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When T cell receptors (TCRs) engage with stimulatory ligands, one of the first

microscopically visible events is the formation of microclusters at the site of T cell

activation. Since the discovery of these structures almost 20 years ago, they have been

studied extensively in live cells using confocal and total internal reflection fluorescence

(TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the

spatial relationships of signaling components within microclusters, the kinetics of their

assembly and disassembly, and the role of vesicular trafficking in microcluster formation

and maintenance were not finely characterized. In this review, we will summarize

how new microscopy techniques have revealed novel insights into the assembly of

these structures. The sub-diffraction organization of microclusters as well as the finely

dissected kinetics of recruitment and disassociation of molecules from microclusters

will be discussed. The role of cell surface molecules in microcluster formation and the

kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is

described. Finally, the role of post-translational modifications such as ubiquitination in the

downregulation of cell surface signaling molecules is also discussed. These results will

be related to the role of these structures and processes in T cell activation.

Keywords: TIRF-SIM, lattice light sheet microscopy, vesicle traffic, microclusters, live cell imaging

INTRODUCTION

The central event in the initiation of the adaptive immune response to foreign antigen is the
interaction of the T cell antigen receptor (TCR) with an antigenic peptide presented by a protein
encoded by the major histocompatibility complex (pMHC). The rapid biochemical events that then
transpire, defined as T cell activation, have been the subject of extensive research for over three
decades. Rapid recruitment and activation of Src family protein tyrosine kinases (PTK) and ZAP-
70 lead to phosphorylation of tyrosine residues on the cytosolic regions of the TCR (the CD3 and
TCRζ chains), adapter proteins (LAT and SLP-76), and various enzymes (Itk and PLC-γ1). These
phosphorylations, in turn, lead to creation of sites for SH2 domain-mediated binding, leading
to formation of protein complexes and to the activation of many of the bound enzymes (Weiss
and Littman, 1994; Smith-Garvin et al., 2009; Balagopalan et al., 2010; Samelson, 2011; Courtney
et al., 2018). These multiple events occur in the first seconds to minutes following TCR-pMHC
engagement. Subsequently and dependent on these proximal events, further phosphorylations
(primarily due to activation of protein serine kinases) and other enzymatic events lead to activation
of transcription and to global cellular changes mediated by cytoskeletal reorganization. The most
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dramatic example of the latter is the generation of the immune
synapse (IS) that forms between the T cell and an antigen-
presenting cell (APC). The initial description of the IS was that
of a segregated bulls-eye structure with a centralized TCR (the
cSMAC) surrounded by the integrin LFA-1 (the pSMAC), with
large molecules such as the phosphatatase CD45 excluded from
the central region (Monks et al., 1998; Grakoui et al., 1999). IS
formation was observed to take place about 10–30min after TCR
stimulation, while the biochemical events described above occur
in seconds, indicating that the IS does not trigger initial TCR
signals (Lee et al., 2002).

An early consequence of TCR-pMHC binding is the
aggregation of the TCR and many of the above-described
signaling molecules in structures known as microclusters.
Visualization of these submicron-sized bodies was enabled
by using high-speed confocal microscopy (see Box 1 in
Supplementary Material) to visualize T cell activation in
live cells expressing fluorescently tagged signaling molecules.
Microclusters are sites of T cell activation as evidenced by
the accumulation of tyrosine-phosphorylated proteins (Bunnell
et al., 2002). Extensive analysis revealed that a substantial
number of signaling molecules defined biochemically to be
involved in T cell activation (as described above) were found
within microclusters. Our original studies were performed
on cells activated by anti-TCR antibodies on glass, while
several subsequent studies by others employed activation by
pMHC conjugated to planar lipid bilayers on glass and total
internal reflection fluorescence microscopy (TIRFM; see Box 1

in Supplementary Material) (Campi et al., 2005; Yokosuka
et al., 2005). More recently, advanced imaging techniques
such as lattice light sheet microscopy (LLSM; see Box 1 in
Supplementary Material) have enabled the visualization of
microclusters at the initiation of T cell contact, thus confirming
the role of these structures as signaling units that drive T cell
activation (Ritter et al., 2015).

In this minireview, we aim to summarize recent insights into
the organization and formation of microclusters and discuss
the regulation of these structures via endocytic and exocytic
mechanisms. Along the way, we will highlight the new imaging
methodologies that have enabled these novel insights.

