe increase in MD
in the placebo group compared to the BM group. For the step-
wise regression (Supplementary Table 1) in the placebo group,
the best model to predict a decrease (improvement) in SWM-O
RT was an increase in MD in the right corticospinal tract, right
anterior longitudinal fasciculus and an area near the superior
parietal lobule and a decrease in MD in the right anterior
thalamic radiation. For the BM group, the best model to predict a
decrease (improvement) in SWM-O RT was an increase in MD in
the right optic radiation and a decrease in MD in the right forceps
major. No clusters showing differences in FA predicted change
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TABLE 1 | Baseline characteristics.

Placebo (n = 13) BM (n = 15)

Age, mean ± SD (years) 66.85 ± 5.93 68.87 ± 5.59

Female, n (%) 8 (61.5) 8 (53.3)

Education, mean ± SD (years) 15.23 ± 3.68 15.27 ± 3.41

Employment status, n (%)

Part time/casual 4 (30.8) 4 (26.7)

Full time 2 (15.4) 1 (6.7)

Retired 7 (53.8) 10 (66.7)

IQ, mean ± SD (average IQ = 100) 126.92 ± 8.75 123.33 ± 11.28

MMSE, mean ± SD (0–30) 29.15 ± 1.14 29.00 ± 1.20

BDI, mean ± SD (0–63) 3.31 ± 4.97 2.27 ± 2.84

Total hours trained, mean ± SD 36.40 ± 4.79 36.18 ± 6.38

Treatment compliance, mean ± SD (%) 99.09 ± 1.57 98.59 ± 5.13

Blood draw time, mean ± SD (hh:mm) 08:36 ± 00:39 09:27 ± 01:22

Whole-brain DWI, mean ± SD

WM FA (0–1) 0.484 ± 0.025 0.476 ± 0.018

WM MD (10−3 mm2/s) 0.741 ± 0.036 0.751 ± 0.035

WM ODI (0–1) 0.270 ± 0.023 0.271 ± 0.024

WM ND (0–1) 0.609 ± 0.031 0.603 ± 0.030

GM ODI (0–1) 0.535 ± 0.006 0.527 ± 0.030

GM ND (0–1) 0.449 ± 0.013 0.448 ± 0.013

IQ,Wechsler adult scale of intelligence; MMSE, Mini Mental State Examination;
BDI, Beck depression inventory; WM, white matter; GM, gray matter; FA,
fractional anisotropy; MD, mean diffusivity; ODI, orientation dispersion index; ND,
neurite density.

in SWM-O RT nor for MD and FA in significantly predicting
change in PS-N RT.

NODDI
Unpaired samples t-test showed there was no significant
difference in ODI or ND change in GM and WM between
groups after correction for multiple comparisons. Uncorrected
analysis (Supplementary Table 2) showed four clusters showing
ND increases in the placebo group and decreases in the BM
group, and one cluster showing a decrease in the placebo group
and an increase in the BM group. Ten clusters showed ODI
decreases in the placebo group and increases in the BM group,
with two clusters showing an increase in the placebo group and a
decrease in the BM group. Step-wise regression (Supplementary
Table 2) in the placebo group showed a decrease in GM ODI in
the left putamen and a decrease in GM ND in the right planum
polare significantly predicted a decrease (improvement) in SWM-
O RT. In the BM group, an increase in ODI in the left frontal
orbital cortex significantly predicted a decrease (improvement) in
SWM-O RT. No cluster for ODI nor ND significantly predicted
change in PS-N RT.

DISCUSSION

The aim of the current study was to determine if BM is
an effective supplement to CT to improve cognitive and
neuroimaging outcomes in an older sample. The overall results
were mixed. The results showed RT increased in the BM
group in the PS-N task, with no change in the placebo
group, and RT decreased in the SWN-O task in the placebo

group with no change in the BM group. Although group
comparisons for accuracy did not reach statistical significance,
examination of the means suggest the BM group were
more accurate in the PS-N task than the placebo group
despite their slower response times (see Table 2). This may
reflect a speed-accuracy trade-off in which the BM group
favored precision over speed. Previous research suggests BM
supplementation increases accuracy in tasks measuring learning
and free recall memory (Pase et al., 2012) and has been used
traditionally as a memory enhancer in Ayurvedic medicine
(Russo and Borrelli, 2005). This suggests BM may benefit
accuracy specifically and not alter speed. Despite there being
an apparent difference in the means in accuracy scores,
it is important to note that these differences were not
statistically significant and therefore only inferences can be made
about the inter-relationship between accuracy and speed in
the current study.

