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PSMA PET is more accurate than conventional imaging (CT/bone scan) for staging of intermediate- or high-risk prostate cancer
(PCa), but 5–10% of primary tumours have low PSMA ligand uptake. FDG PET has been used to further define disease extent in end-
stage castrate-resistant PCa and may be beneficial earlier in the disease course for more accurate staging. )e objective of this study
was to review the available evidence for patients undergoing both FDG and PSMA PET for PCa staging at initial diagnosis and in
recurrent disease. A systematic literature review was performed for studies with direct, intraindividual comparison of PSMA and
FDGPETfor staging of PCa. Assessment for radioligand therapy eligibility was not considered. Risk of bias was assessed. 543 citations
were screened and assessed. 13 case reports, three retrospective studies, and one prospective study were included. FDG after PSMA
PET improved the detection of metastases from 65% to 73% in high-risk early castration-resistant PCa with negative conventional
imaging (M0). Positive FDG PETwas found in 17% of men with negative PSMA PETfor postprostatectomy biochemical recurrence.
Gleason score ≥8 and higher PSA levels predicted FDG-avid metastases in BCR and primary staging. Variant histology (ductal and
neuroendocrine) was common in case reports, resulting in PSMA-negative FDG-positive imaging for 3 patients. Dual-tracer PETfor
PCamay assist in characterising high-risk disease during primary staging and restaging. Further studies are required to determine the
additive benefit of FDG PET and if the FDG-positive phenotype may indicate a poorer prognosis.

1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed
internal malignancy and high-ranking cause of mortality in
men worldwide [1, 2]. An increased incidence of de novo

metastatic PCa has been observed since 2004, most signif-
icantly in men aged 55 to 69 years, potentially contributing
to higher mortality [3, 4]. Modern approaches to metastatic
PCa treatment incorporate aggressive systemic therapy, such
as taxane-based chemotherapy, androgen receptor
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inhibitors, and radioligand therapy (RLT) [5, 6]. Addi-
tionally, earlier use of systemic therapy prior to treatment of
high-risk, locally advanced disease has been reported and is
the subject of ongoing clinical trials [7–10]. However, ac-
curate patient selection for systemic therapy remains one of
the key challenges in urologic oncology.

Despite limitations, conventional imaging with com-
puted tomography (CT) and technetium-based bone scan
are widely used for staging [11]. However, cumulative evi-
dence indicates that prostate-specific membrane antigen
(PSMA) positron-emission tomography (PET) should be a
centrepiece of staging for intermediate- to high-risk patients
[11–16]. A prospective, randomised trial by Hofman and
colleagues determined that PSMA PET/CT was 27% (95%
CI: 23–31) more accurate than conventional imaging [12].
However, 5–10% of primary PCa tumours have low PSMA
activity which evade detection by PSMA PET, mostly in
high-grade and variant tumour types [14–18].

18-F-Fluorodeoxyglucose (FDG) PET use in PCa has
previously been of limited benefit in primary staging and
biochemical recurrence (BCR) [19, 20]. In a study of 41 men
with Gleason score ≥8 PCa who had FDG PET/CT for
primary staging, 11 men had nodal metastasis from histo-
pathology, and only 3 of these men (27%) had corresponding
lymph node FDG uptake [21]. Increasing use of FDG PET to
aid patient selection for RLTand other therapies in mCRPCa
has provided insight into tumour heterogeneity and benefits
of dual-tracer PET imaging [22, 23]. Discordant findings
have been attributed to the increased anaerobic glycolysis
detected by FDG PET in patients with more aggressive
histological types [24]. Whilst the use of PSMA and FDG
PET imaging in PCa has been examined individually, the
potential diagnostic impact for individual patients to un-
dergo dual-tracer PET imaging remains unclear. Additional
use of FDG PET may improve disease characterisation in
patients with high-risk localised and metastatic PCa, with
inconclusive conventional imaging and negative PSMAPET.

We sought to summarise the available evidence for the
use of dual-tracer PET, being 18-F-fluorodeoxyglucose
(FDG) PET in addition to PSMA PET, for PCa staging at
initial diagnosis and in recurrent disease.

2. Methods

2.1. Search Strategy. A systematic literature search was
performed in April 2021 (Table S1) in accordance with the
preferred reporting items for systematic reviews and meta-
analysis (PRISMA) and the Cochrane Handbook guidelines
[25, 26]. )e review protocol was registered
(CRD42020201307) and published in the International
Prospective Register of Systematic Reviews (PROSPERO).
Citation searches were conducted from included reports to
ensure all relevant studies were captured. All included
studies received ethical approval, and the source data were
publicly available, so ethical approval was not sought [27].