SPATIAL ORGANIZATION OF
MICROCLUSTERS

Since the discovery of microclusters, the spatial organization
of signaling molecules in these structures has been extensively
studied. In the initial description of microclusters, the exclusion
of large glycoproteins, CD43 and the phosphatase CD45, from
microclusters, similar to their exclusion from the cSMAC of
the IS, was described (Bunnell et al., 2002). More recently, the
accumulation of LFA-1 surrounding the TCR microcluster to
form an “adhesion ring” in microscale during the initiation
of T cell activation was observed, reminiscent of the bulls-
eye organization of the IS (Hashimoto-Tane et al., 2016).
Though microclusters are thought of as T cell activation units,
assemblies of receptor and signaling proteins can be detected

in the membrane of resting T cells, suggesting that smaller
preformed “nanoclusters” may pre-segregate into specialized
membrane domains prior to TCR triggering (Lillemeier et al.,
2006, 2010; Crites et al., 2014). Despite considerable ambiguity on
spatial distribution, structural organization, and nomenclature
of these structures, most investigators believe that upon TCR
ligation, these “nanoclusters” undergo concatenation, remixing,
and aggregation to form larger TCR microclusters (Lillemeier
et al., 2010; Sherman et al., 2011; Hu et al., 2016).

Multiple super-resolution microscopy techniques, including
single-molecule localization microscopy (SMLM; see Box 1 in
Supplementary Material), have been developed that allow more
detailed studies of the structure of signaling complexes. These
investigations have revealed nanoscale organization of the TCR
and other important components of the signal transduction
pathway. Early studies using photo-activation localization
microscopy (PALM; see Box 1 in Supplementary Material)
showed that the TCR and LAT are clustered in both unactivated
and activated cells and that the extent of clustering increased after
TCR activation (Lillemeier et al., 2010; Sherman et al., 2011).
Also, the TCR and LAT clusters tend to be segregated from each
other, with some overlap at “hotspots” (Sherman et al., 2011). The
two studies detected different sizes of clusters, with the Lillemeier
study finding significantly larger clusters. These differences are
likely due to differences in their analytical approach as described
in Table 1 below.

Another study using STED showed that the clusters are
smaller than STED resolution, in the range of 50–70 nm
(Balagopalan et al., 2015). Despite the discrepancy in cluster size,
these studies agreed that the TCR and LAT were found in clusters
that increased in size with T cell activation. Since these early
reports, there has been increasing interest in developing methods
to analyze clustering. These range from stand-alone programs
such as DBScan (Ester et al., 1996) to the use of machine learning

TABLE 1 | Fundamental differences in analytical approaches employed by

Lillemeier et al. and Sherman et al. to analyze SMLM data.

Parameters Lillemeier

et al.

Sherman

et al.

Implication

Statistical

method for

cluster

analysis

Ripley’s

K-function

analysis

Pair

correlation

function (PCF)

Smaller clusters are under-reported

in Ripley’s functions, which should

be used mainly to report

separation distances rather than

cluster size. PCF shows results

uniformly across all length scales

and is more appropriate for

detecting small-scale clusters.

Poisson

model

Standard

Poisson

null model

Heterogeneous

Poisson

model

Effects of plasma membrane

heterogeneity are considered in the

heterogeneous Poisson process,

while the standard Poisson model

can report membrane ruffles as

clusters.

Intensity-

based

thresholding

Yes No Many molecules are gated as

background and small clusters

may be removed from analysis.
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(Williamson et al., 2020). Both the principles of SMLM and data
analyses have been reviewed recently (Wu et al., 2020).

The organization of other molecules including Lck, ZAP-
70, Grb2, and SLP-76 in microclusters has also been studied
(Lillemeier et al., 2010; Purbhoo et al., 2010; Hsu and
Baumgart, 2011; Sherman et al., 2011; Rossy et al., 2013;
Neve-Oz et al., 2015). ZAP-70 kinase mixes uniformly with
TCR but shows only partial mixing with LAT. LAT clusters
recruited Grb2 regardless of size, indicating that even small
nanoclusters contain phosphorylated LAT and participate in T
cell activation. Interestingly, LAT and SLP-76 were reported to
form nanostructures with LAT tending to be in the center and
SLP-76 distributed on the outside (Sherman et al., 2011). Further
investigation showed that this LAT-SLP nanostructure develops
during the spreading process (Barr et al., 2016), suggesting
that the nanostructure of signaling complexes is dynamic and
changes with time. This research has also revealed the difficulty
in analyzing the patterns of multiple proteins. Methods such
as the bivariate PCF can evaluate the interactions of two
molecules, but it is difficult to determine how larger numbers of
proteins interact. One study, which extended the analysis to three
proteins, demonstrated concentric arrangements of molecules at
LAT clusters, with VAV1 and PLCγ1 near LAT at the center,
while SLP-76 was found at the periphery and actin was seen
surrounding the clusters (Sherman et al., 2016). The analysis also
examined the recruitment of subsets of proteins to LAT clusters.
SLP-76 recruitment was promoted by interactions with PLCγ1
and actin. However, both PLCγ1 and actin associations with LAT
clusters were independent of SLP-76. At this time, good statistical
methods are not available to determine the organization of
multiple proteins within the signaling complexes.