There were also differences at baseline that may have
disadvantaged the BM group to perform faster. Previous research
has shown older adults favor minimizing errors over speed
compared to younger adults, even when they are cued to
respond quickly (Starns and Ratcliff, 2010, 2012) and this may
be due to age-related limitations in brain structure (Forstmann
et al., 2011; Yang et al., 2015). The placebo group was slightly
younger than the BM group and had slightly better brain
microstructure at baseline (higher FA and GM ODI and lower
MD). The placebo group also had higher IQs and trained an
average of 13 min more than the BM group. These differences
combined may have contributed to the slower PS-N RT in
the BM group and faster SWM-O RT in the placebo group.
Consequently, BM supplementation may not have produced
cognitive improvements large enough to reliably detect over and
above that of a younger neurocognitively healthier group who
were also benefiting from more CT. Age, baseline microstructure,
IQ and hours trained were tested for inclusion as covariates
in the analyses, and none were associated with PS-N RT at
12 weeks and the effects on SWM-O RT did not change
after controlling for IQ. This indicates there may have been
other influencing, unaccounted for factors on the cognitive
outcomes or BM supplementation does not impact RT above the
effects of CT alone.

The other interpretation is that BM may impair processing
speed for visuospatial memory. This effect has not been observed
in other research however, as studies using similar tests have
not observed any changes to speed [e.g., no change to speed in
SWM-O RT in Stough et al. (2008), or to visual memory span in
Roodenrys et al. (2002) and Barbhaiya et al. (2008)]. It is therefore
difficult to substantiate if this is a replicable effect, or spurious due
to a small sample size.

The neuroimaging results did not provide a compelling
neuro-structural explanation as there were no differences in
microstructure change between groups after correction for
multiple comparisons. Given the sample size was small,
neuroimaging of BM is relatively under-researched, and both
groups were completing an intervention (CT) concurrently, the
effects on microstructure from BM alone were speculated to
be very slight. As such, exploratory analysis, uncorrected for
multiple comparisons at a stricter p-value (p < 0.005), were
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TABLE 2 | 12 weeks follow-up scores for psychological, cognitive and biochemical outcomes after adjustment for baseline score.

Outcome N Unadjusted means (95% CI) Adjusted means (95% CI) ANCOVA

Placebo BM Covariate Placebo BM F (df) P

CogTrack

Immediate word
recall

Accuracy (%) 28 33.7 (28.8, 37.6)a 33.4 (27.8, 37.8)a 32.8 (27.6, 36.8)a 34.2 (29.9, 37.8)a 0.25 (1,25) 0.619

Simple reaction
time

Speed (ms) 27 346.7 (327.9, 365.6) 390.9 (359.8, 422.0) 350.4 (331.5, 369.4) 387.4 (369.2,
405.7)

8.36 (1,24) 0.008

Digit vigilance

Accuracy (%) 28 98.8 (97.4, 99.9)a 96.8 (94.5, 98.4)a Age 98.5 (97.2, 99.5)a 97.1 (95.6, 98.3)a 2.61 (1,24) 0.119

Speed (ms) 28 484.2 (466.7, 501.8) 505.5 (477.8, 533.2) 499.1 (479.8, 519.3) 492.6 (473.9,
511.3)

0.21 (1,25) 0.654

Choice reaction
time

Accuracy (%)b 28 98.0 (96.5, 99.3)a 97.0 (95.4, 98.3)a Education 97.6 (96.3, 98.7)a 97.4 (96.2, 98.4)a 0.05 (1,24) 0.828

