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Purpose: To map and identify the genetic defect underlying autosomal dominant cataract segregating in a 5-generation
Caucasian American family.
Methods: Genomic DNA was prepared from blood leukocytes, genotyping was performed using microsatellite markers,
and logarithm of the odds (LOD) scores were calculated using the LINKAGE programs. Mutation profiling was performed
using direct exon cycle-sequencing and restriction fragment analysis. Protein function effects were evaluated using in
silico prediction algorithms.
Results: Significant evidence of linkage was obtained at marker D13S175 (maximum LOD score [Zmax]=3.67; maximum
recombination fraction [θmax]=0.04) and D13S1316 (Zmax=2.80, θmax=0.0). Haplotyping indicated that the disease lay in
the ~170 Kb physical interval between D13S1316 and D13S175, which contained the gene for gap-junction protein alpha-3
(GJA3) or connexin-46. Sequencing of GJA3 detected a heterozygous transition (c.130G>A) in exon-2 that resulted in
gain of an Hsp92 II restriction site. Allele-specific PCR amplification and restriction analysis confirmed that the novel
Hsp92 II site co-segregated with cataract in the family but was not detected in 192 normal unrelated individuals. The c.
130G>A transition  was   predicted to result in a  non-conservative  substitution   of valine-to-methionine  at  codon   44
(p.V44M) with damaging effects on protein function.
Conclusions: These data confirm GJA3 as one of the most frequently mutated genes that underlie autosomal dominant
cataract in humans, and further emphasize the importance of connexin function in maintaining lens transparency.

Inherited forms of cataract(s) constitute a clinically
heterogeneous disorder of the ocular lens that usually present
with an early-onset ranging from birth (congenital) through
infancy into the fourth decade (Online Mendelian Inheritance
in Man; OMIM). Congenital and infantile forms of cataract
that cause blurring of images on the immature retina are a
clinically important cause of impaired form vision
development (deprivation amblyopia), and pediatric cataract
surgery is associated with increased risk of aphakic glaucoma
and lifelong visual impairment [1-3].

In addition to being found as a secondary feature of many
genetic syndromes and metabolic disorders involving other
ocular and/or systemic abnormalities (OMIM), cataract may
be inherited as a primary or isolated lens phenotype [4,5]. All
three classical forms of Mendelian inheritance have been
described. However, most families reported exhibit autosomal
dominant transmission with high penetrance. So far genetic
linkage studies of around 180 families worldwide have
mapped at least 35 independent loci and identified mutations
in over 20 genes for phenotypically diverse forms of primary
cataract involving total, nuclear, lamellar/zonular, sutural, and
polar/sub-capsular lens opacities [6].

Correspondence to: Alan Shiels, Ph.D., Ophthalmology and Visual
Sciences, Box 8096, Washington University School of Medicine,
660 S. Euclid Ave., St. Louis, MO, 63110; Phone: (314) 362-1637;
FAX: (314) 747-4576; email: shiels@vision.wustl.edu

