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Abstract

To make good judgments people gather information. An important problem an agent needs

to solve is when to continue sampling data and when to stop gathering evidence. We exam-

ine whether and how the desire to hold a certain belief influences the amount of information

participants require to form that belief. Participants completed a sequential sampling task in

which they were incentivized to accurately judge whether they were in a desirable state,

which was associated with greater rewards than losses, or an undesirable state, which was

associated with greater losses than rewards. While one state was better than the other, par-

ticipants had no control over which they were in, and to maximize rewards they had to maxi-

mize accuracy. Results show that participants’ judgments were biased towards believing

they were in the desirable state. They required a smaller proportion of supporting evidence

to reach that conclusion and ceased gathering samples earlier when reaching the desirable

conclusion. The findings were replicated in an additional sample of participants. To examine

how this behavior was generated we modeled the data using a drift-diffusion model. This

enabled us to assess two potential mechanisms which could be underlying the behavior: (i)

a valence-dependent response bias and/or (ii) a valence-dependent process bias. We

found that a valence-dependent model, with both a response bias and a process bias, fit the

data better than a range of other alternatives, including valence-independent models and

models with only a response or process bias. Moreover, the valence-dependent model pro-

vided better out-of-sample prediction accuracy than the valence-independent model. Our

results provide an account for how the motivation to hold a certain belief decreases the need

for supporting evidence. The findings also highlight the advantage of incorporating valence

into evidence accumulation models to better explain and predict behavior.

Author summary

People tend to gather information before making judgments. As information is often

unlimited a decision has to be made as to when the data is sufficient to reach a conclusion.

Here, we show that the decision to stop gathering data is influenced by whether the data

points towards the desired conclusion. Importantly, we characterize the factors that

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007089 June 27, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gesiarz F, Cahill D, Sharot T (2019)

Evidence accumulation is biased by motivation: A

computational account. PLoS Comput Biol 15(6):

e1007089. https://doi.org/10.1371/journal.

pcbi.1007089

Editor: Ross Otto, McGill, CANADA

Received: July 25, 2018

Accepted: May 10, 2019

Published: June 27, 2019

Copyright: © 2019 Gesiarz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All files are available

from the Github https://github.com/affective-brain-

lab/Gesiarz_Evidence_Motivation.

Funding: Funded by a Wellcome Trust Fellowship

214268/Z/18/Z to TS. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: Authors FG and TS have no

conflict of interests. DC declares to have been

employed by Google LLC, Mountain View, at the

time of preparing the article for publication.

http://orcid.org/0000-0002-3355-8049
http://orcid.org/0000-0002-8384-6292
https://doi.org/10.1371/journal.pcbi.1007089
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007089&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007089&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007089&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007089&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007089&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007089&domain=pdf&date_stamp=2019-06-27
https://doi.org/10.1371/journal.pcbi.1007089
https://doi.org/10.1371/journal.pcbi.1007089
http://creativecommons.org/licenses/by/4.0/
https://github.com/affective-brain-lab/Gesiarz_Evidence_Motivation
https://github.com/affective-brain-lab/Gesiarz_Evidence_Motivation


generate this behaviour using a valence-dependent evidence accumulation model. In a

sequential sampling task participants sampled less evidence before reaching a desirable

than undesirable conclusion. Despite being incentivized for accuracy, participants’judg-

ments were biased towards believing they were in a desirable state. Fitting the data to an

evidence accumulation model revealed this behavior was due both to the starting point

and rate of evidence accumulation being biased towards desirable beliefs. Our results

show that evidence accumulation is altered by what people want to believe and provide an

account for how this modulation is generated.

Introduction

Judgments are formed over time as information is accumulated [1–3]. When given an oppor-

tunity to sample unlimited data an individual can decide to continue gathering evidence until

a certain threshold is reached [4,5]. This decision involves the trade-off between time and

accuracy–an exchange that has been well-studied [6–8].

It seems probable, however, that the decision to stop gathering evidence would also be

influenced by the desire to hold one belief over another [9, 10]. For example, people are less

likely to seek a second medical opinion when the first physician delivers good news than when

she delivered bad news [11]. The problem with such observations is that they often confound

desirability with probability–a patient might seek a second opinion after receiving a dire diag-

nosis simply because the diagnosis is rare (and thus seems unlikely), not because it is

undesirable.