Despite the high precision reported by localization algorithms,
visualization of proteins within complex structures has been
hampered by several issues, including the accurate determination
of the actual location of single molecules and limitations in
the alignment of multi-color images. The density of the label
also affects the accuracy of the image (Patterson et al., 2010).

Current SMLM techniques rarely give true counts of the number
of molecules; both overcounting and undercounting errors are
common (Krizek et al., 2011). In particular, SMLMmethods tend
to produce multiple localizations from the same molecule. The
difficulty in properly assigning these localizations to the correct
molecule or the grouping of localizations remains one of themost
stubborn problems (Erdelyi et al., 2015). Without this crucial
correction, it is impossible to perform a detailed molecular
analysis of microclusters and the IS. A recent technique,
madSTORM (see Box 1 in Supplementary Material), addressed
some of these issues and allowed the visualization of multiple
targets at high resolution in a single sample. This method was
able to produce high-resolution images of samples containing
up to 20 different proteins (Yi et al., 2016). However, even in
this scenario, only fixed samples could be used; each final image
required capturing thousands of frames, and the process required
several days to gather all the data. For now, SMLM is not able to
determine microcluster structure in live cells.

More recent studies in live T cells using high-speed super-
resolution microscopy techniques such as total internal reflection
fluorescence structured illumination microscopy (TIRF-SIM; see
Box 1 in Supplementary Material) have brought more clarity to
the spatial organization TCR microclusters and their kinetics of
assembly upon T cell activation (Yi et al., 2019). Two spatially
segregated domains were identified within microclusters. TCR
and ZAP-70 colocalized and marked the “receptor domain,”
while LAT with its associated adaptor (GRB2, GADS, and SLP-
76) and signaling proteins (ADAP, NCK, PLCγ, and VAV1)
constituted the “signaling domain” of TCR microclusters. Sub-
diffraction resolution images generated by TIRF-SIM showed
that LAT was situated adjacent to the receptor domain proteins
(TCRζ and ZAP-70) but did not colocalize with the latter.
Likewise, adaptor and signaling proteins colocalized with each
other and were positioned adjacent to and yet segregated from
the receptor domain (Figure 1). The presence of such distinct
domain organization within TCR microclusters might explain
previously observed spatially segregated proteins islands of LAT

FIGURE 1 | Schematic representation of spatial and kinetic organization of microclusters. Microclusters are organized into the “receptor domain” containing TCRζ and

ZAP70 and the “signaling domain” containing several signaling proteins including LAT, GADS, GRB2, ADAP, SLP76, NCK, VAV, PLCγ1, and c-Cbl. Molecules are

sequentially recruited to the microcluster with TCRζ being recruited first, ZAP70 recruited 30 s after TCRζ, LAT, and LAT-associated signaling proteins recruited

simultaneously 30 s after ZAP70, and c-Cbl recruited 10 s after LAT.
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and TCRζ at single-molecule resolution. Colocalization of TCRζ

and ZAP-70 in the receptor domain echoes earlier observations
of extensive mixing of ZAP-70 in TCRζ nanoclusters as originally
observed by Sherman et al. With the discovery of such distinct
domain organization of microclusters, questions arise on how the
constituents of these two domains are brought in close proximity
and if there are additional molecules (e.g., Shb, Lck, or others)
that would be required to hold these complexes together (Welsh
et al., 1998; Lindholm et al., 1999, 2002; Lo et al., 2018).

The idea of domains in the PM is not new. The lipid
composition of the PM is not homogeneous, and it contains
liquid-disordered and liquid-ordered domains. The liquid-
ordered phase is enriched in cholesterol and sphingolipids and
has long been studied as “lipid rafts,” where signaling proteins
including TCR, Lck, and LAT segregate upon activation (Brdicka
et al., 1998; Montixi et al., 1998; Zhang et al., 1998). Early
evidence for the existence and functional relevance of “lipid
rafts” came from resistance to detergent extraction, the effects
of cholesterol depletion, and mutants that failed to localize to
these domains (Munro, 2003). However, these methods do not
identify these microdomains as they exist in the PM of cells. The
visualization of lipid microdomains has been difficult because
they are of a size below the resolution of conventional microscopy
(Zacharias et al., 2002; Shaw, 2006). Phase-sensitive membrane
probes and new imaging methodologies have allowed the direct
visualization of membrane order in T cells. The IS has been
shown to contain ordered membrane domains (Gaus et al.,
2005; Owen et al., 2010). However, the presence of lipid order
in microclusters is unclear. A study using FRET reported that
several lipid raft markers do not accumulate in microclusters,
suggesting that TCR microclusters form independently of lipid
rafts (Hashimoto-Tane et al., 2010). However direct visualization
of lipid order in activated T cells showed that the TCR resides
in ordered plasma membrane domains that aggregate upon
TCR engagement (Dinic et al., 2015). The role of lipid ordered
domains in T cell signaling should still be considered in models
of T cell activation (Courtney et al., 2018).

