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ABSTRACT
Chronic inflammation has been recognized as a canonical 
cancer hallmark. It is orchestrated by cytokines, which are 
master regulators of the tumor microenvironment (TME) as 
they represent the main communication bridge between 
cancer cells, the tumor stroma, and the immune system. 
Interleukin (IL)-6 represents a keystone cytokine in the 
link between inflammation and cancer. Many cytokines 
from the IL-6 family, which includes IL-6, oncostatin 
M, leukemia inhibitory factor, IL-11, IL-27, IL-31, ciliary 
neurotrophic factor, cardiotrophin 1, and cardiotrophin-
like cytokine factor 1, have been shown to elicit tumor-
promoting roles by modulating the TME, making them 
attractive therapeutic targets for cancer treatment.
The development of immune checkpoint blockade (ICB) 
immunotherapies has radically changed the outcome 
of some cancers including melanoma, lung, and renal, 
although not without hurdles. However, ICB shows limited 
efficacy in other solid tumors. Recent reports support 
that chronic inflammation and IL-6 cytokine signaling 
are involved in resistance to immunotherapy. This review 
summarizes the available preclinical and clinical data 
regarding the implication of IL-6-related cytokines in 
regulating the immune TME and the response to ICB. 
Moreover, the potential clinical benefit of combining ICB 
with therapies targeting IL-6 cytokine members for cancer 
treatment is discussed.

INTRODUCTION
The tumor microenvironment (TME) 
encompasses the cellular and non-cellular 
compartments that support the survival and 
function of cancer cells. It comprises multiple 
cell types, including immune cells, endothe-
lial cells, fibroblasts, adipocytes, other tissue-
specific cell types, and the extracellular matrix 
(ECM) in which all cells are embedded. The 
crosstalk between tumor cells and the TME is 
fundamental for tumor initiation, growth, and 
expansion to other tissues.1 Recently, novel 
therapeutic strategies have been proposed to 
target the TME in order to improve response 
to current immunotherapies.2 In this context, 
inflammation is an attractive target, as it has 
been tightly linked with all cancer stages and 
is now accepted as a canonical hallmark of 

cancer.3 4 Inflammation is a natural biolog-
ical response triggered by the body’s innate 
immune system to fight harmful insults such 
as infections and is needed to protect us 
from cancer. In normal physiology, inflam-
mation is usually successfully resolved after a 
certain time when the stimulus is no longer 
there. However, if inflammation is not prop-
erly resolved, the immune cell infiltration 
and cytokine secretion are maintained long-
term. This leads to harmful chronic inflam-
mation, usually of lower intensity and longer 
duration than the physiological inflamma-
tion in response to damage, and is found in 
cancer and other pathological conditions 
such as autoimmune diseases, inflammatory 
conditions, or cardiovascular risk.5 Interest-
ingly, systemic inflammation, measured by 
CRP levels can be used to stratify patients 
according to cancer-related mortality risk.6

The major regulators of inflammation are 
cytokines, which are small secreted mole-
cules involved in cell-to-cell communication. 
Chemokines are an important subfamily of 
these molecules, which mediate the migra-
tion and recruitment of leukocytes.7 Cancer 
and stromal cells secrete multiple signaling 
molecules, including cytokines and chemok-
ines, that promote the infiltration and regu-
lation of the immune cells within the TME. 
In turn, recruited leukocytes and other 
stromal cells can produce a wide variety of 
pro-inflammatory cytokines, including inter-
leukin-6 (IL-6) family cytokines, generating 
feedforward positive loops. These inflamma-
tory responses activate transcription factors 
that are broadly implicated in cancer devel-
opment and progression, including the 
signal transducer and activator of transcrip-
tion 3 (STAT3), the hypoxia-inducible factor 
1 alpha (HIF1α), and the nuclear factor-κB 
(NF-kB), whose activity controls the further 
production of inflammatory mediators.8–10 
Therefore, chronic inflammation plays an 
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essential role in the plasticity of TME and builds up a pro-
tumorigenic microenvironment that favors tumorigen-
esis, immunosuppression, and cancer progression.3

IL-6 and related cytokines are considered the critical 
lynchpins between inflammation and cancer.11 The IL-6 
family encompasses multiple members: IL-6, oncostatin 
M (OSM), leukemia inhibitory factor (LIF), IL-11, IL-27, 
IL-31, ciliary neurotrophic factor (CNTF), cardiotro-
phin 1 (CTF1), and cardiotrophin-like cytokine factor 1 
(CLCF1). IL-6 family cytokines signal through heterodi-
meric receptors that share the glycoprotein 130 (gp130) 
subunit for signal transduction except for the IL-31 
receptor, which binds a similar gp130-like receptor.12 After 
ligand binding, the ligand-specific subunits dimerize with 
gp130 and phosphorylate tyrosine kinases such as Janus 
kinases (JAK) 1, 2, and Tyk2. This triggers the activation 
of multiple intracellular pathways including phosphoinos-
itide 3-kinases, mitogen-activated protein kinase (MAPK), 
and STAT factors. STAT3 is the main mediator under-
lying the tumor-promoting effects of these cytokines, as 
its activation favors the transcription of genes related to 
proliferation, survival, recruitment, differentiation, and 
transformation.13

Notably, most IL-6 family cytokines have been linked 
to poor prognosis in patients with cancer due to their 
cancer-promoting effects in a wide range of tumors.11 In 
particular, IL-6, OSM, LIF, and IL-11 (although much less 
studied) exert important pro-metastatic, pro-angiogenic, 
and immunosuppressive roles.14–19 At the same time, there 
are still controversies about the function of other family 
members, which have been poorly evaluated in the cancer 
context. For example, epithelial–mesenchymal transition 
(EMT) is a key process during cancer progression, metas-
tasis, and therapy resistance, and IL-6 cytokines (mainly 
IL-6, OSM, IL-11, and LIF) have been shown to promote 
EMT through the activation of transcription factors such 
as STAT3 and Snail. However, some anti-EMT functions 
have also been described for this cytokine family, mainly 
for IL-27 via STAT1 activation.20