Here, we set out to empirically examine in a controlled laboratory setting whether and how

the desire to hold a belief influences the amount of information required to reach it, when all

else is held equal. Presently, we have limited understanding if and how motivation alters evi-

dence accumulation, despite the potential for such effects to dramatically impact people’s deci-

sions in domains ranging from finance to politics and health [9–11]. To gain insight into the

underlying process we tease apart the computational elements that may be influenced by

motivation.

Specifically, we hypothesized that the desire to hold one judgment over another could alter

information accumulation in at least two ways. First, people may be predisposed towards

desired judgments before observing any evidence at all (for example, one may believe it will be

a nice day before checking the weather or glancing outside) [12]. A second, not mutually

exclusive possibility is that a desirable piece of evidence (e.g., a ray of sunlight) drives beliefs

towards a desirable judgment (‘it will be a nice day’), more so than an undesirable piece of evi-

dence (e.g., the sound of rain) towards an undesirable judgment (‘it will be a grey day’) [13].

These two distinct mechanisms will result in the same observable behavior. In particular, less

information will be gathered to support desirable judgments than undesirable, such that the

former would be reached faster.

To dissociate these mechanisms, we use a computational approach. We adopt a sequential

sampling model to model noisy evidence accumulation towards either of two decision thresh-

olds [1,14,15]. The model allows estimating both (i) the starting point and (ii) rate of evidence

accumulation, reflecting the quality of information processing [14]. This enables us to ask if

either of these factors, or both, are influenced by motivation.

In our task participants witness various events that are contingent upon which one of two

hidden states they are in. One state was associated with greater rewards than losses (desirable

state) and the other with greater losses than rewards (undesirable state). The participants had

Valence-dependent evidence accumulation
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no control over which state they were in; their task was simply to judge the state, gaining addi-

tional rewards for accurate judgments and losing rewards for inaccurate judgments. Thus, it is

in participants’ best interest to be as accurate as possible and they were allowed to accumulate

as much evidence as they wish before making a judgment. We examine whether and how the

accumulation process is sensitive to participants’ motivation to believe that they are in one

state and not the other.

Results

We tested 84 participants on “The Factory Game” (Fig 1). For each trial in this game, partici-

pants saw a series of telephones and televisions that ran across a conveyor belt on screen. Their

task was to decide whether the series was being generated by a telephone factory (which mostly

produced telephones, but sometimes produced televisions) or a television factory (which

mostly produced televisions, but sometimes produced telephones). They received a reward for

being accurate and a penalty for being inaccurate. The reward and penalty amounts were

unspecified and said to differ on each trial, preventing participants from using any strategies

based on a computation of an exact expected value.

Additionally, participants were told that they had “invested” in either a telephone or televi-

sion factory. In the context of the game, this meant that they received a bonus payment when

they happened to be visiting the type of factory they had invested in (desirable factory trials)

and a penalty when visiting a factory they had not invested in (undesirable factory trials). The

amount of points received or lost for being in a desirable and undesirable factory was not spec-

ified and said to differ on each trial. Crucially, this bonus/loss was not dependent upon their
judgment, so even though it was preferable to be visiting a rewarding factory, there was no

incentive to bias their judgment in that way. We ensured that participant understood this by

implementing comprehension questions.

We also ran a replication and extension study (N = 92), which is described in Supplemen-

tary Information. The results of this second study replicate the behavioral and modeling

results described below.

Participants are more likely to conclude they are in a desirable factory than

undesirable factory and require weaker evidence to do so

The proportion of factories participants judged as desirable was significantly greater than the

number they actually encountered (mean = 53.7%, t(83) = 3.42, p< 0.0001). They gathered

Fig 1. Task. On each trial participants saw TVs and phones moving along the screen and had to guess if they were in a TV factory (that sometimes

produces telephones) or a phone factory (that sometimes produces TVs). They were incentivized for accuracy and could enter their judgment whenever

they liked. Each participant was “invested” in one factory. On trials where they happened to be in that (desirable) factory they gained points, on trials in

which they happened to be in the other (undesirable) factory they lost points.

https://doi.org/10.1371/journal.pcbi.1007089.g001
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less samples before concluding they were in a desirable than undesirable factory (t(83) = -3.10,

p< 0.01) and required a smaller proportion of samples to be consistent with their judgment

when reaching that conclusion. The latter point is shown by fitting a psychometric function to

the data which relates the percentage of TVs observed on a trial to participants’ judgment on

whether they are visiting a TV or telephone factory. This was done separately for participants

for whom the TV factory was desirable and for whom it was undesirable. As expected, both

functions show that the greater the proportion of TVs on a trial the more likely participants

are to judge the factory as a TV factory (TV factory desirable: β1 = 25.24, 95% CI [21.20,