Accuracy (%)b 28 98.1 (96.7, 99.3)a 97.1 (95.6, 98.3)a WM MD 97.6 (96.3, 98.7)a 97.3 (96.3, 98.6)a 0.02 (1,24) 0.903

Speed (ms) 28 517.9 (484.7, 551.1) 560.6 (531.0, 590.3) 528.3 (511.3, 545.4) 551.6 (535.8,
567.4)

4.16 (1,25) 0.052

Spatial working
memory

Original stimuli
accuracy (%)

25 95.8 (91.9, 99.7) 97.6 (94.0, 101.2) Age 96.1 (92.6, 99.5) 97.4 (94.1, 100.7) 1.06 (1,23) 0.315c

Novel stimuli
accuracy (%)

25 94.2 (90.1, 98.2) 96.5 (93.4, 99.7) 94.2 (90.8, 97.7) 96.5 (93.1, 99.8) 0.93 (1,23) 0.345c

Original stimuli speed
(ms)

25 816.7 (701.0, 948.2)a 1066.0 (880.0,
1273.5)a

IQ 847.2 (741.7, 964.1)a 1032.2 (914.4,
1158.7)a

5.16 (1.21) 0.034

Novel stimuli speed
(ms)

25 964.3 (796.8,
1131.9)

1114.0 (908.9, 1319.1) IQ 974.5 (819.3, 1129.7) 1104.7 (955.9,
1253.4)

1.33 (1,23) 0.261c

Numeric working
memory

Original stimuli
accuracy (%)

28 92.9 (87.3, 98.4) 98.7 (96.6, 100.7) 92.7 (86.2, 99.3) 98.9 (97.3, 100.5) 3.55 (1,25) 0.071d

Novel stimuli
accuracy (%)

28 99.0 (96.7, 101.2) 99.6 (98.6, 100.5) 99.0 (97.4, 100.6) 99.5 (98.0, 101.1) 0.08 (1,26) 0.787c

Original stimuli speed
(ms)

28 781.7 (675.3, 888.1) 861.4 (788.5, 934.4) 819.7 (776.5, 862.9) 828.5 (788.3,
868.6)

0.09 (1,25) 0.766

Novel stimuli speed
(ms)

28 987.8 (718.1,
1125.2)a

938.7 (808.7, 1088.2)a 980.9 (857.4, 1120.2)a 866.9 (766.2,
982.0)a

1.80 (1,25) 0.191

Delayed word recall

Accuracy (%) 28 27.7 (20.7, 36.6) 24.9 (17.6, 32.2) 26.7 (20.5, 33.0) 25.7 (19.9, 31.6) 0.05 (1,25) 0.818

Word recognition

Original stimuli
accuracy (%)

28 75.4 (67.3, 83.5) 71.6 (62.4, 80.8) Hours
trained

78.1 (70.3, 85.9) 69.2 (62.0, 76.4) 2.74 (1,24) 0.111

Novel stimuli
accuracy (%)

28 89.7 (83.3, 96.2) 91.1 (85.6, 96.6) 88.9 (83.6, 94.2) 91.9 (86.9, 96.8) 0.71 (1,25) 0.408

Original stimuli speed
(ms)

28 845.6 (755.1,
1003.0)a

914.7 (835.8, 1018.0)a 880.9 (796.7, 1001.0)a 869.9 (794.3,
972.9)a

0.03 (1,25) 0.876

Novel stimuli speed
(ms)

28 950.4 (852.4,
1048.3)

1017.3 (903.9, 1130.7) IQ 998.5 (916.4, 1080.7) 975.5 (899.4,
1051.6)

0.17 (1,24) 0.685

Pattern separation

Original stimuli
accuracy (%)

27 90.8 (85.8, 95.9) 90.3 (86.1, 94.6) 90.8 (86.0, 95.5) 90.4 (86.2, 94.6) 0.01 (1,24) 0.910

Novel stimuli
accuracy (%)

27 76.6 (66.5, 84.4)a 80.0 (74.1, 85.1)a 74.7 (66.9, 81.0)a 81.4 (75.9, 86.1)a 2.63 (1,24) 0.118