In a non-tumor context, an inflammatory response is 
generated after an injury to repair the harm caused. This 
acute response is strongly regulated by extensive negative 
feedback mechanisms designed to decrease inflammation 
and prevent tissue damage once the injury is resolved. 
One of these mechanisms is the induction of the inhib-
itory immune checkpoints, such as programmed cell 
death receptor 1 (PD-1) and its ligand programmed cell 
death protein ligand 1 (PD-L1), lymphocyte-activation 
gene 3 (LAG3), cytotoxic T lymphocyte-associated 
protein-4 (CTLA-4), T cell immunoglobulin and mucin 
domain-containing protein 3 (TIM-3), B and T lympho-
cyte attenuator (BTLA), and T cell immunoglobulin and 
ITIM domain (TIGIT). They are surface proteins found 
on T cells that bind to partner proteins in other cells, 
including cancer cells, and send an inhibitory signal to 
T cells. Importantly, tumors upregulate the activity and 
expression of these inhibitory immune receptors and 
ligands, resulting in T cell exhaustion and favoring tumor 

immune tolerance.21 In this regard, the therapeutic 
strategy of blocking the activation of immune checkpoints 
with specific antibodies is known as immune checkpoint 
blockade (ICB) and has been translated to the clinic to 
treat many cancer types. ICB discovery is considered one 
of the greatest advances in medical oncology history and, 
currently, blocking antibodies targeting PD-1, PD-L1, 
and CTLA-4 are approved for treating melanoma, renal, 
breast, and lung carcinomas, among others.22 Although 
it has brought many benefits for patients with cancer, 
many limitations remain to overcome, of which associ-
ated toxicity and the large number of refractory patients 
remain the most challenging.22 In the last years, several 
mechanisms of resistance to ICB have been described, 
and they have been elegantly reviewed by Kalbasi and 
Ribas.23 This knowledge led to the design of different 
combination therapies based on the hypothetical syner-
gistic effects of interrupting different immune escape 
pathways, and those are currently being tested in clinical 
trials.

One of the most interesting approaches to overcoming 
resistance to ICB is modulating the immune TME by 
targeting cytokine signaling. In this review, we discuss how 
the IL-6 cytokine family can modulate the immune TME 
(figure 1) and how combining ICB and the blockade of 
IL-6-related cytokine signaling can potentially improve 
cancer immunotherapy (figure  2). We focus mainly 
on IL-6, LIF, and OSM, as their role in cancer is well-
established and extensively characterized. Furthermore, 
we summarize the potential clinical use of cytokine-
blocking antibodies and other cytokine-targeting drugs 
in the context of immunotherapy.

INTERLEUKIN-6
IL-6 signaling and functions in health and disease
IL-6 is a multifaceted cytokine that, depending on the 
context, is able to stimulate inflammatory and anti-
inflammatory events. Besides, this cytokine has a broad 
action on a wide variety of immune and non-immune 
cells24 (figure  3). IL-6 was discovered in 1986 as a B 
cell immunoglobulin-inducing factor, and nowadays, 
multiple functions of this cytokine have been identi-
fied. IL-6 is involved in the generation of acute phase 
proteins, immune responses against pathogens, inflam-
mation, hematopoiesis, apoptosis, cell differentiation, 
bone homeostasis, angiogenesis, and metabolism. In 
addition to the role of IL-6 in the regulation of whole-
body metabolism, changes in metabolism, such as obesity, 
can drive inflammation, increase IL-6 levels and promote 
immune tolerance, pointing to a reciprocal and complex 
regulation between inflammation and metabolism.25 
During inflammation and infection, IL-6 is commonly 
induced by IL-1 and tumor necrosis factor-alpha (TNF-
α), but its expression can also be promoted through 
pathogenic stimulation of Toll-like receptors, prostaglan-
dins, stress responses, adipokines, and other cytokines.26 
Three different mechanisms of IL-6 signaling have been 



3Soler MF, et al. J Immunother Cancer 2023;11:e007530. doi:10.1136/jitc-2023-007530

Open access

described: the classical activation pathway, the IL-6 trans-
signaling, and the IL-6 cluster signaling, also known as 
trans-presentation signaling.27 The classical activation 
pathway involves IL-6-binding to membrane-bound 
IL-6 receptor (mIL-6R) to induce a signal-transducing 
homodimer of the glycoprotein 130 (gp130) receptor. 
Additionally, there are soluble forms of the IL-6 receptor 
(sIL-6R), consisting of the extracellular portion of the 
IL-6R and generated either by limited proteolysis or 
alternative splicing.28 These sIL-6R forms complex with 
IL-6 to activate membrane-bound gp130, in a process 
known as IL-6 trans-signaling.29 Finally, cluster or trans-
presentation signaling involves the activation of gp130 
subunits through their binding to IL-6-mIL-6R complexes 
present in neighboring transmitter cells.30 Interestingly, 
the expression of mIL-6R has been found mainly in 
hepatocytes and some subpopulations of leukocytes, 
and its activation is associated with acute inflammatory, 
homeostatic and regenerative effects. On the other hand, 
the sIL-6R trans-signaling activation is connected to IL-6 
pro-inflammatory functions and pathological states.31 
Trans-presentation signaling is involved in the priming of 
pathogenic T helper 17 (Th17) cells.

