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Abstract

The development of sequencing technologies has enabled the discovery of markers that are

abundantly distributed over the whole genome. Knowledge about the marker locations in

reference genomes provides further insights in the search for causal regions and the predic-

tion of genomic values. The present study proposes a Bayesian functional approach for

incorporating the marker locations into genomic analysis using stochastic methods to

search causal regions and predict genotypic values. For this, three scenarios were ana-

lyzed: F2 population with 300 individuals and three different heritability levels (0.2, 0.5,

and 0.8), along with 12,150 SNP markers that were distributed through ten linkage groups;

F1 populations with 320 individuals and three different heritability levels (0.2, 0.5, and 0.8),

along with 10,020 SNP markers that were distributed through ten linkage groups; and data

related to Eucalyptus spp. to measure the model performance in a real LD setting, with 611

individuals whose phenotypes were simulated from QTLs distributed through a panel of

36,812 SNPs with known positions. The performance of the proposed method was com-

pared with those of other genome selection models, namely, RR-BLUP, Bayes B and

Bayesian Lasso. The Bayesian functional model presented higher or similar predictive abil-

ity when compared with those classical regressions methods in simulated and real scenar-

ios on different LD structures. In general, the Bayesian functional model also achieved

higher computational efficiency, using 12 SNPs per MCMC round. The model was efficient

in the identification of causal regions and showed high flexibility of analysis, as it is easily

adaptable to any genomic selection model.

Introduction

One of the major interests of breeders is to develop high-performance cultivars for target traits

without exhausting genetic variability [1]. Thus, major effort has been expended toward

understanding the genetic mechanisms that are responsible for such traits [2,3] However, this

task can be very difficult, since most of these quantitative traits can be controlled by several

genes with small effects and a few with large ones [2,3]. In addition, several other genetic

effects may be neglected, thereby increasing the so-called missing heritability [4,5].

PLOS ONE | https://doi.org/10.1371/journal.pone.0222699 October 23, 2019 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Moura EG, Pamplona AKA, Balestre M

(2019) Functional models in genome-wide

selection. PLoS ONE 14(10): e0222699. https://doi.

org/10.1371/journal.pone.0222699

Editor: Igor B. Rogozin, National Center for

Biotechnology Information, UNITED STATES

Received: September 14, 2018

Accepted: September 5, 2019

Published: October 23, 2019

Copyright: © 2019 Moura et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: MB was funded by Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-4829-455X
https://doi.org/10.1371/journal.pone.0222699
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222699&domain=pdf&date_stamp=2019-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222699&domain=pdf&date_stamp=2019-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222699&domain=pdf&date_stamp=2019-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222699&domain=pdf&date_stamp=2019-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222699&domain=pdf&date_stamp=2019-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222699&domain=pdf&date_stamp=2019-10-23
https://doi.org/10.1371/journal.pone.0222699
https://doi.org/10.1371/journal.pone.0222699
http://creativecommons.org/licenses/by/4.0/


The use of a high-density panel of markers that are associated with phenotypic information

has enabled breeders/geneticists to represent part of the genetic architecture using a genome-

wide framework. While the use of molecular markers has enabled new insights to be obtained

about the genetic architecture of traits, the amount of available genomic information has

increased significantly. Therefore, multiple statistical problems have emerged, e.g., multicolli-

nearity, overfitting and genetic pitfalls such as false linkage disequilibrium due to the high

model dimensionality, which arises from saturated panels and the limited availability of phe-

notypic information. Under this scenario, it is necessary to establish statistical approaches that

relax these constraints, which are related to frequentist linear models. In this scenario, penal-

ized estimators were proposed for genomic studies, such as parametric models that are based

on mixed models (Ridge Regression Best Linear Unbiased Prediction—RR-BLUP, Genomic

Best Linear Unbiased Prediction—GBLUP), semi-parametric models (kernel regressions),

learning methods and Bayesian regressions (see [6]). The main advantage of such models has

been widely discussed in Tempelman [6], Gianola et al. [7] and Gianola [8].