Approximately 55% of the known mutations underlying
inherited forms of primary cataract have been detected in ten
crystallin genes; alphaA-crystallin (CRYAA), alphaB-
crystallin (CRYAB), betaB1-crystallin (CRYBB1), betaB2-
crystallin (CRYBB2), betaB3-crystallin (CRYBB3), betaA1-
crystallin (CRYBA1), bataA4-crystallin (CRYBA4), gammaC-
crystallin (CRYGC), gammaD-crystallin (CRYGD), and
gammaS-crystallin (CRYGS) that encode the major
“refractive” proteins of the lens [7-15]. A further 20–25% of
known mutations have been detected in two genes encoding
gap-junction protein alpha 3 and alpha 8 (GJA3,GJA8) [16,
17]. The remainder of underlying mutations occur in a group
of functionally diverse genes including those for; heat-shock
transcription factor 4 (HSF) [18], lens major intrinsic protein
(MIP) [19], lens intrinsic membrane protein 2 (LIM2) [20],
transmembrane protein 114 (TMEM114) [21], beaded
filament structural protein 1 and protein 2 (BFSP1,BFSP2)
[22,23], chromatin modifying protein 4B (CHMP4B) [24],
Eph-receptor type A2 (EPHA2) [25], Tudor domain
containing 7 (TDRD7) [26], and FYVE and coiled-coil
domain containing 1 (FYCO1) [27]. Here we have mapped
autosomal dominant cataract segregating in a Caucasian
American family to chromosome 13q and identified a
missense mutation in the gene for gap-junction protein
alpha-3 (GJA3), or connexin-46.
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METHODS
Family participants: A 5-generation Caucasian pedigree
(family Sh) from the midwestern United States was
ascertained through ophthalmic records in the Department of
Ophthalmology and Visual Sciences at Washington
University School of Medicine, St. Louis MO. Blood samples
were obtained from 22 family members including 11 affected
individuals. Leukocyte genomic DNA was purified using the
Gentra Puregene Blood kit (Qiagen, Valencia, CA), and
quantified by absorbance at 260 nm (NanoDrop 2000; Thermo
Fisher Scientific, Wilmington, DE). Ethical approval for this
study was obtained from the Washington University Human
Research Protection Office, and written informed consent was
provided by all participants before enrollment in accordance
with the tenets of the Declaration of Helsinki, and Health
Insurance Portability and Accountability Act (HIPAA)
regulations.
Genotyping and linkage analysis: Microsatellite markers
from the National Center for Biotechnology Information
(NCBI) combined Généthon, Marshfield, and deCODE
genetic linkage maps were genotyped by means of a 4200
DNA analyzer running Gene ImagIR software (Li-Cor,
Lincoln, NE) as described [28]. Pedigree and haploptype data
were managed using Cyrillic (v.2.1) software (FamilyGenetix
Ltd., Reading, UK), and two-point logarithm of the odds
(LOD) scores (Z) calculated using the MLINK sub-program
from the LINKAGE (5.1) package of programs [29]. Marker
allele frequencies were assumed to be equal, and a gene
frequency of 0.0001 with a penetrance of 100% were assumed
for the disease locus.
Sequencing analysis: Genomic sequence for GJA3 was
obtained from the Ensemble human genome browser, and
gene-specific M13-tailed PCR primers (Table 1) were
selected from the NCBI re-sequencing amplicon (RSA) probe
database or custom designed (IDT Primer Quest). Genomic
DNA (2.5 ng/μl, 20 μl reactions), was amplified (35–40
cycles) in a GeneAmp 9700 thermal cycler using AmpliTaq
polymerase (Applied Biosystems, Foster City, CA) and gene-
specific primers (10 pmol). Resulting PCR amplicons were
either enzyme-purified with ExoSAP-IT (USB Corporation,

Cleveland, OH) or gel-purified with the QIAquick gel-
extraction kit (Qiagen). Purified amplicons were direct cycle-
sequenced in both directions with BigDye Terminator Ready
Reaction Mix (version 3.1) containing M13 forward or reverse
sequencing primers then ethanol precipitated and detected by
capillary electrophoresis on a 3130xl Genetic Analyzer
running Sequence Analysis (version 5.2) software (Applied
Biosystems), and Chromas (version 2.23) software
(Technelysium, Tewantin, Queensland, Australia).

Restriction analysis: Allele-specific restriction fragment
length analysis was performed on gel-purified PCR
amplicons, amplified with primers GJA3-Ex2F1 and GJA3-
Ex2R1 (Table 1) using Hsp92 II at 37 °C for 1 h according to
the manufacturer’s instructions (Promega, Madison, WI), and
digestion products were visualized at 302 nm following
electrophoresis in 3% agarose-gels stained with GelRed
(Biotium, Hayward, CA). In addition to family Sh, we
extended Hsp92 II restriction analysis to include 192
unrelated individuals from the European Collection of Animal
Cell Cultures human random control (ECACC-HRC) DNA
panel (Sigma, St. Louis, MO) to distinguish the predicted
mutation, with 95% confidence, from a polymorphism with
1% frequency as recommended [30].
Mutation prediction analyses: Missense mutations in GJA3
were evaluated for pathogenicity using three in silico
prediction algorithms: Position-Specific Scoring Matrix
analysis (PSSM), Sorting Intolerant From Tolerant
substitutions (SIFT) [31], and Polymorphism Phenotyping-2
(PolyPhen-2) [32]. GJA3 amino-acid sequences were
retrieved from the Entrez protein database, and aligned by
means of the ClustalW multiple sequence alignment web
server [33]. The hydrophobicity profile of GJA3 was
determined by means of the HMMTOP transmembrane
topology prediction server [34], and structurally conserved
domains located using the Conserved Domain Database
(CDD) [35].

RESULTS
Linkage analysis: We studied a 5-generation Caucasian
American pedigree (family Sh) segregating autosomal

TABLE 1. PCR PRIMERS FOR MUTATION SCREENING OF GJA3.