IL-6 signaling is dynamic and highly regulated because 
its over-activation can result in several inflammatory 
pathologies, autoimmune diseases, and cancer develop-
ment.31 In the cancer context, activation of IL-6 signaling 
is associated with tumor growth, angiogenesis, metastasis, 

reprogramming of cancer cell metabolism, resistance to 
therapies, cachexia, and immune tolerance.19 32 33 More-
over, high levels of IL-6 are found in patients with multiple 
myeloma, melanoma, breast, ovarian, cervical, prostate, 
pancreatic and lung cancer, among others, where they are 
associated with poor prognosis and therapy resistance.34

Modulation of the TME by IL-6 and implications in 
immunotherapy
IL-6 is the most studied member of the family and large 
and solid evidence supports that IL-6 is a promising 
candidate for therapeutic targeting in cancer, alone or 
in combination with other cancer therapies. The primary 
source of IL-6 in cancer is the tumor cell compartment 
together with fibroblasts, tumor-associated macrophages 
(TAMs), CD4+ T cells, and myeloid-derived suppressor 
cells (MDSCs)19 (figure 3). IL-6 inherently affects tumor 
cells and the TME to support cancer progression at all 
stages from tumorigenesis to metastasis.

During early stages of carcinogenesis, IL-1 triggers 
inflammation and induces the release of cytokines, 
including IL-6 that further perpetuate the inflam-
matory state.32 In addition, IL-6 promotes tumor cell 
survival and inhibits apoptosis by STAT3-dependent 
activation of genes such as BCL2, BCL-XL, MCL1, 
and survivin, which are critical for tumor develop-
ment.35–37 IL-6 signaling also drives tumor progression 
by promoting tumor invasiveness, cell migration and 

Figure 1  Modulation of the immune tumor microenvironment (TME) by IL-6 family cytokines. Graphical representation of 
the reported effects of the different IL-6 family cytokines on the different cell types within the TME. To our knowledge, there is 
no information about the cell types that are not depicted for each cytokine. APC, antigen-presenting cell; CTLA-4, cytotoxic 
T lymphocyte-associated protein-4; HLA, human leukocyte antigen; IL, interleukin; LAG3, lymphocyte-activation gene 3; LIF, 
leukemia inhibitory factor; M2-like, M2-like macrophage; MDSC, myeloid-derived suppressor cell; MΦ, macrophage; NΦ, 
neutrophil; NK, natural killer; OSM, oncostatin M; PD-1, programmed cell death receptor 1; PD-L1, programmed cell death 
protein ligand 1; Tc, T cytotoxic; Th, T helper; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; Treg, T 
regulatory.
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metastasis via activation of matrix metalloproteinases 
and by mediating angiogenesis via the production of 
VEGF.38 39 Furthermore, reprogramming cancer cell 

metabolism and induction of hypoxia signaling by IL-6 
also contribute to tumor progression and promote 
immune tolerance.33

Figure 2  Benefits of combining immune checkpoint blockade (ICB) and cytokine blockade therapy. IL-6 family cytokines 
mediate resistance to ICB and immune-related adverse events (irAEs). Blockade of cytokines from the IL-6 family is a promising 
therapeutic approach to improve the efficacy of ICB. αSMA, alpha smooth muscle actin; CAF, cancer-associated fibroblast 
(αSMA+); IL-6, interleukin-6; MΦ, macrophage; M2-like, M2-like macrophage; Th, T helper; Tc, T cytotoxic.

Figure 3  Secretion of IL-6 family cytokines and expression of related receptors by the different cell types within the tumor 
microenvironment (TME). CAF, cancer-associated fibroblast; DC, dendritic cell; IL, interleukin; LIF, leukemia inhibitory factor; 
OSM, oncostatin M.
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Finally, IL-6 also exerts an essential role in promoting 
metastasis through different mechanisms. For example, 
IL-6 hijacks the hematopoietic stem and progenitor cell 
differentiation program towards pro-metastatic monocyte-
dendritic progenitors, that differentiate into immuno-
suppressive macrophages and contribute to priming the 
pre-metastatic niche.40 IL-6 is particularly important in 
bone metastasis due to its critical roles in bone metabo-
lism. IL-6 favors bone metastasis by promoting osteolysis 
and cancer cell homing in the bone marrow niche.41 42

Besides, IL-6 indirectly modulates other processes 
within the intricate TME to support tumor develop-
ment, as it sustains a pro-tumorigenic milieu that 
facilitates tumor evasion of immune surveillance.43 In 
fact, IL-6 contributes to innate and adaptive immunity 
dysfunction and is a potent orchestrator of tumor-
promoting inflammation, mainly through STAT3 acti-
vation32 (figure  1). IL-6 promotes the recruitment 
and differentiation of immunosuppressive myeloid 
cells such as MDSCs and TAMs.44–46 Regarding its role 
in adaptive immunity, IL-6 inhibits antigen presenta-
tion by reducing human leukocyte antigen (HLA)-DR 
and CD86 expression, promoting arginase activity 
and inducing immunosuppressive genes such as Arg1 
and IDO. These effects lead to impaired activation of 
antigen-specific CD4+ T cells and to activation of pro-
tumorigenic T-regulatory (Treg)/Th17 cell responses, 
driving immune tolerance.46–49

IL-6 also upregulates the expression of immune check-
points in different cancer models,50 51 suggesting that 
blockade of IL-6 may downregulate PD-1 and PD-L1 and 
result in decreased response to ICB. However, the combi-
nation of IL-6 targeting agents with ICB has been very 
successful in preclinical studies, probably due to the direct 
effects of IL-6 in cancer cells and its aforementioned 
immunosuppressive effects in other immune cell popu-
lations. In this sense, dual inhibition of IL-6 and CTLA-4 
has been shown to enhance survival and reduce tumor 
progression in lung and pancreatic cancer models.52 53 
Similarly, the combination of IL-6 inhibition and PD-1/
PD-L1 blockade exerts synergistic effects in melanoma, 
glioblastoma, B-cell acute lymphoblastic leukemia, 
colon, breast, pancreatic, and hepatocellular carcinoma 
mouse models.50 54–57 In those experimental models, IL-6 
blockade modulated the tumor immunological char-
acteristics by increasing T-cell infiltration, enhancing 
tumor-specific cytotoxic T lymphocyte (CTL) and Th1 
responses, and reducing PD-L1 expression.50 53–56 Impor-
tantly, IL-6 has been considered a predictive marker of 
ICB response. Many studies demonstrated a correlation 
between circulating IL-6 levels, decreased survival, and 
clinical response to ICB.55 56 58 59 Plasma and serum IL-6 
levels predicted response to the PD-1 pathway inhibitors 
atezolizumab and nivolumab in patients suffering mela-
noma, advanced kidney, breast, and bladder cancers, and 
metastatic non-small-cell lung carcinoma (NSCLC),55 56 58 
and to CTLA-4 blockade in patients with small cell lung 
cancer (SCLC).59