Genome-wide selection (GWS) was initially proposed by Meuwissen et al. [7]. These

authors proposed the use of penalized regressions that are based on marker information and

phenotypic data, with the aim of overcoming the over-parameterization problem. Given the

shrinkage effect that is produced by Meuwissen’s models on the marker effects, the signifi-

cance test on causal markers was neglected, while the prediction of genotypic values (GV) and

the selection of the best individuals assumed a primary role. The predictions of GVs were

obtained using a genotypic aggregate that was derived from a linear combination of the marker

effect and its current state in an individual.

Based on this strategy, Bayesian genomic regression models and mixed model approaches

have been proposed for dealing with a large Single Nucleotide Polymorphism (SNP) panel and

limited phenotypic information. The main difference among the Bayesian methods is related

to prior assumptions, which were named the Bayesian alphabet by Gianola et al. [8]. Further-

more, adapted models that are used in Quantitative Trati Loci (QTL) analysis, such as the

shrinkage model of Xu [9] and stochastic search variable selection (SSVS), which was adapted

by Yi et al. [10], have been proposed in the GWS context. However, as highlighted by Gianola

et al. [8] and Gianola [8,11], many of these Bayesian models are highly influenced by assump-

tions about the hyperparameters of priors. Therefore, the information that is contained in the

data may have little influence on the estimation of variance components and the relative

entropy between the prior and posterior distributions is minimal. Tempelman [6] notes that

due to this feature, the variance components in genomic regression models can be described as

augmented data, rather than a measure of precision. Thus, these models would be better

described as predictive machinery than genetic models.

To approximate the regression models for the genetic architecture, Hu et al. [12] developed

the so-called continuous genome model, which is based on functional or pseudo-functional

models. The genome is divided into lags of high linkage disequilibrium (which are called bins)

by reformulating a type of haplotype model. By dividing the genome into bins, the haplotype

(bin) effects are analyzed rather than individual marker effects, thereby reducing the dimen-

sion of the model and simplifying the Monte Carlo Markov Chain (MCMC) algorithms and

Bayesian models.

The approach of Hu et al. [12] is founded on the idea that gene expression in the genome

follows a spatial series whose function is unknown. Thus, gene expression signals are functions

of the genome position on the chromosome. However, rather than searching for the functional

description, Hu et al. [12] used bin marker clustering as a measure of information. The bin

analysis that was proposed by these authors showed significant improvement in the predictive
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accuracy of GV when compared to competing methods such as eBayes, GBLUP, Bayes B1,

Bayes B2 and Lasso in an oligogenic scenario [12].

The strategy of dividing the genome into bins has been successfully used in QTL mapping

[13–16]. Genome intervals that are defined by the high linkage disequilibrium (LD) blocks

were called natural bins by Xu [9]. A smoothing spline technique was considered by Beissinger

et al. [17] for identifying threshold regions while considering inbreeding from SNP. However,

Xu [9] stated that although natural bins have been shown to be effective in genomic prediction,

the results may not be directly applied in some specific situations due to the sample size or the

number of markers.

To overcome this problem, Xu [9] established the concept of artificial bins, in which break-

points are allowed within natural bins or LD blocks and the number of artificial bins is deter-

mined in advance (fixed) by the investigator. However, the division of the genome into

artificial bins was not clearly described and once these artificial bins have been established, the

average SNP state (0, 1 or 2) is estimated. Moreover, the assumption of uniform LD at bins is

very strong and important information can be neglected. Thus, searching for models in which

the breakpoints are established directly from the data has become an attractive line of research.

An alternative to the method used by Xu [9] is to assume that candidate markers are ran-

dom discrete variables that are distributed uniformly through the genome whose genomic

signal function is unknown. In this case, stochastic methods such as random walks or Metrop-

olis-Hastings algorithms may be used to integrate numerically the unknown function. Under

high LD, the bins or knots will present no preferential SNP and the functional signal will

remain constant in the genomic window.

A similar approach was widely used in QTL mapping, in which the spatial genomic series

was delimited by flanking markers at specific positions in the genome [18]. Thus, the extension

of this technique to genomic selection models can be easily adopted, thereby reducing the

model size and the multicollinearity effects.