In addition to lipid-mediated phase separation, multivalent
protein interactions lead to phase transitions within
microclusters. LAT serves as an important scaffolding protein
by virtue of its multiple interactions with other adapters and
enzymes. Oligomerization of LAT mediated by multivalent
interactions between LAT, LAT-bound adaptors, and adaptor-
bound enzymes drives microcluster formation and has important
functional outcomes (Houtman et al., 2006; Kortum et al., 2011;
Coussens et al., 2013). In vitro reconstitution studies have
demonstrated that LAT microclusters form due to a biophysical
phase separation mediated by protein oligomerization (Su
et al., 2016). Thus, both lipid and protein-mediated phase
separation can create distinct physical compartments that
facilitate signaling.

Most of the studies discussed above were performed using
stimulatory surfaces such as antibody-coated cover glass or
lipid bilayer systems. This raises the concern of whether
such systems can accurately represent three-dimensional (3D)
membrane dynamics that would naturally occur in a conjugate
system of APC and T cell. With the advent of newer and

sophisticated imaging techniques such as LLSM, some have
started to capture the 3D membrane dynamics of T cell with
unprecedented speed and resolution. There is growing evidence
that indicates that dynamic membrane protrusions of T cells,
called microvilli, play a critical role in T cell activation. High-
resolution lattice lightsheet microscopy showed how microvilli
play a crucial role in actively scanning the surface of APC
for antigens (Cai et al., 2017). An approach using variable
angle TIRF (VA-TIRF; see Box 1 in Supplementary Material)
and super-resolution microscopy revealed the localization of
fluorescently labeled TCR and signaling molecules nano-
clustered at the tips of the microvilli (Jung et al., 2016; Ghosh
et al., 2020). All these results generate a unified concept that
preexisting nanoclusters or protein islands can be enriched
in specialized membrane domains within dynamic microvilli.
These nanoclusters can undergo intermixing and reorganization
after TCR ligation thereby bringing receptor, adaptor, and
signaling proteins into close proximity to generate intracellular
signaling events.

MICROCLUSTERS ARE ASSEMBLED IN
DISCRETE KINETIC STEPS

In contrast to the prediction of stochastic recruitment according
to the “Protein Island” model, Yi et al. showed that individual
proteins were recruited into the microcluster in a non-
stochastic and stepwise sequential manner. Live-cell TIRF-SIM
and TIRF microscopy approaches showed that, following TCR
engagement, ZAP-70 was first recruited to TCR microclusters,
followed by simultaneous recruitment of signaling and adaptor
domain proteins (LAT, SLP-76, GRB2, ADAP, VAV1, NCK,
and PLCγ). The simultaneous recruitment of LAT with its
associated adaptors, signaling, and enzyme proteins is compatible
with previous results, which established highly cooperative
protein–protein interactions and stochastic cross-linking of
multiprotein complexes (Houtman et al., 2006; Coussens et al.,
2013). Recruitment of signaling domain proteins also leads to
intracellular calcium flux, which indicates initiation of active
signaling at the microclusters (Figure 1).

Distinct kinetic lags were established between recruitment of
individual proteins in the microcluster. The assembly phase was
followed by a disassembly or signal attenuation phase marked
by recruitment of the E3 ubiquitin ligases, c-Cbl, which is
involved in internalization and degradation of LAT signaling
complexes (Balagopalan et al., 2007, 2011). LAT-bound signaling
domain proteins showed a bimodal dissociation behavior from
the microcluster. GRB2 and PLCγ showed slower dissociation
kinetics, while GADS and SLP-76 showed rapid dissociation.
Multiple mechanisms can be postulated for different kinetics
of dissociation, such as inherently different affinities; different
rates of dephosphorylation, ubiquitination, and endocytosis;
and distinct pulling forces from the actin network on
these structures (Barda-Saad et al., 2005; Yi et al., 2012;
Kumari et al., 2015).