In addition, IL-6 has also been implicated in aggravating 
the immune-related adverse events (irAEs) associated to 
ICB.60–62 IrAEs are common in immunotherapy, and miti-
gating these toxic effects has become a major challenge.22 
Hailemichael et al. have recently described that IL-6R 
inhibition alleviates ICB autoimmunity by reducing Th17 
differentiation, secretion of pro-inflammatory cytokines, 
and neutrophil chemotactic proteins in damaged tissues 
of patients and mice receiving ICB. Besides, the abroga-
tion of the IL-6 cytokine pathway increased Th1 and CD8+ 
T effector cells in the tumor, boosting antitumor immu-
nity.63 In this sense, observational clinical data support 
that combining the anti-IL-6R antibody tocilizumab with 
ICBs may effectively manage irAEs and prevent autoim-
mune disease flare-ups.61 In fact, tocilizumab is approved 
for treating severe chimeric antigen receptor T (CAR-T)-
cell-induced cytokine release syndrome.64

ONCOSTATIN M
OSM signaling and functions in health and disease
OSM was first described as a growth regulator that inhib-
ited the proliferation of different tumor cell lines but not 
normal human fibroblasts, hence its name.65 However, the 
extreme complexity of its role in physiology and disease 
has become evident. This evidence is still increasing as 
many studies prove it plays multiple functions in hema-
topoiesis, mesenchymal stem cell differentiation, liver 
regeneration, heart remodeling, nociception, inflam-
mation, wound healing, fibrosis, and metabolism. Thus, 
OSM is considered a pleiotropic cytokine, and its role in 
health and disease has been extensively reviewed.66–68

OSM signaling shows unique characteristics. While most 
IL-6 family cytokine–gp130 interactions are of low affinity 
in the absence of binding to their specific α-receptor (eg, 
IL-6R, LIFR), OSM binds first to gp130 as a low-affinity 
α-receptor and then to its specific receptor β OSMR.68 In 
addition, OSM is the only cytokine in the family that can 
engage two β-receptors in humans (ie, OSMR and LIFR), 
being the gp130/OSMR complex the main mediator of 
most OSM effects.17 18 69 70 Interestingly, the OSMR β-re-
ceptor can bind to the specific IL-31 α-receptor to form 
the IL-31 receptor complex.68 Despite the complexity of 
OSM signaling and the functional redundancy of some 
IL-6 family cytokines, OSM-gp130/OSMRβ complex 
has been shown to activate specific signaling pathways 
providing evidence that OSM serves unique physiolog-
ical and pathological functions.68 Unlike gp130, OSMR 
efficiently induces tyrosine phosphorylation of the Shc 
isoforms p52 and p66 and their association with Grb2, 
allowing OSM to drive more potent ERK/MAPK pathway 
activation than IL-6 or LIF.71 Moreover, OSMR can also 
induce STAT5a, STAT5b, Akt, c-Jun N-terminal kinase 
(JNK), p38, and PKCd activation in a context-dependent 
manner.72–75

The main OSM producers are activated monocytes, 
macrophages, neutrophils, T lymphocytes, and dendritic 
cells (figure 3). Its specific receptor OSMR, in contrast, 
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is widely expressed by most of the non-hematopoietic 
mesenchymal cells (eg, endothelial cells, fibroblasts, 
smooth muscle cells, adipocytes, osteoblasts) as well as 
hepatocytes, glial cells, mesothelial and epithelial cells 
from numerous organs.68

Although it shows antiproliferative effects in some 
cancer cells in vitro,65 it is now well accepted that OSM 
promotes pro-tumorigenic features and correlates 
with poor prognosis in multiple cancer types such as 
glioblastoma, breast, gastric, pancreatic, and cervical 
cancers.17 18 76–78 In cancer cells, OSM promotes malig-
nancy through the induction of processes such as EMT, 
cancer stem cell-like properties, migration, invasion and 
both tumorigenic and metastatic capacity.20 70 76 77 79–84 
Moreover, recent studies have demonstrated that OSM 
is also a major activating factor of the stroma as it can 
promote angiogenesis, fibroblast activation, fibrosis, and 
ECM remodeling, representing a key molecule in the 
immune-stroma crosstalk in health and disease.17 18 67 85 86

Modulation of the TME by OSM and implications in 
immunotherapy
In addition to its roles in cancer and stromal cells, 
our group and others have shown that OSM is also an 
important regulator of the immune TME17 18 (figure 1). 
We recently described that myeloid-derived OSM 
promotes chemokine secretion and recruitment of 
macrophages and Ly6G+ cells in breast cancer.17 In line 
with these results, Lee et al. elegantly showed that OSM 
supports the generation of a pancreatic cancer immuno-
suppressive microenvironment.18 In this work, the TME 
of Osm-/- animals shifted toward more immunogenic T 
and myeloid cell phenotypes, where infiltrated T cells 
showed reduced T cell exhaustion features and inhibitory 
surface markers like CTLA-4, LAG3, and PD-1. Addition-
ally, monocyte differentiation into an immunosuppressive 
TAM phenotype was impaired. This switch was accompa-
nied by higher expression levels of co-stimulatory mole-
cules such as CD40 and CD86 in antigen-presenting cells 
(APCs) and a marked reduction of cytokines, including 
GM-CSF, IL-6, CXCL1, and TNF-α. In silico analyses of 
glioblastomas showed that OSM expression is associated 
with stromal and immune cell infiltration in the TME and 
with the expression of immune checkpoint regulators.84