2.2. Study Selection. All original research reports that di-
rectly compared PSMA and FDG PET in the setting of

histologically diagnosed or clinically suspected PCa were
considered. Editorials, review articles, and animal studies
were excluded, as were studies comparing PSMA and FDG
PET for the purpose of RLT, as this topic was felt to be
beyond the scope of the current review. Furthermore, rec-
ords were excluded if they assessed other primary malig-
nancies or active systemic disease accounting for tracer
uptake, PCa was not specifically diagnosed, or they com-
pared alternative tracers that were not FDG or PSMA.

2.3. Quality Assessment. Methodological quality was ap-
praised using checklists recommended by the Cochrane
Guidelines [28, 29]. Each article was assessed for bias by two
independent authors, with a third reviewer used to resolve
disagreements (Tables S2 and S3).

2.4.DataManagement. )e data from case reports included,
where available, patient age, PSA at the time of imaging,
indication for dual-tracer use, sites of metastatic lesions,
ligand uptake patterns for FDG and PSMA, previous PCa
treatments, histological PCa type, and Gleason score. Cases
were considered to be positive if ligand uptake (according to
criteria used in each case) was reported in either the prostate
or at sites of metastatic disease. Discordant ligand uptake
was reported when both FDG and PSMA PETwere positive,
but there were different sites of the disease. If multiple PSA
values were reported, the PSA at the time of PET imaging
was used for this comparison. For articles concerning a
population, these data were collected as a range, where
applicable, as well as the inclusion and exclusion criteria.

Included studies displayed significant heterogeneity and
small overall population, so a quantitative assessment was
not possible (Table S4).

3. Results

)e database search yielded 543 citations. Following screening
and assessment (Figure 1), one single-arm prospective trial,
three retrospective observational studies, and 13 case reports
were included in the final analysis (Tables 1 and 2).

3.1. Castration-Resistant Disease. A prospective single-arm
trial investigated the prevalence of PSMA-negative FDG-
positive lesions in 37 men with negative conventional im-
aging (M0) in the setting of high-risk early castration re-
sistance (defined as PSA progression with PSA ≤2 ng/ml and
PSA doubling time ≤10 months) who were restaged using
PSMA and then FDG PET [33]. 65% of men had metastatic
disease on initial PSMA PET, while an additional 5% had
localised PSMA avidity within the prostate, which was
concordant with FDG PET. Among 30% of men with no
PSMA avidity, 27% (8% overall) showed metastatic disease
according to FDG PET, increasing the detection of metas-
tases from 65% to 73%.

High-grade disease, defined as Gleason grade group of
four or higher, correlated with nodal or distant metastases on
FDG PET (OR� 13.09, p � 0.02). A PSA doubling time less
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than six months was associated with the presence of PSMA-
positive metastatic disease (OR� 8.00, p � 0.009), but not for
FDG-positive metastases (p � 0.29). Discordant lesions
(PSMA-negative FDG-positive) were more common for axial
bone lesions compared to concordant PSMA-FDG-positive
patients (p � 0.02). Metastatic disease burden was according
to CHAARTED criteria andwas unchanged in the use of FDG
PET [47]. However, use of FDG PETwas estimated to enable
an additional six men (19 in total) precise lesion targeting for
oligometastatic-directed therapy according to SABR-COMET
trial criteria [48].

Within the same manuscript, an additional analysis of a
retrospective cohort of 41 men was reported. )e cohort
included 14 men with BCR, 18 men with hormone-sensitive
PCa (HSPCa), and 9 men with mCRPCa. Metastatic disease
according to PSMA PET was detected in 29%, 39%, and
100% of men (with FDG concordant disease for 100%, 86%,
and 67%) with BCR, HSPCa, and mCRPCa, respectively.
PSMA-negative FDG-positive disease was rare in HSPCa
(6%) and more commonly observed for CRPCa (33%).

3.2. Biochemically Recurrent Hormone-Sensitive Disease.
Predictive factors for FDG-positive PET in men with BCR
(PSA >0.2 ng/ml) after radical prostatectomy and a negative
PSMA PET were determined in a retrospective case-control

study (n� 72) [32]. )e median PSA was 3.4 ng/ml, and 53%
had prior adjuvant therapy. FDG PETwas positive in 17% of
men, where serum PSA (16.7 versus 0.8 ng/ml) and Gleason
scores (34.4% with Gleason score ≥8 vs. 2.5% with Gleason
score <8; p< 0.001) were higher than the FDG-negative
group. )ere were no differences in age, PSA doubling time,
interval between PSMA and FDG PET, or adjuvant thera-
pies. A PSA cutoff of 2.3 ng/ml was 91.7% accurate for FDG
PETpositivity (area under the curve of 0.872, p< 0.001). )e
group was divided into three groups for the prediction of
positive FDG in the setting of negative PSMA, being low
potential (PSA <2.3 ng/ml and Gleason score <8), moderate
potential (PSA ≥2.3 ng/ml or Gleason score ≥8, but not
both), and high potential (PSA ≥2.3 ng/ml andGleason score
≥8). )ese groups showed 0% (36/36), 11.5% (3/26), and
90% (9/10) positive FDG PET results, respectively.