The present study proposes an alternative approach to dealing with continuous genome

methods using functional models in the genomic selection framework and compares it with

traditional methods. Additionally, we seek to identify possible breakpoint regions or natural

bins using the signal function that is captured by genomic scanning.

Material and methods

Material

Simulated data. Some LD blocks configurations were simulated in this study in order to

evaluate the bin performance in different mating scenarios. The first scenario, 12,150 SNP

markers were uniformly distributed thought ten chromosomes with an average distance

between them of 0.001 cM in the genome, totaling genome length of 1,200cM (120 cM per

chromosome). The Haldane function was used as mapping function and random walk as mei-

osis method to build a SNP panel of 300 individuals in a F2 population using the QGenes soft-

ware [19]. The second scenario consisted of an F1 population with the same simulation

settings of the first one, resulting in a total de 10,020 SNP markers in 320 individuals.

A total of 12 markers were assumed to be QTLs in both scenarios and their effects were

sampled from a normal distribution with zero mean and a standard deviation of one. The indi-

vidual genotypic values were constructed by the linear combination of QTL effects with the

QTL genotype under three heritability scenarios: 0.2, 0.5 and 0.8. The Gaussian residuals were

sampled according to requested heritability. Multiple artificial bins were adopted in these heri-

tability scenarios: Bin 0.01, Bin 0.005 and Bin 0.001. The sizes of the bins are, respectively,

0.82%, 1.64%, and 8.23% of the number of markers in the F2 population (corresponding to
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121, 60, and 12 bins in the genome) and 0.99%, 1.99%, and 9.98% of the number of markers in

the F1 population (corresponding to 100, 50, and 10 bins in the genome.

In the third scenario, a natural LD structure of Eucalyptus spp was used to simulate the phe-

notypes related to 611 individuals. The SNP panel was 36,812 markers distributed through ten

chromosomes with known SNP position (kb). The phenotypes also were built through 12 sim-

ulated QTLs whose effects were sampled from a standard Gaussian distribution and the posi-

tion sampled from a uniform distribution. The Gaussian residues were sampled from a

Gaussian with variances related to three simulated heritability; 0.2, 0.5 and 0.8. The use of real

LD structure is important to evaluate the model performance in low LD blocks scenario. In

addition, true phenotypic data was used for these 611 plants. More details about the Eucalyptus
background is given above.

In the last scenario, human genome panel contained about 9,307 SNPs from the HapMap

project distributed across 22 chromosomes was used. Information about two different popula-

tions is available in https://cran.r-project.org/web/packages/SNPassoc/SNPassoc.pdf: Euro-

pean population (CEU) and Yoruba (YRI) [20]. The genomic information (names of SNPs,

chromosomes and genetic position) is also available in a data frame called HapMap.SNPs.pos.

The SNP panel was corrected by MAF and the missed values inputted by A.Mat function avail-

able in GBLUP library and a final panel 7,574 SNPs and 120 individuals were used for per-

forming GS. The simulation settings were the same those used in plant simulation.

Real data. For illustrate the bin model on real phenotypic data, a Eucalyptus spp. popula-

tion that was composed of 611 individuals was used. This population is traced back to crosses

that involved E. grandis, E. urophylla, E. globulus and E. camaldulensis. The true phenotypic

data used here was the circumference at breast height (CBH) measure was collected at 24

months of age (two years). The SNP panel used was the same used for simulated data but now

using real phenotypic information. The DNA from all 611 plants of this population was

extracted at two years of age and genotyping was performed with 36,812 SNPs. For the real

Eucalyptus data, 100 bins were spread across the genome; each bin was formed by 368 SNPs,

except the last bin, which had 380 SNPs.

Methods

Functional model. The functional genomic model is based on the premise that the func-

tional signal of a gene through the genome can be described by a one-dimensional function

(Fig 1). In this figure, each dot representing a candidate region can be smoothed by a func-

tional relationship between the genome position λ and the candidate region presenting signal

γ.

As showed by Xu [9] the integration of γ(λ) (Fig 1) returns the predictive additive value

( dVGA) of the i-th individual dVGA ¼
Z

zðlÞĝðlÞdl while in classical genomic selection mod-

els the integrant is replaced by the sum of the linear combination among SNP genotypes and

their additive effects dVGAi ¼
Xp

j¼1

zijĝ j where p is the size of SNP panel.