Original stimuli speed
(ms)

27 1134.0 (960.2,
1402.1)a

1146.9 (1049.4,
1266.6)a

1126.0 (1030.2, 1244.8)a 1141.7 (1052.1,
1249.9)a

0.05 (1,24) 0.824

Novel stimuli speed
(ms)

27 1108.3 (970.3,
1307.4)a

1384.4 (1227.9,
1569.5)a

1141.1 (1059.7, 1237.2)a 1340.8 (1242.0,
1451.2)a

8.79 (1,23) 0.007

(Continued)
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TABLE 2 | Continued

Outcome N Unadjusted means (95% CI) Adjusted means (95% CI) ANCOVA

Placebo BM Covariate Placebo BM F (df) P

PRMQ

Prospective memory
(8–40)

28 31.2 (28.9, 33.6) 29.8 (27.3, 32.3) GM ND 30.7 (29.3, 32.1) 30.3 (28.9, 31.6) 0.19 (1,24) 0.668

Retrospective
memory (8–40)

28 31.7 (29.2, 34.2) 30.5 (28.0, 33.0) 31.3 (29.8, 32.8) 30.8 (29.4, 32.2) 0.29 (1,25) 0.594

CASP19

Control (0–18) 28 14.5 (13.1, 16.0) 13.5 (11.8, 15.1) Gender 14.1 (12.7, 15.5) 13.9 (12.6, 15.2) 0.34 (1,24) 0.568

Autonomy (0–15) 28 12.8 (11.8, 13.8) 11.9 (10.5, 13.2) 12.3 (11.2, 13.4) 12.3 (11.2, 13.3) 0.01 (1,25) 0.921

Self-realization (0–12) 28 10.4 (9.5, 11.2)a 8.7 (7.2, 10.0)a 10.0 (9.0, 10.9)a 9.2 (8.2, 10.1)a 1.32 (1,25) 0.262

Pleasure (0–12) 28 11.1 (10.1, 11.9)a 10.3 (9.2, 11.2)a 10.8 (10.2, 11.4)a 10.6 (10.0, 11.1)a 0.39 (1,25) 0.539

Total (0–57) 28 48.2 (45.3, 51.2) 43.3 (38.0, 48.6) 45.3 (42.2, 48.5) 45.8 (42.8, 48.7) 0.04 (1,25) 0.847

POMS

Anger-hostility (0–48) 28 0.9 (−0.1, 1.8) 2.8 (1.1, 4.5) 1.6 (0.6, 2.6) 2.2 (1.2, 3.1) 0.29 (1,26) 0.596c

Confusion-
bewilderment
(0–28)

28 4.5 (3.8, 5.4)a 6.9 (5.1, 9.8)a 4.5 (3.8, 5.6)a 4.9 (4.1, 6.0)a 0.41 (1,25) 0.527

Depression-dejection
(0–60)

28 1.7 (0.8, 2.9)a 4.2 (2.0, 7.5)a 2.1 (1.1, 3.4)a 2.5 (1.5, 3.8)a 0.30 (1,25) 0.590

Fatigue-inertia (0–28) 28 4.2 (2.4, 6.1) 4.7 (2.8, 6.7) GM ODI 4.7 (3.3, 6.0) 4.4 (3.1, 5.2) 0.10 (1,24) 0.759

Tension-anxiety
(0–36)

27 4.3 (3.3, 5.4) 6.5 (4.5, 8.5) 5.0 (3.5, 6.6) 5.9 (4.5, 7.3) 0.73 (1,24) 0.402

Vigor-activity (0–32) 28 19.5 (16.3, 22.8) 18.8 (15.5, 22.1) 17.9 (15.6, 20.3) 20.2 (18.0, 22.4) 2.04 (1,25) 0.166

TMD (−32–200) 27 −4.8 (−9.7, 0.0) 6.1 (−3.8, 16.0) 0.1 (−1.8, 2.1) 6.0 (−1.6, 13.5) 2.38 (1,24) 0.136d

BDNF (pg/ml) 26 2935.9 (2156.3,
3715.4)