The kinetics of molecular recruitment to microclusters were
shown to be sensitive to temperature and intracellular calcium
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levels. The kinetic lag between TCRζ and ZAP-70 showed
a linear inverse relationship with temperature. However, the
kinetic lag between ZAP-70 and GRB2 turned temperature-
independent above 30◦C. Because GRB2 recruitment depends
on LAT clustering, the temperature independence of the ZAP-70
and GRB2 kinetic lag at this temperature could be attributed to
the effect of temperature on membrane lipids, which can in turn
influence LAT clustering (Tanimura et al., 2003; Su et al., 2016).
Intracellular calcium was also found to have an impact on these
kinetic lags, with calcium flux coincident with longer kinetic lags.
Early microclusters that formed before calcium flux occurred
showed negligible kinetic lags, and kinetic lags increased with
time. A dose-dependent response in kinetic lags was observed
by varying calcium concentration in the medium (Yi et al.,
2019). This is consistent with an inhibitory role for calcium
in the recruitment kinetics of proteins. In support of calcium
flux dampening T cell signaling, our previous study reported
that calcium chelation led to increased phosphorylation of
signaling proteins and increased microcluster size (Balagopalan
et al., 2018). Interestingly, an increase in intracellular calcium
concentration led to reduced TCR mobility and promoted
actin polymerization (Dushek et al., 2008), suggesting that
calcium flux may regulate signaling protein kinetics via
multiple pathways.

Advanced understanding of the kinetics of recruitment of
molecules at the TCR microcluster have identified new “control
nodes” in the kinetic proof-reading model of TCR signaling.
According to this model, TCR signaling is a multi-step kinetic
process in which progression to a subsequent step is contingent
on achieving a “signaling threshold” or “signaling competent
state” at the preceding kinetic step. Therefore, the duration
(kinetic lag) and dissociation constant of each kinetic step is a
major determinant of its progression to the next step (McKeithan,
1995; Lever et al., 2014). The kinetic lags observed by Yi et al.
would directly feed into the kinetic parameters of a proof-reading
model. Kinetic lags are also drastically altered after calcium flux.
Therefore, TCR activation threshold and kinetic parameters of
the proof-reading model will also be different before and after
calcium flux. Calcium-dependent increases in kinetic lags can
also act as a negative feedback mechanism to limit TCR signaling
after a certain threshold. Kinetic lags between recruitment
of signaling domain proteins and c-Cbl are also important.
Recruitment of c-Cbl marks the dissociation of the signaling
complexes in the microclusters and contributes to the window
for active signaling at the microcluster. Thus, calcium-dependent
stepwise assembly of microcluster components followed by
bimodal dissociation of signaling proteins from microclusters
represent new modes of T cell signal regulation.

REGULATION OF SIGNALING FROM
MICROCLUSTERS VIA ENDOCYTOSIS
AND RECYCLING

Imaging of live T cells in real time during activation has
revealed the changing signaling components and dynamics
of microclusters. Soon after microclusters form, molecular

mechanisms are activated to disassemble them and regulate
the extent of signaling. These include recruitment of inhibitory
receptors or adapters that either compete for binding with
ligand or recruit phosphatases that allow for dephosphorylation
of tyrosine residues and stochastic release of SH2 domain-
containing proteins (Acuto et al., 2008; Yokosuka et al., 2010,
2012; Kong et al., 2019). Activation-induced protein endocytosis
at microclusters is another effective way to regulate signaling
duration by rapidly altering the subcellular locations of signaling
proteins (Balagopalan et al., 2009). The recruitment of the E3
ubiquitin ligase c-Cbl coincides with microcluster disassembly
and endocytosis of signaling molecules (Bunnell et al., 2002;
Yokosuka et al., 2005; Yi et al., 2019). Dynamic disassembly of
microcluster components indicates signal termination because
reducing the dissociation of microclusters results in increased T
cell signaling (Mossman et al., 2005; Barr et al., 2006; Balagopalan
et al., 2007; Nguyen et al., 2008; Hashimoto-Tane et al., 2010;
Lasserre et al., 2010; Vardhana et al., 2010).

Several studies have collectively shown that following T cell
activation, increased receptor endocytosis, diminished recycling,
and an increase in degradation causes a reduction in the
number of TCR molecules at the plasma membrane (Alcover
and Alarcon, 2000; Geisler, 2004). In a spatial context, signal
initiation is thought to occur at the periphery of the IS and
terminate at the cSMAC where TCRs are centrally accumulated
and then internalized (Lee et al., 2003; Varma et al., 2006).
A recent study using photoactivation to follow endocytosed
TCR in real time reported that TCR endocytosis increased
upon T cell stimulation and internalized TCR sorted into
an endosomal compartment marked by flotillins that control
recycling of TCR to the immunological synapse (Compeer
et al., 2018). The strength of TCR signal plays a role in
signal termination, with both weak and strong stimuli causing
recruitment of signaling microclusters in the pSMAC and
cSMAC, but strong ligands inducing TCR internalization from
the cSMAC (Cemerski et al., 2008). Surprisingly, a study using
Correlative Light and Electron Microscopy (CLEM; see Box 1