A retrospective evaluation of 138 men who underwent
68Ga-PSMA-11 and FDGPETfor differentiating lymph node
metastases from peripheral ganglia was examined for on-
cological outcomes [31]. Imaging was for primary staging in
47% (n� 65) and BCR in 53% (n� 73). 47% of men had
Gleason ≥8 disease, and mean PSA was 56.4 ng/mL (IQR:
18.5–99.7) and 1.1 ng/mL (IQR: 0.4–4.1) in the primary
staging and BCR cohorts, respectively. 42% of patients
demonstrated PSMA-avid lymph node metastases, totalling
83 metastases, with FDG concordance in 63% (n� 52).
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Significantly less ganglia showed FDG uptake (p< 0.001), so
the PSMA/FDG PET combination was shown to detect
lymph node metastases when both were avid (PSMA
SUVmax >2.05 and FDG SUVmax >4.1; 43/47, 92%) com-
pared to low or no avidity (PSMA SUVmax <2.05 and FDG
SUVmax <4.1; 3/334, 1%). No correlation was found for
PSMA or FDG uptake (according to SUVmax) with Gleason
scores or PSA level (binary grouping, not defined, p> 0.05)
in both primary staging and BCR cohorts.

3.3. Primary Staging. Staging with dual-tracer PSMA/FDG
PET/CT prior to treatment was examined in one retro-
spective study of 21 men [30]. 68.7% (n � 11/16) of men
had Gleason scores ≥8, and median PSA at diagnosis was
41.2 ng/mL (range: 5–200). All patients had 18F-PSMA-
1007 uptake within the prostate; however, 66.7% had local
FDG uptake. PSMA PET/CT identified more bone (50 vs.
32) and lymph node (25 vs. 22) metastases, with less
benign lesions (21% vs. 49%) than FDG PET. Most pa-
tients with metastases on FDG PET had Gleason scores
≥8. SUVmax (median: 10.72 vs. 4.42), SUVmean (median:
6.67 vs. 2.59), and tumour-to-background ratio (13.3 vs.
7.91) of identified metastases were all higher for 18F-
PSMA-1007 than FDG PET (p< 0.001).

3.4. Case Reports. Case report data are summarised in Ta-
ble 2 (Ref. A–C) according to indication for dual-tracer use
with subgrouping according to the ligand uptake pattern.
)e most common indication was for men with BCR re-
quiring characterisation of lung nodules seen on conven-
tional imaging (5/14 patients) [34, 39, 41–43]. Variant
histology was also common, with three cases of ductal
variant and three cases of neuroendocrine differentiation,
although one of these was presumed on the basis of a raised
serum chromogranin A level in combination with DOTA-
TOC PET avidity [34, 37–40].

PSMA and FDG ligand uptake patterns were discordant
in the majority of cases, although this was not consistently
reported for each individual lesion in every patient (Table 2).
)ree cases reported a negative PSMA PET with positive
FDG PET, all of which had either ductal or neuroendocrine
histology. Serum PSA levels were highly variable for all
patterns of ligand uptake according to the tracer, being
0.2–37 ng/ml for discordant PSMA-positive FDG-positive,
0.2–49 ng/ml for PSMA-positive FDG-negative, and
0.59–163 ng/ml in PSMA-negative FDG-positive.

4. Discussion

)e role of dual-tracer PET for localised or recurrent PCa is
unclear, and available data are limited. Despite significant
heterogeneity in patient populations, indications, and per-
formance which limit meta-analysis, discordant imaging and
altered staging classification were observed. Imaging dis-
cordance was more likely to be observed in more advanced
disease, presumably due to greater tumour clone
heterogeneity.