Primer Location Strand Sequence (5′>3′) Amplicon
(bp)

GJA3-Ex2F1 Codons 128–134 Antisense CCCGCGACGAGGGATTGT 634
GJA3-Ex2R1 Intron-1 Sense GACGCTTGCACTTGTGTAGTGCC  
GJA3-Ex2F2 Codons 230–235 Antisense CTGGTCACGCCCTGCTTGAG 512
GJA3-Ex2R2 Codons 77–83 Sense TTCTGGGCGCTGCAGATCAT  
GJA3-Ex2F3 Codons 429–436 (Stop) Antisense TAGATGGCCAAGTCCTCCGGTCT 737
GJA3-Ex2R3 Codons 203–210 Sense TTCATCATCTTCATGCTGGCGGTG  
GJA3-Ex2F4 3′-UTR Antisense GAGACAGCCCTCAGCGACCA 563
GJA3-Ex2R4 Codons 361–367 Sense ACTCGCGCACGAGGCTGA  

               Primer pairs for amplification and sequencing of the coding region (exon-2) of GJA3 located on 13q.
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dominant cataract in the absence of other ocular or systemic
defects. Autosomal dominant inheritance was supported by
the absence of gender bias or skipping of generations.
Ophthalmic records described the cataract as congenital in at
least four affected individuals (III:I, IV:2, IV:6, and IV:8);
however, no slit-lamp images of the lens opacities pre-surgery
were available. Twenty-two members of the family (Figure
1), including eleven affected individuals were genotyped with
microsatellite markers at 11 candidate loci for autosomal
dominant cataract on chromosomes 1q (GJA8), 2q (CRYGC,
CRYGD), 3q (BFSP2), 11q (CRYAB), 12q (MIP), 13q
(GJA3), 16q (HSF4), 17q (CRYBA1), 19q (LIM2), 21q
(CRYAA), and 22q (CRYBB1–3, CRYBA4). Following
exclusion of 10 of these loci (Z≤-2.0, θ=0.0–0.1), we obtained
significant evidence of linkage (Table 2) for marker D13S175
(Zmax=3.67, θmax=0.04) and D13S1316 (Zmax=2.80, θmax=0.0)
on 13q11-q12. Haplotyping of the pedigree (Figure 1)

detected two affected females, IV:6 and IV:12, who were
obligate recombinants at marker D13S1236. Individual IV:12
was also recombinant at D13S175. No other recombinant
individuals were detected at the most centromeric marker
D13S1316, suggesting that the disease locus lay in the
physical interval, D13S1316-(0.17Mb)-D13S175, which
contains the strong candidate gene GJA3.

Mutation detection: GJA3 (GeneID: 2700) comprises two
exons with exon-2 containing the entire coding region for a
435-amino-acid protein. Sequencing of exon-2 including
flanking 5′-intron and 3′-UTR boundaries in two affected
relatives detected a heterozygous G-to-A transition (Figure 2)
located at position 130 from the first base (A) of the translation
start (ATG) codon (c.130G>A). This single nucleotide change
was not present in the reference sequence and resulted in the
gain of an Hsp92 II restriction site (5′CATG↓). PCR
amplification and restriction fragment length analysis

Figure 1. Linkage analysis of autosomal dominant cataract segregating in a 5-generation Caucasian American pedigree (family Sh). A: Pedigree
and haplotype analysis showing segregation of 3 microsatellite markers on chromosome 13q listed in descending order from the centromere
(13p-tel). Squares and circles denote males and females respectively. Filled symbols denote affected status. B: Ideogram of chromosome 13
showing the cytogenetic location of the cataract locus.

TABLE 2. TWO-POINT LOD SCORES (Z) FOR LINKAGE BETWEEN THE CATARACT LOCUS AND CHROMOSOME 13 MARKERS.