in Supplementary Material) revealed that the majority of the
centrally accumulated TCRs (in an IS formed on a lipid bilayer)
are located on extracellularmicrovesicles (Choudhuri et al., 2014)
that may serve as a channel for cell-to-cell communication with
the APC (Mittelbrunn et al., 2011). Studies from our laboratory
revealed that the dissipation of LAT and SLP-76 molecules
away from early sites of microcluster formation are endocytic
events (Barr et al., 2006; Balagopalan et al., 2007). While SLP-
76 is endocytosed in a clathrin-independent mechanism, LAT is
endocytosed via multiple pathways. After internalization from
the PM, a portion of LAT undergoes retrograde trafficking
to the Golgi (Carpier et al., 2018) and is delivered back to
the synapse in an anterograde trafficking pathway regulated by
golgin molecules (Zucchetti et al., 2019). Interestingly, in the
case of both TCR and the adapters SLP-76 and LAT, internal
pools of signaling-competent endosomes have been detected
(Barr et al., 2006; Yudushkin and Vale, 2010; Evnouchidou
et al., 2020), indicating that at least some of the endocytosed
molecules are still active. Signals emanating from complexes
located in endosomesmight be qualitatively and/or quantitatively
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different from signals generated from complexes located at the
plasma membrane.

As indicated by the recruitment of the E3 ligase c-Cbl
to microclusters, an important molecular mechanism that
determines the cellular fate of endocytosed signaling molecules
is ubiquitination. Inhibition of cellular ubiquitination increased
microcluster lifetime and signal persistence (Barr et al., 2006;
Vardhana et al., 2010). The Cbl family of ubiquitin ligases
promote the ubiquitination and degradation of ZAP-70, Lck,
LAT, SLP-76, Vav1, and WASP (Rao et al., 2000, 2002; Miura-
Shimura et al., 2003; Barr et al., 2006; Balagopalan et al.,
2007; Reicher et al., 2012). We have shown previously that
the endocytosis of microclusters containing LAT and SLP-76
is regulated by c-Cbl mediated ubiquitination, and inhibition
of c-Cbl function increases microcluster lifetime (Barr et al.,
2006; Balagopalan et al., 2007). Ubiquitin is a sorting signal
that regulates trafficking events within the endocytic pathway
(Piper et al., 2014), and ubiquitin-binding ESCRT-I protein
Tsg101 recognizes ubiquitinated chains of signaling proteins to
be transported to lysosomes (Vardhana et al., 2010). Another
important negative feedback mechanism is the phosphorylation
of the adapters SLP-76 by the serine–threonine kinase HPK1
(hematopoietic progenitor kinase 1). Phosphorylation of SLP-
76 on serine promotes 14-3-3 binding (Di Bartolo et al., 2007;
Lasserre et al., 2011), resulting in SLP-76 ubiquitination and

degradation (Wang et al., 2012). Thus, multiple endocytic
feedback loops operate to regulate the extent of signaling from
microclusters at the IS (Figure 2).

Consistent with a role for protein ubiquitination in signal
termination, a LAT mutant that cannot be ubiquitinated (LAT
2KR) displayed enhanced signaling (Balagopalan et al., 2011;
Kunii et al., 2013; Rodriguez-Pena et al., 2015). In a recent
study, we examined the correlation between LAT ubiquitination
and LAT cellular trafficking by comparing the cellular route
of 2KR and wild-type LAT. Though internalization of LAT
is Cbl and ubiquitin-dependent, ubiquitin-resistant 2KR LAT
and wild-type LAT were internalized at comparable rates,
indicating that LAT ubiquitination itself is not necessary for
internalization of LAT (Balagopalan et al., 2020). LAT is
predominantly monoubiquitinated (Balagopalan et al., 2011) and
though a single Ub is perhaps an insufficient endocytic signal,
the aggregate effect of multiple Ubs on multiple microcluster
proteins may trigger endocytosis (Piper et al., 2014). Critically,
LAT ubiquitination served as a signal for lysosomal trafficking
and degradation, thus preventing LAT recycling to the cell
surface. In 2KR LAT molecules that cannot be ubiquitinated,
mutant LAT continues to recycle back to the cell surface, thus
increasing the protein lifetime of LAT and providing a cellular
trafficking correlate for the enhanced function of 2KR LAT
(Balagopalan et al., 2020).