29.28], TV factory undesirable: β1 = 24.34, 95% CI [20.81, 27.88]). Crucially, as can be observed

in Fig 2A, the psychometric function of participants for whom the TV factory was desirable

(blue line) was shifted left compared to the psychometric function of participants for whom

the TV factory was undesirable (red line). This means that for the same proportion of TV sti-

muli participants are more likely to judge they are in the TV factory if the TV factory is desir-

able than undesirable (indifference parameter was higher when the TV factory was desirable:

β0 = 0.28, 95% CI [0.05, 0.50] than undesirable: β0 = -0.35, 95% CI [-0.60, -0.23]).

As participants concluded they were in a desirable factory more often than undesirable fac-

tory, they were more likely to falsely believe they were in a desirable factory when in an unde-

sirable factory (30.96% of undesirable factories wrongly categorized) than to falsely believe

they were in an undesirable factory when in a desirable factory (only 24.78% of desirable facto-

ries wrongly categorized), t(83) = 4.85, p< 0.0001. Put another way, a larger proportion of

desirable factories were correctly categorized than undesirable factories. Note, however, that

desirable and undesirable responses did not differ in accuracy (t(83) = -0.63, p = 0.53), nor

were these responses different in their speed-accuracy trade-off. In particular, we divided trials

to fast and slow for each participant based on their median reaction time. We then calculated

the proportion of accurate fast responses and accurate slow responses separately when partici-

pants concluded they were in a desirable and undesirable factory. These proportions were then

subjected to a 2 (speed: fast/slow) by 2 (response: desirable/undesirable) ANOVA. We found a

main effect of speed on accuracy, with slow responses being more accurate than fast responses

(F = 24.88, p< 0.0001). However, as mentioned above there was no effect of response desir-

ability on accuracy (F = 0.46, p = 0.50), nor an interaction between response desirability and

speed (F = 1.13, p = 0.29).

Fig 2. Participants require weaker supporting evidence to reach a desirable conclusion, a pattern that is reproduced by the valence-dependent model. Fitted

psychometric function on (A) participants’ data reveals that the probability of judging a factory as a TV factory increases with proportion of TVs observed. Importantly, a

smaller proportion of TVs is needed to judge a factory as a TV factory when the factory is desirable than when it is undesirable. (B) The same pattern is observed when

plotting simulated data generated from winning model 4 (see Table 1) in which both the starting point of the accumulation and the drift rate are valence-dependent, but

not when (c) plotting simulated data generated from a valence-independent model, where starting point and drift rate are not modulated by valence.

https://doi.org/10.1371/journal.pcbi.1007089.g002
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In sum, the results show that participants were more likely to believe they were in a desir-

able factory. They gathered less samples before making these judgments and required a smaller

proportion of the samples to be consistent with said belief. We next sought to understand how

this behavior was generated by characterizing the underlying computations that give rise to

the behavior. In particular, the bias we observed may have emerged if valence was modulating

(i) the starting point of the accumulation process; (ii) the rate of evidence accumulation; or

(iii) both. To tease apart these possible mechanisms we modeled the data as a drift-diffusion

process.

Starting point and drift rate are valence-dependent. Responses were modeled as a drift-

diffusion process [1, 14, 15] with the following parameters: (1) t0—amount of non-accumula-

tion time; (2) a—distance between decision thresholds; (3) z—starting point of the accumula-

tion process; and (4) v–drift rate. The drift rate is the rate of evidence accumulation, which we

allowed to vary on a trial-by-trial basis depending on the consistency of evidence (see Meth-

ods). We ran six models in total. In models 1,2,5 the starting point was fixed to 0.5, while in

models 3,4,6 we allowed the starting point to vary (thus allowing a starting point bias). In mod-

els 2,4,5,6, we allowed the drift rate to vary depending upon whether the participant was visit-

ing a desirable factory or an undesirable factory (thus allowing a process bias). In addition,

models 5 and 6 allowed the process bias to interact with the difficulty of the trial. See Method

for further details.