   Z at θ=  
Marker Mb cM 0.00 0.05 0.10 0.20 0.30 0.40 Zmax θmax
D13S1316 20.68 0.00 2.80 2.50 2.20 1.58 0.95 0.35 2.80 0.00
GJA3 (c.130G>A) 20.71 6.55 6.02 5.46 4.24 2.88 1.35 6.55 0.00
D13S175 20.85 7.40 -∞ 3.67 3.46 2.68 1.70 0.66 3.67 0.04
D13S1236 22.70 4.20 -∞ 1.48 1.72 1.57 1.11 0.49 1.74 0.12

        Z values for markers on 13q listed in physical and genetic distances measured in Mb and cM, respectively, from the short-arm
        telomere (13p-tel).
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confirmed the presence of the heterozygous c.130G>A
transition in all affected members of family Sh, and its absence
in unaffected relatives (Figure 2). Moreover, when we tested
the c.130G>A change as a bi-allelic marker with a notional
frequency of 1%, in a two-point LOD score analysis of the
cataract locus (Table 2) we obtained further compelling
evidence of linkage to GJA3 (Zmax=6.55, θmax=0). Finally we
excluded the c.130G>A transition as a single nucleotide
polymorphism (SNP) in a panel of 192 normal unrelated
control individuals (384 chromosomes) using allele-specific
restriction analysis described in Figure 2 (data not shown).
Taken overall our genotype and sequence data strongly
suggested that the c.130G>A transition represented a
causative mutation rather than a benign SNP in linkage
disequilibrium with the cataract phenotype.

Figure 2. Mutation analysis of GJA3 in family Sh. A: Sequence
profile of the wild-type allele showing translation of valine (V) at
codon 44 (GTG) in exon 2. B: Sequence trace of the mutant allele
showing the heterozygous c.130G>A transition (denoted R by the
International Union of Pure and Applied Chemistry [IUPAC] code)
at the first base of codon 44 (ATG) that is predicted to result in a
missense substitution of methionine (M) for valine (p.V44M). C:
Restriction fragment length analysis on agarose gels showing gain
of an Hsp92 II site (5′CATG↓) that co-segregated with affected
individuals heterozygous for the mutant A-allele (167/174 bp) but
not with unaffected individuals homozygous for the wild-type G-
allele (341 bp).

Functional predictions: The c.130G>A transition occurred at
the first base of codon 44 (GTG>ATG) and was predicted to
result in the missense substitution of valine-to-mehionine
(p.V44M) at the level of protein translation. The predicted
p.V44M substitution represented a relatively conservative
amino acid change, with the small non-polar side-group of
valine (CH3-CH-CH3) replaced by the larger non-polar side-
group of methionine (CH2-CH2-S-CH3). However, cross-
species alignment of GJA3 amino-acid sequences revealed
that p.V44 is phylogenetically conserved from Zebrafish to
man (Figure 3).

Based on the hydrophobicity profile of GJA3, the
p.V44M substitution is likely located in the first extracellular
(EC-1) loop close to the boundary with the first
transmembrane (TM-1) domain (Figure 3). To evaluate the
functional consequences of the p.V44M substitution we
compared it to all the other missense variations so far
identified in GJA3 using three sequence homology based
prediction algorithms (Table 3). PSSM analysis revealed a
marked decline in value from +5 to −1 confirming that the
predicted p.V44M substitution occurred less frequently than
expected in proteins with the conserved connexin superfamily
domain (CCD: pfam00029). SIFT analysis gave a score of
0.00 consistent with an “intolerant” amino-acid change, and
PolyPhen-2 analysis gave a score of 1.00 consistent with a
“probably damaging” change, further raising the likelihood of
GJA3 dysfunction.

DISCUSSION
Here we have identified a heterozygous transition (c.130G>A)
in exon-2 of GJA3 co-segregating with autosomal dominant
cataract linked to chromosome 13q in a Caucasian American
family. This missense mutation was predicted to result in a
conservative p.V44M substitution in the first extracellular
domain of GJA3 with damaging effects on protein function.
Recently, the same GJA3 mutation was detected by candidate-
gene sequencing in a Han Chinese family segregating
autosomal dominant cataract described as central nuclear with
punctate cortical opacities [36]. However, no supporting
linkage analysis or functional studies were performed. Our
data confirm recurrent association of the p.V44M substitution
in GJA3 with autosomal dominant cataract linked to 13q.