The information regarding the implications of OSM 
signaling in cancer immunotherapy is still scarce. 
However, it is not unreasonable to hypothesize that combi-
natorial OSM inhibition could benefit different immu-
notherapeutic approaches. Multiple studies showed that 
targeting macrophages and granulocytes (leading OSM 
producers) relieves immunosuppression, increases T cell 
infiltration, and sensitizes tumors to ICB.87 88 Moreover, 
OSM has been shown to indirectly induce the accumu-
lation of M2-like macrophages in the TME.89 90 Likewise, 
OSM prompts cancer-associated fibroblast (CAF) activa-
tion by promoting FAP expression, CAF proliferation, and 
CXCL12 secretion in breast and pancreatic cancers17 18 
and it has been demonstrated that targeting CXCL12 

from FAP-expressing CAFs synergizes with anti-PD-L1 
immunotherapy in pancreatic cancer.91 These preclinical 
studies support that OSM inhibition may exert potent 
anticancer effects through different mechanisms that can 
cooperate, including inhibition of migration, angiogen-
esis and metastasis, ECM remodeling and promotion of 
antitumor immunity.

LEUKEMIA INHIBITORY FACTOR
LIF signaling and functions in health and disease
Like OSM, LIF was described as an antiproliferative 
and pro-differentiation cytokine in M1 murine myeloid 
leukemia cells.92 Interestingly, both OSM and LIF share 
high structural and functional homology and are thought 
to result from duplication of a common ancestral gene.93 
Both cytokines act on a wide range of cells and elicit 
diverse overlapping biological responses that can be 
explained by their shared gp130 subunit and the ability 
of OSM to bind both OSMR and LIFR. LIF is produced 
by nearly every healthy tissue and cell type, and the same 
ubiquitous expression applies to its specific receptor 
LIFR.94 95 In contrast, as mentioned in the previous 
section, OSM expression is restricted to immune cells and 
OSMR is expressed mainly by mesenchymal and epithelial 
cells.17 68 This differential expression could explain the 
non-redundant effects of LIF during blastocyst implan-
tation, placental formation, development of the nervous 
system and maintenance of self-renewal and totipotency 
of both embryonic and induced pluripotent stem cells.96

Within cancers, LIF mRNA is expressed by epithe-
lial carcinoma cells,97 surrounding stromal cells, and 
immune cells like T-cells, macrophages, and monocytes98 
(figure 3), and the expression of both the ligand and the 
receptor is often dysregulated in tumors compared with 
healthy tissue.14 The role of the LIF/LIFR pathway in 
cancer is controversial as LIF can exert both pro-cancer 
and anticancer effects in different tumor types.14 96 
For instance, LIF increases the self-renewal capacity of 
glioma-initiating cells and prevents their differentiation 
by activating the JAK-STAT pathway.15 The activation of 
the mTORC1/p70S6K pathway is critical for the LIF-
dependent tumor-promoting effects and radioresistance 
in nasopharyngeal carcinoma.99 In pancreatic cancer, 
oncogenic KRAS drives LIF expression100 and pancreatic-
stellate-cell-secreted LIF activates pro-tumorigenic 
features on cancer cells and promotes inflammatory CAF 
formation.101 102 On the other hand, in the context of 
breast cancer, LIFR suppresses metastasis by induction 
of the Hippo-YAP pathway103 and contributes to main-
taining disseminated cells in a dormant state inside the 
bone marrow, preventing them from colonizing it.104 LIF 
has been involved in many other cancer-related processes, 
such as tumor growth, proliferation, apoptosis, migra-
tion, invasion, metastasis, and therapeutic resistance.14 In 
addition, the effects of LIF in the stromal compartment 
have been confirmed in different cancer models, where 
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LIF drives the conversion of fibroblasts into pro-invasive 
CAFs.105

Modulation of the TME by LIF and implications in 
immunotherapy
Like other family members, LIF also has immunosup-
pressive functions (figure 1). It promotes, together with 
IL-6, M2 macrophage and TAM polarization and inhibits 
T cell function.45 106 107 It also stimulates the expansion 
and activation of polymorphonuclear MDSCs in prostate 
cancer.108 In line with these results, Pascual-García et al. 
observed that LIF is associated with the presence of pro-
tumorigenic TAMs in different cancer types, including 
glioblastoma, prostate, thyroid, and ovarian cancer. LIF 
blockade in tumors expressing high levels of this cytokine 
triggered CD8+ T cell tumor infiltration by releasing the 
epigenetic silencing of CXCL9. The regulation of CD8+ 
cell infiltration by LIF has direct implications for ICB 
efficacy and blockade of LIF with neutralizing antibodies 
synergized with anti-PD-1 blockade in glioblastoma 
models.109 Importantly, an unbiased proteomic analysis 
recently identified that high baseline plasma levels of LIF 
were associated with poor clinical outcomes in patients 
with cancer treated with ICB.110 The authors also showed 
that LIF levels were inversely correlated with the presence 
of tertiary lymphoid structures in the TME. However, 
low baseline serum levels of LIF have been associated 
with hyper-progressive metastatic gastrointestinal cancer 
among patients receiving ICB,111 and the role of LIF as a 
predictive biomarker for ICB needs further investigation.