The Deviance Information Criterion (DIC), a generalization of the Akaike Information Cri-

terion for hierarchical models, was calculated for each model. The DIC scores indicated that

Model 4, which included a valence dependent starting point and drift rate, outperformed all

other models (Fig 3A). In this model the starting point (z) was significantly closer to the deci-

sion threshold for judging a factory as desirable (group level estimate z = 0.512, 95% CI [0.506,

0.519], significantly greater than a neutral starting point of 0.5). This pattern was observed in

62% of participants’ individual z estimates (Fig 3B). The bias in drift rate β2 was significantly

greater than 0, such that drift rate was greater when in a desirable than undesirable factory

(group level estimate β2 = 0.096, 95% CI [0.082, 0.111]). This pattern was observed in 87% of

participants’ individual β2 estimates (Fig 3C). The bias in drift rate and starting point parame-

ters were not significantly correlated (R = 0.15, p = 0.16). The results imply both that partici-

pants are poised to reach a desirable conclusion and that desirable evidence is given greater

credence than undesirable evidence. These results suggest that evidence accumulation is

valence dependent with motivation biasing both the starting point and drift rate. Using Bayes-

ian Predictive Information Criterion (BPIC) for hierarchical models [16] instead of DIC

revealed the same results (Table 1). BPIC applies a stronger penalty for model complexity.

Our replication study also returned an identical pattern of results—a DDM model in which

drift rate and starting point were valence-dependent provided the best fit to the data (supple-

mentary material).

To evaluate whether the above model specifications would benefit from including collaps-

ing boundaries rather than a fixed decision threshold, we also fitted a model where the deci-

sion threshold was expressed as a Weibull cumulative distribution function (fit individually to

each participant; see Methods). The results of this exercise suggest that the observed data was

unlikely to be generated by a process with collapsing boundaries, as the model with fixed

boundaries outperformed the model with collapsing boundaries both when participants

judged a factory as desirable (AIC: fixed = -626.42, collapsing = -277.8616) and when judging

a factory as undesirable (AIC: fixed = -597.38, collapsing = -263.2509). The parameters

describing when the boundaries collapse (scale parameter difference between desirable and

undesirable condition = 0.034, 95% CI [-0.66, 0.73], t(83) = 0.099, p = 0.92) and to what extent

(scale parameter difference between desirable and undesirable condition = -0.66, 95% CI

Valence-dependent evidence accumulation
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[-3.23, 2.02], t(83) = -0.49, p = 0.63) did not differ as a function of response type, suggesting

that any observed biases were unlikely a result of a difference in collapsing decision thresholds.

Valence-dependent model provides better out of sample predictive accuracy than

valence-independent model. To test for predictive accuracy, we fitted both the winning

model (which includes valence dependent drift rate and starting point) and the valence-inde-

pendent model to data from even trials and evaluated how well the models predicted responses

on odd trials using mean absolute error (MAE) as a measure of fit (Fig 4). The winning model

predicted log reaction times better than the valence-independent model (MAE valence-depen-

dent = 0.66, MAE valence-independent 0.70; comparison: t(3295) = -5.49, p< 0.0001), as well

as judgements (MAE valence-dependent = 0.098, MAE valence-independent 0.110; compari-

son: t(3295) = -4.10, p< 0.0001) and accuracy (MAE valence-dependent = 0.097, MAE

valence-independent = 0.108; comparison: t(3295) = -3.89, p< 0.0001). We fit a psychometric

function to each of the model’s simulated responses. This clearly shows that while the valence

dependent model reproduces the pattern of observed results (Fig 1B; indifference point for

desirable β0 = 1.37, 95% CI [0.40, 2.33] vs. undesirable β0 = -1.91, 95% CI [-2.41, -1.42]), the

Fig 3. Drift-Diffusion model with valence-dependent starting point and drift rate provides the best fit. (A)

Comparison of DIC scores reveals that all valence-dependent models perform better than the valence independent

model. The same results were observed when comparing Bayesian Predictive Information Criterion scores [16], see

Table 1. A model including a valence dependent drift rate and starting point outperformed all other tested

specifications according to both measures. Models are ordered as in Table 1. (B & C) A histogram of individuals’

parameter estimates. The green line represents the best fitting normal distribution. The dashed line marks the value of

unbiased parameters. (B) For 62% of participants, the estimated starting point was biased towards the desirable

boundary (to the right of dashed line). (C) For 87% of participants, the estimated drift rate was greater when in the

desirable than undesirable factory (bias to the right of dashed line).

https://doi.org/10.1371/journal.pcbi.1007089.g003

Table 1. Drift diffusion model specifications.