Currently, at least 19 different heterozygous coding
mutations in GJA3 (Table 3) have been detected in 22 families
worldwide making it one of the most frequently mutated genes
associated with autosomal dominant cataract. The resulting
opacities are usually described as nuclear or zonular/lamellar
often with a pulverulent (dustlike) or punctate appearance. All
but one of the known coding mutations in GJA3 are missense
substitutions (Table 3) that are located toward the NH2-
terminal end of the protein containing the conserved connexin
domain (CCD: pfam00029) and the gap-junction channel
protein cysteine-rich or conexin_CCC domain (CCD:
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pfam10582). Five of these missense substitutions, including
p.V44M identified here, are believed to be located in the first
extracellular (EC-1) domain of GJA3 (Figure 3). In addition
to p.V44M, two other missense mutations in GJA3 are
recurrent with autosomal dominant cataract. A p.P59L
substitution in the first extracellular domain has been reported
in American and Danish families [37,38], whereas, a p.R76H
substitution in the second transmembrane domain has been
detected in Australian and Danish families [38,39].
Furthermore, two other valine-to-methionine substitutions
have been reported in GJA3. A p.V28M change in the first
transmembrane domain has been associated with autosomal
dominant cataract in an Indian family [40], and a p.V139M
change in the cytoplasmic loop has been associated with age-
related cortical cataract in a Chinese population [41].
Interestingly, both p.V28M and p.V44M were predicted to be
probably damaging to GJA3 function, whereas, p.V139M was
predicted to be a benign or possibly damaging variant (Table
3).

So far no mutations in the mouse Gja3 gene have been
associated with spontaneous or chemically/radiologically
induced forms of cataract. By contrast a homozygous
missense substitution (p.E42K) in rat Gja3 underlies a
spontaneous form of autosomal recessive nuclear cataract in
the SHRSPwch1.9Cat strain [42]. Knockout mice lacking Gja3
as a result of gene disruption also develop nuclear cataract
with severity of lens opacification influenced by genetic

background [43,44]. However, hemizygous loss of Gja3 does
not elicit cataract in mice.

Mouse Gja3 has been proposed to function in gap-
junction coupling of lens fiber cells [45]; the primary target
cells for cataract. In addition, Gja3 has been shown to form
active hemi-channels in dissociated mouse lens fiber cells
[46]. Structure-function prediction algorithms show that 18 of
19 reported missense substitutions in GJA3 are likely to be
damaging to protein function (Table 3). Functional expression
studies of one GJA3 missense mutant, p.N63S, in Xenopus
oocytes revealed that it exhibited impaired hemi-channel
activity in single oocytes, and failed to elicit gap-junction
coupling in paired oocytes [47]. While p.N63S is located in
the conserved tri-cysteine motif within the first extracellular
domain of GJA3, p.V44M identified here and p.E42K
identified in the rat are located near the boundary between the
first extracellular domain and the first transmembrane domain
(Figure 3). Both p.V44M and p.N63S are associated with
autosomal dominant cataract, whereas, p.E42K is associated
with autosomal recessive cataract. In general mutations
underlying autosomal dominant phenotypes result in
deleterious gain-of-function mechanisms, whereas, those
underlying autosomal recessive phenotypes elicit loss-of-
function mechanisms. Further detailed functional expression
studies will be required to elucidate the precise pathogenic
mechanisms that link GJA3 mutations with cataract.

Figure 3. Schematic showing gene
structure and protein domains of GJA3.
A: Exon organization and mutation
profile of GJA3. The entire coding
region (435 amino-acids) is located in
exon-2. Based on hydrophobicity
analysis [34], GJA3 has nine structural
domains including: a cytoplasmic N-
terminus (NT), 4 transmembrane
domains (TM-1 – TM-4); 2 extracellular
loops (EC1, EC2), a cytoplasmic loop
(CL), and a cytoplasmic C-terminus
(CT). The relative locations, with
respect to the translation start codon, of
the p.V44M mutation and 19 other
mutations associated with autosomal
dominant cataract in humans are
indicated. The rat p.E42K mutation
associated with autosomal recessive
cataract is also indicated. B: Amino-acid
sequence alignment of the first
extracellular (EC-1) domain (amino-
acids 42–71) from human GJA3 and
homologs from other species. Dots
denote identical amino-acids. Cysteine
residues involved in hemi-channel
docking are underlined. Missense
substitutions are shown in red.
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c.415G>A p.V139M - 0.07 0.818 CL Age-related cortical China [41]
c.560C>T p.P187L +8/-2 0.00 0.999 EC-2 Zonular pulverulent UK [57]
c.559C>T p.P187S +8/-2 0.00 0.961 EC-2 Nuclear pulverulent China [58]
c.563A>C p.N188T +6/-2 0.02 0.931 EC-2 Nuclear pulverulent China [59]
c.1137insC p.S380QfsX88 - - - COOH-

Term
Punctate UK [17]

        SIFT scores <0.05 are intolerant and scores ≥0.05 are tolerant. PolyPhen-2 scores >0.85 are probably damaging and scores 0.15–
        0.85 are possibly damaging.
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