In summary, there is solid preclinical evidence on the 
immunosuppressive role of LIF. In preclinical syngeneic 
colon cancer mouse models, the anti-LIF blocking anti-
body MSC-1 reprogrammed macrophages to acquire anti-
tumor and pro-inflammatory functions and enhanced 
the efficacy of anti-PD-1 therapies.107 Interestingly, the 
role of LIF could also be studied in the context of anti-
cancer vaccines, as a recent report showed that immuni-
zation against LIF and LIFR prevented tumor formation 
in BALB/c mice.112

OTHER MEMBERS OF THE IL-6 CYTOKINE FAMILY
IL-27, structurally related to both IL-6 and IL-12 fami-
lies, could also be considered a potential target to alter 
the tumor immune response.113 114 However, its dual 
role in cancer immunology and its pleiotropic functions, 
reviewed in Fabbi et al.,113 113 should be considered in the 
design of clinical trials and could limit its applications in 
cancer immunotherapy. IL-27 induces natural killer (NK) 
and T cell cytotoxicity, but it can also enhance Treg activity 
and upregulate immunosuppressive molecules, including 
PD-L1, CD39, IDO, IL-10, TIM-3, and CD73115–119 
(figure 1). IL-27 was identified as part of an eight-gene 
signature capable of predicting survival, expression of 
immune checkpoints, and immune cell infiltration in 
breast cancer.120 IL-27 exerts immunosuppressive func-
tions and is usually secreted by APCs and MHC-expressing 

CAFs121 (figure  3). Considering the available evidence, 
the strategy of blocking IL-27-induced immunoregulatory 
effects in combination with anti-PD-1/PD-L1 antibodies 
or IDO inhibitors could be a better choice than blocking 
IL-27 alone.113

IL-31, another family member, also seems to have a 
dual role in cancer. On the one hand, it promotes anti-
tumor immunity122 and inhibits tumor growth.123 In 
this sense, IL-31 increased cytotoxic T-cell infiltration in 
breast tumors and negatively regulated immunosuppres-
sive cell populations122 (figure  1). On the other hand, 
IL-31 increased the proliferation of human follicular 
lymphoma cells, and IL-31 and IL-31R levels in lymph 
nodes were associated with tumor grade.124 In the context 
of ICB, IL-31 was proposed as a therapeutic target to 
alleviate irAEs, as it was increased in the skin of patients 
with pruritic cancer who had been treated with PD-1 
inhibitors.125

Recombinant IL-11 is approved to prevent and treat 
thrombocytopenia in patients with cancer receiving 
chemotherapy.126 However, due to its effect on cell tumor-
igenicity and metastasis, its inhibition has been proposed 
as a potential therapeutic strategy for some cancer 
types.127 128 Together with IL-6, IL-11 orchestrates inflam-
mation and innate immune responses through activation 
of STAT3.32 129 130

Finally, the expression of CLCF1, a member of the 
family poorly studied in the context of cancer, was asso-
ciated with poor prognosis and reduced response to anti-
PD-1/PD-L1 antibodies in glioma.131

THERAPEUTIC STRATEGIES TO BLOCK IL-6 CYTOKINE FAMILY 
SIGNALING
Potential therapeutic strategies aimed at blocking IL-6 
cytokines fall mainly into two categories: monoclonal anti-
bodies (mAbs) targeting cytokines or their receptors, and 
small molecules (eg, antagonists or inhibitors) that inter-
fere either with the ligand-receptor signaling complexes 
or the downstream JAK-STAT signaling pathways.19 Here, 
we describe the different approaches to therapeutically 
block the signaling of IL-6 cytokines, emphasizing those 
studied in solid tumors.

Cytokine and cytokine-receptors blockade
Anti-IL-6 therapies are the most studied in cancer due to 
their widespread clinical use in inflammatory and auto-
immune diseases.66 The anti-IL-6R mAbs tocilizumab, 
sarilumab, and satralizumab, and the anti-IL-6 antibody 
siltuximab are approved for the treatment of inflam-
matory conditions such as rheumatoid arthritis and 
Castleman disease, and CAR-T-associated cytokine release 
syndrome.64 132 Furthermore, other IL-6-IL-6R targeting 
antibodies and fusion proteins such as sgp130Fc, designed 
to selectively inhibit IL-6 trans-signaling by targeting 
IL-6–sIL-6R complexes are being evaluated in clinical 
trials.19 133 In general, the main adverse effects of anti-
IL-6/IL-6R antibodies are related to bacterial infections, 
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possibly due to the importance of IL-6 in coordinating 
innate and adaptive immune responses and in the acti-
vation of acute phase response.66 Inhibition of IL-6 trans-
signaling may have significant advantages since it does not 
affect the IL-6 classical signaling pathway, and, therefore, 
the immune response against infections is not affected. In 
addition, the main deleterious pro-inflammatory effects 
of IL-6 are mediated through trans-signaling.27

Drugs targeting other cytokines of the family have not 
been approved yet, but humanized antibodies against LIF 
and IL-27 are currently under clinical investigation for 
treating patients with cancer and anti-OSM and OSMR 
mAbs for inflammatory diseases.66 The anti-LIF (MSC-1) 
and the anti-IL-27 (SRF388) mAbs proved to be well 
tolerated in patients with cancer134 135 and are currently 
in phase 2 clinical trials for the treatment of advanced 
solid tumors. Although they have not been tested in the 
cancer setting, OSM (GSK2330811 and GSK315234) and 
OSMR (vixarelimab) blocking antibodies have proven 
to be well tolerated136 137 and are now in Phase 2 clin-
ical trials for the treatment of different inflammatory 
diseases. GSK2330811 and GSK315234 were discontinued 
due to lack of efficacy and safety problems.138 139 The 
most important adverse effects were anemia and throm-
bocytopenia.138 Although this toxicity was not accept-
able for systemic sclerosis, a chronic condition requiring 
long treatments, it may be manageable for patients with 
advanced cancer.