FIGURE 2 | Endosomal trafficking pathways to and off the T cell surface. T cell stimulation triggers the formation of microclusters. LAT molecules (and other signaling

molecules) in microclusters are phosphorylated (p) and ubiquitylated (u). These molecules are internalized into endosomes from which they can potentially signal. They

can then proceed to the lysosome where they are degraded or be recycled back to the cell surface. Recycling back to the cell surface can occur directly or via

retrograde trafficking to the golgi apparatus and anterograde trafficking from the golgi apparatus to the plasma membrane. These trafficking pathways also exist in

unstimulated cells but are increased upon T cell activation (indicated by thicker arrows).
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RECRUITMENT OF VESICLES
CONTAINING SIGNALING MOLECULES TO
THE IS

The IS is a site of bi-directional membrane trafficking. In addition
to endocytic events described above, polarized traffic of exocytic
vesicles to the IS is crucial for T cell function. During the
formation of the IS, the movement of the microtubule organizing
center (MTOC) toward the APC results in the directed secretion
of cytokines in helper T cells (Kupfer et al., 1991) and secretory
granules in cytotoxic T cells (Stinchcombe et al., 2006). Several
recent studies have described the vesicular delivery of signaling
molecules important in early activation of T cells. Signaling
molecules critical for T cell activation, such as TCRζ, Lck,
and LAT, are not present at the plasma membrane exclusively.
They also reside in distinct, non-overlapping intracellular
compartments (Soares et al., 2013) that are rapidly polarized
toward the IS upon T cell activation (Ehrlich et al., 2002; Bonello
et al., 2004; Das et al., 2004; Purbhoo et al., 2010). Signaling
proteins in vesicular pools are delivered to the IS differentially
via specific subpopulations of endocytic and exocytic machinery.
Multiple regulatory proteins, such as Rab GTPases (Patino-
Lopez et al., 2008; Carpier et al., 2018); t-SNAREs, SNAP-23,
and syntaxin 4, and v-SNARES, VAMP-3, and VAMP-7 (Das
et al., 2004; Larghi et al., 2013; Soares et al., 2013; Carpier
et al., 2018); IFT system protein IFT20 (Finetti et al., 2009,
2015); Sorting Nexins (Osborne et al., 2015); and the ARP
2/3 activating WASH complex (Piotrowski et al., 2013), have
been shown to play a significant role in the trafficking of
TCRζ and proximal signaling proteins to the IS. The functional
role of vesicular pools of signaling proteins were revealed in
studies in which perturbations of the regulatory proteins involved
in membrane trafficking interfered with T cell activation and
function. Inhibition of SNARE-mediated fusion by tetanus toxin
(Das et al., 2004), overexpression of dominant negative proteins
(Patino-Lopez et al., 2008), and siRNA-mediated silencing of
trafficking regulators (Finetti et al., 2009, 2015; Larghi et al., 2013;
Soares et al., 2013; Carpier et al., 2018) have all clearly confirmed
the importance of vesicular trafficking in T cell function. More
recently, capture assays (Zucchetti et al., 2019) and optogenetic
aggregation methods (Redpath et al., 2019) have emphasized
the importance of the precise spatial organization of endocytic
regulators in T cell activation.

Though the critical role of vesicular traffic of signaling
proteins in T cell activation has been clearly demonstrated, how
and when the vesicular pools of signaling molecules regulate T
cell activation remains less defined. The relative roles of vesicular
vs. cell surface LAT pools for phosphorylation of LAT and TCR
signal transduction has been controversial. While some studies
proposed that plasma membrane LAT is the predominantly
phosphorylated pool of LAT (Lillemeier et al., 2010; Sherman
et al., 2011; Balagopalan et al., 2013), others proposed that
docking or fusion of LAT vesicles at the IS is critical for LAT
phosphorylation (Williamson et al., 2011; Larghi et al., 2013;
Soares et al., 2013). Clues to the spatial and temporal contribution
of vesicular signaling proteins came from fast 4D imaging

using LLSM. LLSM enabled simultaneous imaging of surface
and vesicular pools at the initiation of T cell activation, and
revealed a role for both cellular pools. Early T cell activation was
observed to occur in two phases: a first phase when recruitment
of predominantly cell surface proteins formed microclusters, and
a second phase, when the large pool of vesicles associated with the
MTOC are recruited to the synapse (Figure 3) (Ritter et al., 2015;
Balagopalan et al., 2018). In the second phase, directedmovement
of vesicles between microclusters on microtubules was observed.
Vesicles displayed decreased speed and increased contact times at
microclusters. Microclusters displayed fluorescence oscillations
with an increase in fluorescence of LAT and signaling molecules
coincident with when vesicles interacted with microclusters
(Balagopalan et al., 2018). The observed oscillations indicate that
vesicles sustain T cell signaling via delivery of a second wave of
signaling molecules.