An important application of dual-tracer PET/CTmay be
in the identification of additional sites of disease amenable to
oligometastatic directed therapy. In the early castrate-re-
sistant population discussed by Wang et al., 24% of patients
had at least one PSMA− FDG+ lesion which would have
been otherwise missed [33]. )e SABR-COMET trial found
an overall survival benefit with stereotactic ablative radio-
therapy, and results from the ORIOLE trial showed that the
total consolidation of all PSMA-avid diseases gave signifi-
cant progression-free survival and distant metastasis-free
survival advantages [48, 49]. )erefore, dual PSMA/FDG
PET/CT may improve oncological outcomes by identifying
additional sites of the disease amenable to oligometastatic
directed therapy.

Furthermore, the PSMA-negative FDG-positive phe-
notype may represent a population at a greater risk of rapid
disease progression. )ese poor oncological outcomes have
been reported in the context of RLT, with Suman and
colleagues reporting that, among 40 patients who underwent
177Lu-PSMA-617 RLT, high FDG uptake (SUVmax >15) was
reported to correlate with worse 12-month progression-free
survival (PFS; p � 0.05) and poor response to RLT (disease
progression in 12/15 patients) [50]. Furthermore, a study of
16 men with poor PSMA avidity or significantly discordant
FDG avidity ineligible for 177Lu-PSMA-617 RLT reported a
median overall survival of 2.3 months when FDG avidity was
high [51]. While PSMA-negative imaging may suggest ag-
gressive disease, a lower ratio of PSMA SUVmax to FDG
SUVmax may better predict PSA reduction ≥30% following
RLT (p< 0.02) [23]. However, FDG findings alone were not
predictive of response, and no imaging factors correlated
with PSA response ≥50%. Conversely, 59% of men with low
FDG uptake (SUVmax <15) reported improved or stable
disease with RLT in one study, while absent PSMA and FDG
avidity following RLTwas indicative of favourable treatment
response [50].

We observed low PSMA avidity in FDG-positive disease
to be a common finding among papers included in this
review. Low PSMA avidity in advanced PCa is hypothesised
to be due to dedifferentiation or neuroendocrine transfor-
mation. Biomarker-focused research supports this hypoth-
esis, with a retrospective analysis in 66 patients referred for
RLT, of which 41 patients (62%) had at least one PSMA-
negative FDG-positive lesion and demonstrated higher
levels of neuron-specific enolase, a neuroendocrine marker
[52]. Furthermore, neuroendocrine PCa has a more ag-
gressive course and thereby an expectation of increased
anaerobic glycolysis with consequent FDG avidity [24]. )is
is in keeping with existing evidence on divergent clonal
evolution of CRPCa and the “genomic overlap” between
conventional adenocarcinoma and neuroendocrine PCa in
the development of castration resistance [53]. )ere is also
support in the correlation between levels of glucose uptake-
associated genes with neuroendocrine gene signatures and
low PSMA expression [54]. Given the poor prognosis in
these patients, further research on dual-tracer PETmay help
streamline earlier diagnosis of this PCa phenotype and
thereby prompt earlier escalation to more aggressive
treatment to improve oncological outcomes.
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PSMA PET has been shown to be superior to conven-
tional imaging for the initial staging of intermediate- and
high-risk PCa [12]. However, approximately 5–10% of
primary PCa has insufficient PSMA avidity for PET detec-
tion due to contributions of both low- (usually of lower
volume) and high-grade disease [14]. In the latter pop-
ulation, the available data suggest that FDG may detect
primary and metastatic disease that would otherwise not be
observed on PSMA PETor conventional imaging. )us, the
potential for FDG PET use in the primary staging of high-
grade PCa, especially with neuroendocrine or ductal vari-
ation, may be an early independent identifier of aggressive
disease and poorer oncological outcomes with conventional
therapies.

)e limitations of this review include limited available
studies and details of data included in these studies, in-
cluding their mostly retrospective nature and limited cov-
erage of each disease state. Furthermore, we were unable to
adjust for selection and publication bias in the included
studies. Conversely, to our knowledge, this review represents
the first summary of the available literature of the intra-
individual assessment of PSMA and FDG PET.

In conclusion, the diagnostic utility of dual-tracer
FDG/PSMA PET/CT for PCa may assist in characterising
high-risk disease during primary staging and restaging.
Addition of FDG PET can identify additional sites of the
disease amenable to oligometastatic directed therapy. Pa-
tients with FDG-positive disease in advanced PCa states
have a poor prognosis, especially with concurrently neg-
ative PSMA PET. When applied to high-risk (high-grade or
variant histology), hormone-sensitive disease in the
localised or recurrent stage, detection of the FDG-positive
phenotype may signal a poorer prognosis to prompt more
aggressive intervention earlier in the disease course. Fur-
ther studies are required to validate the prognostic insights
outlined here and selective incorporation into therapeutic
clinical trials.
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