Number Model Starting point (z) Drift Rate (v) DIC BPIC

1. Valence independent z = 0.5 v = β0+β1evidence 28695 28937

2. Valence dependent

drift rate

z = 0.5 v = β0+β1evidence+β2factory desirability 28521 28821

3. Valence dependent starting point 0<z<1 v = β0+β1evidence 28534 28828

4. Valence dependent drift rate and starting point 0<z<1 v = β0+β1evidence+β2factory desirability 28459 28790

5. Valence dependent

drift rate interacting with difficulty

z = 0.5 v = β0+β1evidence+β2factory desirability � evidence 28670 28926

6. Valence dependent

starting point and drift rate interacting with difficulty

0<z<1 v = β0+β1evidence+β2factory desirability � evidence 28522 28831

https://doi.org/10.1371/journal.pcbi.1007089.t001
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valence independent model did not (Fig 1C; indifference point for desirable β0 = -0.17, 95%

CI [-0.53 0.17] vs. undesirable β0 = -0.15, 95% CI [-0.47, 0.16])

Discussion

The findings show that motivation has a profound effect on the process by which evidence is

accumulated. On trials in which participants indicated they believed the state was desirable,

they ceased gathering data earlier and required a smaller proportion of samples to be consis-

tent with that conclusion. We used a computational model to characterize the underlying fac-

tors that may generate this behavior. The model revealed two factors; first, participants began

the process of evidence accumulation with a biased starting point towards the desired belief.

Thus, they required less evidence to reach that boundary. Second, the drift rate–the rate of

information accumulation [14]–was greater on trials in which participants were in the desir-

able state than the undesirable state. If only a bias starting point was observed, this would have

indicated that people might make fast errors, but with time/evidence would have corrected

their initial biases. The existence of a process bias, however, makes correction more difficult.

While participants incorporate both desirable and undesirable evidence into judgments, the

larger weight assigned to desirable evidence means that biases could increase over time with

more evidence accumulation. These results indicate that the temporal evolution of beliefs is

influenced by what people wish to be true and that evidence accumulation is valence depen-

dent. That is, the rules of accumulation depend on whether the data is favorable or

unfavorable.

Most learning models [17–19] assume that agents learn from information they encounter,

but that the learning process itself is not influenced by whether the evidence supports a desired

or undesired conclusion. This study suggests this assumption is likely false. By allowing the

parameters of a standard evidence accumulation model to vary as a function of the desirability

of the evidence we were able to better explain and predict participants’ behavior. We chose to

model the data with a drift-diffusion model because its components mapped onto the two

alternatives of desirability bias in judgment. These components have been increasingly

Fig 4. Valence-dependent model provides better predictive accuracy than valence-independent model. We simulated data on odd trials, based on parameter

estimates obtained from fitting the data on even trials, separately for the winning valence-dependent model and the valence independent model. For each trial we

calculated (A) the absolute difference between the observed RT and the simulated RT for each model and then averaged these quantities for each participant. We did

the same for participants’ (B) judgments (i.e., desirable or undesirable responses coded as 1 and 0) and (C) accuracy (i.e., correct or incorrect responses coded as 1 or

0). For all three measures mean absolute errors were significantly lower for predictions arising from the valence-dependent model than the valence-independent

model. ��� P< 0.001, Error Bars SEM.

https://doi.org/10.1371/journal.pcbi.1007089.g004
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validated through targeted manipulations [20] and associated with specific neural and physio-

logical correlates [21–25]. The good fit of the model to our data, as well as the alignment of the

model results with the behavioral analyses vindicates the choice. We speculate that incorporat-

ing valence into other classes of learning models will also increase their predictive accuracy.

Our findings are in accord with previous suggestions that people hold positively biased pri-

ors [12] and update their beliefs more in response to good than bad news [13,26–29]. We spec-

ulate that biased evidence accumulation could be due to biases in perception [30, 31],

attention [32, 33] and/or working memory [34, 35]. For example, participants may have

attended to desirable stimulus to a greater extent than the undesirable stimulus, such that the

former were assigned greater weight when forming beliefs. Such stimulus could also be main-

tained in working memory longer. These biases are thought to be automatic and do not

require large cognitive resources [31, 36]. Here, we show such biases manifest into differential

patterns of evidence sampling and accumulation. Our results also support a previous demon-

stration that people need less evidence to reach desirable conclusions in the domains of health

and social interaction [9]. We go further in evidencing this in a situation where (i) participants

are incentivized for accuracy, (ii) the desirable and undesirable conditions differ only on desir-

ability and (iii) we provide insight to the underlying computations.