3264.8 (2088.7,
4440.9)

2954.9 (2433.9, 3475.9) 3245.7 (274.8,
3766.7)

0.67 (1,23) 0.423

WM MD, white matter mean diffusivity at baseline; PRMQ, prospective and retrospective memory questionnaire; GM ND, gray matter neurite density at baseline; POMS,
profile of mood states; GM ODI, gray matter orientation dispersion index at baseline; BDNF, brain-derived neurotrophic factor; TMD, total mood disturbance.
aBack transformed from Box-Cox transformation.
bCovariates correlated with each other so two separate models for each covariate tested.
cQuade-rank test.
dWeighted least squares regression.
Bold values are to highlight that they are statistically significant.

utilized to identify small effects (Lieberman and Cunningham,
2009). The uncorrected results produced clusters showing
group differences largely categorized into one directional effect
(Supplementary Table 1). This may demonstrate the results were
not necessarily spurious and taking BM may have produced some
small but homogeneous effects over time. For DTI there was a
decrease in WM FA and increase in WM MD in the BM group
and the opposite pattern in the placebo group. This suggests
either WM microstructure improved in the placebo group or it
declined in the BM group. These unexpected results may, again,
be occurring by chance due to the small sample size. They may
also be indicative of a poorly defined measure of WM structure.
MD and FA are based on assumptions of water movement
around cellular structures, with more free water movement
implying an increase in tissue breakdown (Wozniak and Lim,
2006; Beaulieu, 2011). DTI has been validated against cases of
tissue degeneration such as from multiple sclerosis (Bammer
et al., 2000; Cercignani et al., 2001; Ciccarelli et al., 2001),
Wallerian disease (Pierpaoli, 2010), Alzheimer’s disease (Friese
et al., 2010; Dyrba et al., 2013), and cerebral ischemia (Sorensen
et al., 1999). Consequently, it may be indicative of clinical

neurodegeneration, but less so in the context of neuroplasticity in
non-clinical samples. Research has observed measurable benefits
of learning with increased MD and decreased FA, including an
association between a training-related improvement in working
memory task performance with an increase in MD (Takeuchi
et al., 2015), increased MD and decreased FA after training of a
complex balancing task (Taubert et al., 2010) and increased free
water movement with an increase in neural activity (Song et al.,
2002). Bilinguals, who have undergone long-term neuroplastic
changes to learn another language, have shown higher MD and
lower FA compared to monolinguals (Cummine and Boliek,
2013; Singh et al., 2018). In these cases, increases in MD and
decreases in FA may be indicative of an increase in axon diameter,
potentially from the development of additional crossing fiber
bundles (as suggested in Zatorre et al., 2012). Unfortunately,
complex tissue architecture such as crossing, or bending fibers
that deviate from the parallel, coherent fibers assumed in the DTI
model, can make interpretation of DTI outcomes challenging
(Jones et al., 2013). This was also evident in the step-wise
regression analyses, in which some clusters associated with
SWM-O RT showed a negative relationship and others a positive
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FIGURE 2 | Difference in reaction time to the original stimulus in the spatial
working memory task from baseline to follow up in the placebo and BM
group. ∗∗< 0.005.

FIGURE 3 | Difference in reaction time to a novel stimulus in the pattern
separation task from baseline to follow up in the placebo and BM group.
∗< 0.05.

relationship with MD change. As such the assumed model
DTI is based on might not be adequately capturing minute
structural changes in response to learning in a small non-
clinical sample.

Neurite orientation dispersion and density imaging uses a
multi-compartment model that better captures intricate cell
architecture (Zhang et al., 2012). Exploratory analysis showed
there was an ND decrease and an ODI increase in the BM
group (Supplementary Table 2). An increase in ODI indicates
an increase in the complexity of the GM neuropil such as
extensive branching of dendritic trees (Zhang et al., 2012).
High ODI has been associated with evidence of neuroplasticity
within the human cortex, including an association with high
functional connectivity within the default mode network (Nazeri
et al., 2015) and is predictive of inter-hemispheric functional
connectivity (Deligianni et al., 2016). The observed decrease
in ND may demonstrate experience-dependent restructuring of
cytoarchitecture such as dendritic pruning (Riccomagno and