Blocking cytokines or cytokine receptors can have 
different effects. In view of the existing data, targeting 
cytokine receptors can result in greater efficacy and 
decreased toxicity than targeting cytokines. For example, 
anti-IL-6 antibodies can substantially increase systemic 
IL-6 levels by trapping IL-6 in circulation.24 This increase 
can induce hypercalcemia, fever, and fatigue due to high 
IL-6 blood concentrations. In addition, mAbs against cyto-
kine receptors can block the effect of various cytokines. 
Blocking IL-6R will prevent its activation by its specific 
ligand and other ligands, such as IL-30 and CNTF. Some-
thing similar may happen with LIFR, as part of the effects 
of LIFR inhibitors have been linked to joint blocking of 
LIF, OSM, CTF1, and CNTF.140

JAK-STAT signaling inhibition
Several JAK competitive inhibitors (the JAK1/2-selective 
inhibitors ruxolitinib and barcitinib, and the JAK1/3 
inhibitor tofacitinib) are approved for the treatment of 
myeloproliferative disorders, rheumatoid arthritis, and 
COVID-19.19 141 Although they have generally been well 
tolerated, they have showed limited efficacy in clinical 
trials for solid tumors.66 A wide array of adverse effects 
has been reported in patients treated with JAK inhibitors, 
which have been attributed to their specificity to different 
JAKs. Although these effects include bacterial, myco-
bacterial, fungal, and viral infections, anemia, throm-
bocytopenia, neutropenia, gastrointestinal intolerance, 
transaminitis, and neurotoxicity, they have not hindered 
the approval of JAK inhibitors in the clinic.142

Despite the critical role of STAT3 in cancer and tumor-
promoting inflammation, the clinical development of its 
inhibitors has been difficult because STAT3 is an intracel-
lular transcription factor.9 However, a few STAT3 inhibi-
tors are currently being tested in clinical trials including 
patients with cancer, where they have showed to be well 
tolerated.143 144 The STAT3 inhibitors under clinical devel-
opment are mainly antisense oligonucleotides (such as 
AZD9150) and non-peptide STAT3–SH2 domain antago-
nists that prevent STAT3 dimerization.

Inhibiting IL-6 cytokine signaling using JAK and 
STAT3 inhibitors could be more effective in blocking 
cancer-promoting inflammation than blocking upstream 
with cytokine or cytokine receptor blocking antibodies. 
However, this strategy may impair not only IL-6 family 
signaling but also many other cytokines, interferons, and 
hormones, and it may entail more significant adverse 
effects.

Combination therapies including IL-6 cytokine family 
blockade
Blocking immunosuppression elicited by cancer-
promoting inflammation is essential to effectively treat 
cancer and improve the efficacy of current treatments, 
including immunotherapy, which shows limited efficacy 
in some solid tumors. Targeting chronic inflammation 
is difficult due to its high complexity, its regulation by 
multiple interactive pathways, and numerous compen-
satory mechanisms. These drawbacks may explain why 
cytokine-targeting drugs have been ineffective in blocking 
tumor progression in monotherapy. However, the strong 
preclinical evidence described in previous sections 
supports that blocking IL-6 family cytokine signaling in 
combination with ICB may be an attractive therapeutic 
strategy for patients with cancer. Drugs targeting the IL-6 
cytokine family may boost ICB efficacy and reduce irAEs 
(figure 2). Currently, there are about 20 active Phase I and 
II clinical trials evaluating the efficacy and safety of the 
combination of anti-IL-6R, anti-IL-6, anti-LIF, and anti-
IL-27 antibodies with ICB in patients with solid tumors 
including melanoma, NSCLC, and urothelial and pancre-
atic carcinomas (table 1). The anti-IL-6R antibody tocili-
zumab is the most commonly used cytokine-targeting 
drug in those trials, tested in combination with the anti-
PD-1 and PD-L1 antibodies atezolizumab, nivolumab, 
or ipilimumab. Even though the information regarding 
the role of OSM signaling in improving the efficacy of 
immunotherapy is still very limited, the clinical develop-
ment of these blocking antibodies will probably boost 
the research on this topic. STAT3 and JAK inhibitors are 
also being tested in clinical trials in combination with 
ICB in patients with advanced cancer.145 Interestingly, the 
JAK inhibitor ruxolitinib alleviated immune-checkpoint 
inhibitor-associated myocarditis.146

Therapeutic blockade of IL-6 cytokines could also be 
combined with chemotherapy, as some cytokines such 
as IL-6, OSM, and LIF promote chemoresistance and 
inhibit the chemotherapy-induced anticancer immune 
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response.57 101 147 Finally, blocking IL-6 cytokine, which 
significantly affects metabolic control, could have synergic 
roles with antimetabolic drugs such as LDH inhibitors or 
CD36 targeting agents.148 149 Notably, high serum LDH 
is an important predictor of resistance to anti-PD-L1 
immunotherapy.150

CONCLUSIONS AND FUTURE DIRECTIONS
IL-6-related cytokines are characterized by their multi-
functionality, showing overlapping or redundant 
functions among members but also eliciting unique 

responses. They have direct effects on cancer cells. Up 
to date, most of them are considered tumor promoters, 
although antitumor responses have also been reported. 
Most of these family members seem to have the extraor-
dinary ability to act on a wide variety of cells and ECM 
proteins within the TME. They can also modulate the 
intricate immune composition of the TME, promoting 
its activation, inhibition, or differentiation depending 
on the cell type. Among all the family members, IL-6 
is the one showing the clearest and most drastic effects 
in the TME, being a master regulator of chronic 

Table 1  Summary of existing clinical trials combining immunotherapy and blockade of IL-6 family cytokines

Clinical trial 
(NTC number) Target Conditions Interventions Phase

NCT05022927 IL-6R HCC ERY974, tocilizumab, atezolizumab, bevacizumab 1

NCT04940299 IL-6R Advanced Melanoma, NSCLC, 
urothelial carcinoma, bladder 
cancer