In sum, the current study describes how the motivation to hold a certain belief over another

can decrease the need for supporting evidence. The implication is that people may be quick to

respond to signs of prosperity (such as rising financial markets)–forming desirable beliefs even

when evidence is relatively weak- but slow to respond to indictors of decline (such as political

instability)–forming undesirable beliefs only when negative evidence can no longer be dis-

carded. Indeed, in our study participants were more likely to hold positive false beliefs (falsely

believing they are in the desirable factory when in fact they were in the undesirable factory)

than negative false beliefs (falsely believing they are in the undesirable factory when in fact they

were in the desirable factory). While both positive and negative false beliefs resulted in a mate-

rial cost, we speculate that positive false beliefs may have non-monetary benefits. In particular,

it has been hypothesized that beliefs, just like material goods and services, have utility in and of

themselves [30–36]. In certain circumstances it is possible that the increase in utility from false

beliefs themselves may be greater than the material utility lost, resulting in net benefit.

Methods

Participants

We recruited 100 participants (Mage = 34.48, 44% female) from Amazon Mechanical Turk

(www.mturk.com). To qualify for participation, participants had to be resident in the United

States. Participants were paid $4.5 for their participation and were promised an unspecified

performance related bonus for a task that was expected to take 30 minutes. The study was

approved by the ethics committee at University College London. Informed written consent

was gained from participants.

Procedure

Factory game task. Participants played 80 trials of the “Factory Game”. They began each

trial by pressing the space bar, after which they witnessed an animated sequence of televisions

and telephones passing along a conveyor belt. Each object would take 400 ms to traverse the

belt with a 150 ms lag between stimuli.

There were two types of trials: Telephone Factory trials and Television Factory trials. In

telephone factory trials the probability of each item in the animated sequence being a tele-

phone was 0.6. and of being a television 0.4. For Television Factory trials the proportion was

Valence-dependent evidence accumulation
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reversed. The current trial type was randomly determined with replacement on every trial with

an equal probability for each trial type.

Participants were tasked with judging whether they were in a Telephone Factory trial or

whether they were in a Television Factory trial. Since the trial type was not directly observable,

their means of doing this was through reverse inference over the sequence of objects they were

seeing. Participants were free to respond as soon as they wished after initiating the trial and the

sequence would continue until they made their choice.

Participants began the game with an endowment of 5000 points. Each 100 points was worth

1 cent. One of the two factory types was randomly assigned per participant to be the desirable

factory type and the other to be an undesirable type. Participants were informed that each time

they visited the desirable factory, they would win an unspecified number of points, and each

time they visited the undesirable factory, they would lose an unspecified number of points. Cru-
cially, this bonus was entirely outside of the participant’s control, i.e. it was not affected by the
judgments the participant made. Separately, participants were informed that they would earn an

unspecified number of points for making a correct judgment and lose an unspecified number

of points for making an incorrect judgment. The magnitude of each unspecified bonus/loss are

independent of each other, potentially unequal and vary randomly on each trial.

We dropped trials where the participant made their judgment before seeing a second item.

In cases where a participant did this in over half their trials, we assumed that participant was

not appropriately engaging with the task and eliminated the entirety of their trials. We

dropped 10 participants for this reason, as well as a further 123 responses made before seeing

second item. We additionally excluded 3 participants whose average accuracy in the task was

two standard deviations below the mean of the sample (i.e. for whom accuracy was below

53.28%; mean accuracy of the sample was 71.24%), assuming that these participants were

guessing rather than providing their answers based on presented evidence. Finally, 3 partici-

pants were excluded as possible bots. These included "participants" who had at least two of the

following indicators: nonsense answers to open-ended questions and/or IPs originating out-

side of the region targeted by Mturk and/or reaction times at regular intervals (i.e. button

presses at exactly the same millisecond after the start of the trial) in more than 10% of trials

and/or comprehension questions at chance level. After the above exclusions, we performed the

analysis on 84 participants, and a total of 6597 trials. The same exclusion criteria are applied in

the replication and control studies.

Training. Participants received extensive instructions prior to playing the game, and were

required to answer multiple choice comprehension check questions on the key points of the

task, with the question repeated until they either chose correctly or reached three times, upon

which the correct answer was displayed to them. The comprehension check questions

addressed the following key points of how the game worked: that telephone factories mostly

produced telephones, but sometimes produced televisions; investment bonus was independent

of the judgments they made; which factory was their desirable factory; and that trial types were

randomly determined and it was not guaranteed that they would see exactly the same amount

of each type of factory.