Kolodkin, 2015). Research on brain maturation shows substantial
brain reorganization, which includes both propagation and
pruning of dendritic pathways (Huttenlocher, 1990). Animal
research has observed mice trained in a sensory or navigation
task show both dendritic spine arborization and pruning (Knafo
et al., 2005; Hawes et al., 2015). Research using connectivity
models suggests a higher number of axons increases the neuropil
volume and reduces neuronal efficiency, while a larger number of
morphological features such as axonal and dendritic branching
or spines, reduces volume and simultaneously increases efficiency
(Chklovskii, 2004). An increase in network complexity (as seen
by the increase in ODI) with a simultaneous reduction in the
density and packing of neurites in the BM group, may therefore
be indicating a training-induced and BM enhanced optimization
of functional networks.

Other psychometric and biomarker measures failed to
show significant group differences. Given the relatively healthy
sample, that all participants completed a cognitively enhancing
intervention (CT), and therefore gain benefits regardless, and the
purported BM associated synaptogenic mechanisms are based
on microscopic molecular changes within animal tissue, the
effects of BM may have been very small. Limitations in the
study may have impeded the ability to capture these small
changes. For example, using Region of Interest (ROI) techniques
instead of whole-brain analysis may have better captured smaller
region-based effects. Whole-brain analysis was used as there
is currently no neuroimaging studies assessing the effects of
BM that may have helped inform potential a priori regions
of interest. The intervention length could have been longer to
show larger effects. The 12-week timeframe was chosen as it is
what most BM studies showing cognitive effects have used (Pase
et al., 2012) and it seemed a reasonable amount of time to ask
participants to complete a fairly intensive CT regime (3 h weekly)
without causing fatigue or boredom [as noted in Lampit et al.
(2014)]. In addition, other indicators of health that may have
influenced the bioavailability and metabolism of BM, such as
diet, blood pressure, and tests for glucose and lipid metabolism
were not included in the study. Research has demonstrated BM
may provide benefits to blood lipid profiles (Kala et al., 2015;
Kumar et al., 2016) reduce blood pressure (Kala et al., 2015)
and when taken with other antioxidants and phytochemicals
improves scores in measures of sustained attention and verbal
fluency (Crosta et al., 2021). Including these measures may have
helped elucidate the combined effects of cardiovascular health,
diet, and BM supplementation on measures of cognition and
brain health. The scan quality could have also been improved by
interspersing additional non-diffusion-weighted images between
runs or capturing b-shells in both phase-encoding directions to
better correct geometric distortions and signal pile-up (Pierpaoli,
2010). These were not employed due to time constraints within
the scanner. A larger voxel size to improve SNR and the
longitudinal stability between scan time points (Zhan et al.,
2013) was also considered but not implemented as it would
increase partial volume effects (Alexander et al., 2001). The
type of longitudinal analysis, in which scans were registered to
the half-way point, was also utilized to improve longitudinal
stability and prevent artificially large changes seen when aligning
the scans to only one timepoint (Thomas et al., 2009). Despite
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these considerations, there were still non-significant outcomes.
In addition, particular cognitive data were excluded due to
some participants not completing certain cognitive tasks as
instructed, reducing the sample further. This data could have
been included in an intention to treat analysis, however, it would
unlikely provide further information over and above the per-
protocol analysis, given the scores of these tests were ultimately
redundant and would produce inconclusive outcomes in an
already small sample.

As discussed above, intrinsic differences between groups
may have affected how groups changed over time. With
a larger sample, more baseline covariates that may have
impacted outcomes could have been controlled for Kahan et al.
(2014). Although the neuroimaging outcomes were suggestive
of an improvement in the complexity of neuronal networks
in older adults after BM supplementation and CT, a larger
study over a longer follow-up period with a more rigorous
scanning procedure and addition of statistical covariates,
would help clarify how BM may change microstructural and
synaptogenic biomarkers, and what benefit that may have for
older adults completing CT.
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