Once trafficked to the microcluster, LAT on vesicles could
be either trans-phosphorylated by ZAP-70 localized at the PM
or cis-phosphorylated once they fuse with the PM. There are
contradictory reports about whether LAT vesicles undergo fusion
with the PM. A flow cytometry approach to detect cell surface
recruitment of LAT did not detect an accumulation of fused
LAT at the PM (Larghi et al., 2013), leading to the conclusion
that LAT vesicles dock close to but do not fuse with the PM.
In contrast, interference with calcium-dependent vesicular fusion
either by chelation of calcium or silencing of the calcium sensor
synaptotagmin7 impeded microcluster formation, leading to a
model in which calcium-dependent exocytosis of vesicles drives
T cell signaling (Soares et al., 2013). Live-cell imaging using
LLSM to directly visualize this process captured increases in
LAT fluorescence when vesicles approached the IS. While the
increases in fluorescence could be representative of vesicle fusion,
a complete collapse of the vesicle was not observed (Balagopalan
et al., 2018). This leads to the possibility that either vesicles
dock transiently at microclusters or they undergo “kiss and run”
exocytosis (Alabi and Tsien, 2013). It should be noted that the
temporal acquisition speed of LLSM (4 s/frame) is too slow to
allow for capture of exocytic events that occur very rapidly.
A decrease in LAT signal from the vesicle after the flare is
indicative of vesicular LAT delivery to the PM. In addition,
no detectable LAT phosphorylation in subcortical vesicles was
observed (Purbhoo et al., 2010), lending support to the model
that LAT vesicles fuse with the synaptic membrane where LAT
phosphorylation occurs (Figure 3). Polarized vesicle transport
may also regulate the lipid composition at microclusters. A
study of lipid order of sub-synaptic vesicles showed that
they are not a homogenous population and vesicles display
different degrees of membrane lipid order. Interestingly, LAT
segregates into higher membrane order vesicles as it does on
the PM (Ashdown et al., 2018). Thus lipid order-based sorting
and delivery of cargo could contribute to maintaining lipid
composition in the microcluster vicinity (Gagnon et al., 2012;
Dinic et al., 2015).

Vesicle movement at the IS appears to be demarcated
by microcluster location (Purbhoo et al., 2010; Balagopalan
et al., 2018). Given the organization of the TCR and LAT
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FIGURE 3 | Two phases of early T cell activation. At early time points, vesicles containing signaling molecules are several microns away from the immune synapse,

while plasma membrane-resident LAT is phosphorylated by ZAP70 and moves laterally to be recruited to microclusters. Soon after, vesicles expressing LAT, VAMP7,

and Rabs are recruited to the immune synapse. These vesicles maintain and amplify signaling at the microclusters and interact dynamically with microclusters via

either docking, fusion, or kiss and run exocytosis at microcluster sites. ZAP70 may trans-phosphorylate LAT on vesicles or cis-phosphorylate LAT at the PM, once

vesicular fusion occurs (figure adapted from Balagopalan et al., Nature Communications 2018).

in adjacent spatial domains, vesicular trafficking could be
directed precisely to distinct nanoterritories at the IS. Spatial
confinement of exocytosis to specialized plasma membrane
regions has been reported in several biological systems (Yuan
et al., 2015), and an important next step will be to investigate
whether localized docking and/or exocytosis of vesicles occur at
microcluster “hotspots.” Vesicle docking and fusion machinery
such as SNARES (Chang et al., 2017) and exocyst components
(Saez et al., 2019) may serve to mark microclusters as
active docking or fusion zones. Microdomains enriched in
intracellular calcium (Wei et al., 2009) could locally target
calcium-dependent vesicle fusion. Just as differential usage
of membrane trafficking regulators enables orchestration of
endosome trafficking, defined spatial organization of fusion
molecules could allow for targeting of distinct signaling
molecules to discrete adjacent plasma membrane territories.
Precise localization of fusionmachinery and visualization of their
accumulation kinetics are important next steps in uncovering

the highly synchronized process of exocytosis and endocytosis at
the IS.

FUTURE GOALS

Increases in spatial and kinetic resolution in imaging
technologies will certainly allow for novel insights into
the interplay between the recruitment of molecules to the
IS, compartmentalization of signaling components, vesicle
movement, and location of signaling activity. The ability to
combine super-resolution microscopy with readouts of function
could provide insights into how signaling molecule organization
at the nanoscale correlates with T cell activation and immune
function. Multiplexing of biophysical measurements, high-
throughput readouts and super-resolution imaging will be
powerful next steps in uncovering novel insights to further
understand immune cell signaling at the nanoscale. Such
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advances could potentially be used to manipulate T cell function
in future immunotherapy.
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