Participants then played a practice session of 20 trials, where the trial type was visibly dis-

played to them, so they could have prior experience of the outcome contingencies and the trial

type distribution.

Data analysis

Psychometric function. To relate participants’ judgments to the strength of evidence they

observed we fitted a psychometric function, using a generalized mixed effects equivalent of a
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logistic regression, with fixed and random effects for all independent variables. We fitted these

functions separately for participants for whom TV factory was desirable and for whom TV fac-

tory was undesirable.

P TVð Þ ¼
1

1þ e� ðb1X� b0Þ

Where P(TV) is the probability of a participant indicating they are in a TV factory; X is the

proportion of TV stimuli out of all stimuli observed on a trial. This variable was centred, thus

ranging from 0.5 when all samples were TVs to -0.5 when all samples were phones; β0 is the

indifference point–reflecting the proportion of TVs required to respond TV 50% of the time.

If β0 = 0, participants would indicate they are in a TV factory half the time when half the sam-

ples were TVs. When β0 is low the function will move left and vice versa; β1 is the slope, reflect-

ing by how much the probability of a participant indicating they are in a TV factory increases

when the proportion of TVs increases by one unit.

RT and number of samples. As stimuli were presented at a steady pace, the number of

samples drawn was highly correlated with reaction times (R = 0.99, p< 0.00001) and thus

these two measures can be thought of as interchangeable. As the number of samples drawn

before making a judgment was non-normally distributed and had a heavy positive skew, we

log-transformed this variable [37].

Speed-accuracy trade-off. To examine speed-accuracy trade-off we divided the trials into

fast and slow, based on median reaction time of the participant, and then calculated the aver-

age accuracy of desirable and undesirable responses within these categories. We performed a

2x2 ANOVA, with average accuracy as a dependent variable, and response (desirable/undesir-

able) and speed (fast/slow) as independent factors.

Drift-diffusion modelling. Our aim in modeling our task using the drift-diffusion frame-

work was to assess the contribution of both the starting point and drift rate to the desirability

bias we saw in our data. To that end, we implemented and compared six different specifica-

tions of a drift-diffusion model (DDM; see Table 2).

In particular, in models with valence-independent starting point its value was fixed at 0.5.

In models with valence-dependent staring point, its value could vary between 0 and 1. In mod-

els with an unbiased drift rate the parameter was symmetric for desirable and undesirable fac-

tories (v and -v). In models with biased drift rate the model additionally included a term

reflecting the difference between drift rates for desirable and undesirable factories (β3factory
desirability). “Factory desirability”—is the true factory visited coded as 1 for desirable factories

and 0 for undesirable factories. Moreover, following an approach used previously [18, 19], in

all cases the drift rate was allowed to vary on each trial as a function of the proportion of

Table 2. Variants of drift-diffusion model.

Number Model Starting point (z) Drift Rate (v)

1. Valence independent z = 0.5 v = β0+β1evidence
2. Valence dependent

drift rate

z = 0.5 v = β0+β1evidence+β2factory desirability

3. Valence dependent starting point 0<z<1 v = β0+β1evidence
4. Valence dependent drift rate and starting point 0<z<1 v = β0+β1evidence+β2factory desirability
5. Valence dependent

drift rate interacting with difficulty

z = 0.5 v = β0+β1evidence+β3factory desirability � evidence

6. Valence dependent

starting point and drift rate interacting with difficulty

0<z<1 v = β0+β1evidence+β3factory desirability � evidence

https://doi.org/10.1371/journal.pcbi.1007089.t002
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samples observed that are consistent with the true state (β1evidence). This variable was cen-

tred, ranging from 0.5 when all samples were consistent with the true state to -0.5 when all

samples were inconsistent with the true state. All models also included parameters for the deci-

sion threshold (α) and non-decision time (t0).

β0 is a constant.

β1 is the weight by which the evidence alters the drift rate.

β2 is a bias term reflecting an additional weight added to the drift rate as a function of the

factory desirability. Positive values indicated a bias towards desirable judgements, and negative

values indicated a bias towards undesirable judgements.

β3 is the weight put on the interaction term, allowing the evidence to alter the drift rate dif-

ferently in desirable and undesirable factories.