Ipilimumab, nivolumab, tocilizumab 2

NCT04729959 IL-6R Recurrent glioblastoma, diffuse 
astrocytoma

Atezolizumab, conventional surgery, radiation, tocilizumab 2

NCT04691817 IL-6R NSCLC Atezolizumab, tocilizumab 1–2

NCT04524871 IL-6R Advanced liver cancers Atezolizumab, bevacizumab, tiragolumab, tocilizumab, 
TPST-1120, RO7247669

1–2

NCT04258150 IL-6R Pancreatic cancer Nivolumab, ipilimumab, tocilizumab, radiation 2

NCT03999749 IL-6R Melanoma Ipilimumab, nivolumab, tocilizumab 2

NCT03869190 IL-6R Urothelial carcinoma, bladder 
cancer

Atezolizumab, enfortumab vedotin, niraparib, Hu5F9-G4, 
tiragolumab, sacituzumab govitecan, tocilizumab, cisplatin, 
gemcitabine

1–2

NCT03866239 IL-6R Colorectal cancer Obinutuzumab, atezolizumab, cibisatamab, tocilizumab 1

NCT03821246 IL-6R Prostate cancer Atezolizumab, tocilizumab, etrumadenant 2

NCT03708224 IL-6R Head and neck squamous cell 
carcinoma

Atezolizumab, tocilizumab, tiragolumab 2

NCT03424005 IL-6R Triple negative breast cancer Capecitabine, atezolizumab, ipatasertib, SGN-LIV1A, 
bevacizumab, gemcitabine+carboplatin or eribulin, 
selicrelumab, tocilizumab, nab-Paclitaxel, sacituzumab 
govitecan

1–2

NCT03337698 IL-6R NSCLC Atezolizumab, cobimetinib, RO6958688, docetaxel, CPI-
444, pemetrexed, carboplatin, gemcitabine, linagliptin, 
tocilizumab, ipatasertib, bevacizumab, sacituzumab 
govitecan, radiation, evolocumab

1–2

NCT04191421 IL-6 Metastatic pancreatic 
adenocarcinoma

Siltuximab, spartalizumab 1–2

NCT05428007 IL-6R Melanoma Sarilumab, ipilimumab, nivolumab, relatlimab 2

NCT04999969 LIF Locally advanced or metastatic 
solid tumors

AZD0171, durvalumab, gemcitabine, nab-paclitaxel 2

NCT05061550 LIF NSCLC AZD0171, durvalumab, oleclumab, monalizumab, 
MEDI5752, dato-DXd, pemetrexed, carboplatin, cisplatin, 
paclitaxel

2

NCT04374877 IL-27 Advanced ccRCC or HCC, or 
anti-PD(L)1 relapsed/refractory 
advanced NSCLC

SRF388, pembrolizumab 1

NCT05359861 IL-27 HCC SRF388, atezolizumab, bevacizumab, placebo 2

ccRCC, clear cell renal cell carcinoma; HCC, hepatocellular carcinoma; IL-6, interleukin-6; LIF, leukemia inhibitory factor; NSCLC, non-
small cell lung cancer; PD(L)1, programmed cell death protein ligand 1.
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inflammation and a potent suppressor of immune anti-
tumor responses.

The inhibition of these cytokines in preclinical murine 
models in combination with ICB has been shown to 
improve immunotherapy results. Therapeutic targeting 
of IL-6-related cytokines and their receptors could tip the 
balance to a more antitumor TME, and it is a valid and 
worth exploring alternative to block tumor-promoting 
inflammation (figure  2). A substantial number of clin-
ical studies evaluating antibodies targeting IL-6 and IL-6-
related cytokines in cancer are in combination with ICB 
(table  1). Moreover, recent studies have demonstrated 
the potential of these cytokines as predictive biomarkers 
of ICB therapy, supporting their relevant role in the 
therapeutic success of immunotherapies. Nevertheless, 
several issues regarding the combination of IL-6 cytokine 
family blockade with ICB therapy should be addressed. 
For example, the optimal schedule for the most effective 
combination should be evaluated. Based on the preclinical 
data supporting that IL-6 cytokines promote immunosup-
pression in the TME by inhibiting antigen presentation 
and promoting the activation of MDSCs, the combination 
of ICB and cytokine blockade could be more effective if 
cytokines were targeted first. Mathematical modeling can 
help to optimize time schedules and sequential combina-
tions of drugs.151 Ultimately, drug tolerance and toxicity 
of the co-inhibitory treatment must be considered.

In addition, a better understanding of the implications 
of this cytokine family in regulating the immune TME 
in the early and advanced setting for each tumor type 
is needed. In fact, the immune landscapes of primary 
tumors and metastases are very different.152 Most clin-
ical trials developed with IL-6 blocking therapies include 
patients with metastatic disease. This scenario may not be 
optimal as it may be too late to revert the immunosup-
pressive TME fostered by chronic inflammation. Actually, 
neutralizing inflammatory cytokines results in a sustained 
reduction of downstream cytokines in serum but induces 
disease stabilization only for short periods.153 The ideal 
setting may be the neoadjuvant for non-advanced tumors 
and the first lines of treatment in the advanced stages.

Finally, predictive biomarkers are needed to incorpo-
rate IL-6 family-targeting agents into the repertoire of 
anticancer drugs. Comprehensive analyses of the immune 
landscape and cytokine profile of early and advanced 
tumors are key to designing rational therapeutic strategies 
and to choose suitable targets. In some cases, targeting 
various cytokines at a time may result in more potent 
antitumor effects than using cytokine-targeting drugs in 
monotherapy, as cytokines usually cooperate with other 
cytokines and chemokines and act in loops. For example, 
OSM has been shown to be a potent inducer of IL-6, LIF, 
and myeloid-recruiting chemokines.17 18
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