We used the HDDM software toolbox [38] to estimate the parameters of our models. The

HDDM package employs hierarchical Bayesian parameter estimation, using Markov chain

Monte Carlo (MCMC) methods to sample the posterior probability density distributions for

the estimated parameter values. We estimated both group-level parameters as well as parame-

ters for each individual participant. Parameters for individual participants were assumed to be

randomly drawn from a group-level distribution. Participants’ parameters both contributed to

and were constrained by the estimates of group-level parameters.

In fitting the models, we used priors that assigned equal probability to all possible values of

the parameters. Also, since our “error” RT distribution included relatively fast errors we

included an inter-trial starting point parameter (sz) for both models to improve model fit [39].

We sampled 20000 times from the posteriors, discarding the first 5000 as burn in. MCMC are

guaranteed to reliably approximate the target posterior density as the number of samples

approaches infinity. To test if the MCMC converged within the allotted time, we used Gel-

man-Rubin statistic on 5 iterations of our sampling procedure. The Gelman–Rubin diagnostic

evaluates MCMC convergence by analyzing the difference between multiple Markov chains.

The convergence is assessed by comparing the estimated between-chains and within-chain

variances for each model parameter. In each case, the Gelman-Rubin statistic was close to one

(<1.1), suggesting that MCMC were able to converge. To assess if the parameters describing

the bias in prior and drift rate are significantly different from a valence-independent specifica-

tion of the model, we compared 95% confidence intervals of the parameters’ values against the

theoretically unbiased values.

In addition, model fits were compared using the Deviance information criterion, which is a

generalization of the Akaike Information Criterion (AIC) for hierarchical models. The DIC is

commonly used when the posterior distributions of the models have been obtained by Markov

chain Monte Carlo (MCMC) simulation. It allows one to assess the goodness of fit, while

penalizing for model complexity [40].

Cross-validation. To further validate the model and check its predictive accuracy, we fit-

ted again the valence dependent and valence independent models using data from only even

trials. We then used the parameter estimates to predict log RTs, judgments and their accuracy

for odd trials for each participant. The simulation was repeated 1000 times with normally dis-

tributed random noise added to the drift rate averaging predicted responses for each trial. We

then calculated mean absolute error between predicted and observed responses (RTs, judg-

ments and judgment accuracy). We compared the average mean absolute errors between the

models using a paired t-test. We also fitted a psychometric function to the simulated data.

Collapsing boundaries. Decision boundaries may collapse over time rather than remain

fixed, reflecting increasing impatience or urgency of decisions [41, 42]. To investigate if such a

model fits our data we fitted a pure diffusion model with a fixed decision threshold and a diffu-

sion model with a collapsing boundary, modeled as a Weibull cumulative distribution function
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[41]:

ut ¼ a � 1 � exp �
t
l

� �k
 !" #

� a � a0ð Þ

Where ut is a threshold at time t, a is the initial value of the boundary, a' is the asymptotic

value of the boundary (i.e. the extent to which the boundary collapses), λ and k are the scale

and shape parameters of the Weibull function, influencing the stage at which the boundary

starts to collapse and the steepness of the collapse, respectively. The shape parameter k was

fixed to 3, corresponding to a “late collapse” decision strategy, following other studies showing

that it’s a typical strategy implemented by participants [41].

A judgment is made when the accumulated difference between the number of samples sup-

porting one type of the factory over the other exceeded one of two symmetric boundaries, ±ut.
The accumulated difference was computed as:

Xt ¼ Xt� 1 þ dt þ εt; ε � Nð0; s
2Þ

Where dt is the difference between number of evidence points at time t, and εt is a random

noise sampled from a normal distribution with a mean of 0 and variance of σ2. X1 denoted a

bias in a starting point.

Model parameters were fitted to each participant’s data for desirable and undesirable

responses separately using maximum likelihood estimation method. For each trial, we simu-

lated the models 1000 times for a given set of proposal parameters and calculated the propor-

tion of trials in which the model RT matched the empirical data. Denoting this proportion by

pi, we maximized the likelihood function L(D|θ) of the data (D) given a set of proposal parame-

ters (θ), by:

LðDjyÞ ¼
YN

i¼1

pi

To find the best set of proposal parameters we first used an adaptive grid search algorithm

and then used the five best sets of proposal parameters as starting points to a Simplex minimi-

zation routine [43]. In order to evaluate the quantitative fits of the models, we used Akaike

Information Criterion.
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