Thus, based on the Fig 1, if we have C chromosomes in the genome and C functions, the

genomic functional model can be rewritten in a piecewise functional form:

yi ¼ μþ
XC

j¼1

ZL

0

ZijðlÞgðlÞdlþ εi; 8i ¼ 1; . . . ; n ð1Þ

where the summation describes the discontinuity of the function along the chromosomes and
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Lj is the size of chromosome j. Under this model, the continuous genotypic state Z(λ) is not

entirely known, except at the available markers. Note that what Z does is consider how much

each point γ will contribute to the integral in (1) according to the genomic status (2,1 and 0) of

the i-th individual for a specific position λ and, consequently, to predict yi. That is, which loci

influence more on the response variable. More detail about the model justification is given in

supplemental material (S1 Text).

Since the function γ(λ) is unknown, the integral in (1) is not explicit and numerical integra-

tion is necessary. There are various algorithms for performing numerical integration; in this

study, the chromosome division strategy at bins was adopted. Within each bin, the unknown

continuous function f(λ) = γ can be estimated empirically using the pair (λj; γj), i.e. for each

genomic position must be a response in γ and vice-versa. This relationship can be used when λ
is known for a specific marker. In this case, γ(λ)ffi (λj; γj) or for each discretized position (λj)

there is a functional response γj. Given that the effect of the pair (λj; γj) is unknown, it can

only be obtained using the observed position λ and the scalar phenotype (y). Then, (λj; γj)
can be considered a random variable whose posterior distribution can be obtained by

pðgjl; yÞ ¼ pðyÞpðgjyÞpðljg;yÞ
pðyÞpðlÞ ¼

pðgjyÞpðljg;yÞ
pðlÞ / pðgjyÞpðljg; yÞ. Here, the proportional means that the

marginal distribution p(λ) is a uniform (constant) distribution while p(λ)|γ, y) depend on

additive effect and the phenotypic value respectively. If the model parameters do not inform

about the SNP position then: p(λ)|γ, y) = p(λ) and the additive effect will depend only of the

phenotypic value.

The model above assumes conditional independency between λ and y since the phenotypic

value y informs about λ through γ. The pair (λj; γj) can be estimated using the maximum poste-

rior of p(γ|λ, y) as ĝ jjlj; y≙ arg:max
g2<

½pðgjyÞ�pðljg; yÞ; however, p(λ|γ, y) ≔ {λ|λ 2 S� [λk(min),

λk(max)]} is unknown on the k-th bin, but it can be integrated numerically through MCMC

using the Metropolis-Hastings method.

Prior distributions. Using the relationship described above, namely, f(λ) = γ* γ(λ), then

γ is a signal/functional parameter to be estimated. In the Bayesian context, the observable

Fig 1. The functional continuous profile related to a hypothetical genome. Here γ is the additive effect, λ the SNP genome

position and γ(λ) the functional relationship among the SNP position with the additive effect. The classical genome selection models

search to find the marker effect γ related to SNP (colored dot). Functional models search to find the function γ(λ) relating the

markers position λ to its effects γ.

https://doi.org/10.1371/journal.pone.0222699.g001
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variables are the phenotypic values (y), the marker genotypes (Z) and the positions of markers

λ in the reference genome. The non-observable variables are the regression coefficients μ and

γ the variances s2
e and s2

g
. The Jeffrey’s priors were assumed for the residual variance and the

general means, which are given by:

pðmÞ / 1; pðs2

eÞ /
1

s2
e

ð2Þ

The prior distributions for the marker effect γ and its variance were assumed to be:

pðgmÞ / Nð0; s2

gm
Þ; pðs2

gm
Þ / w� 2

esc ðu; S
2Þ ð3Þ

where γm is the m-th marker effect on the position λm, and υ = 1 and S2 ¼
s2
y �0:01

M2 are respectively

the degree of freedom and the scale parameter for the marker variances, and M is the number

of markers.

The marker positions satisfy a biunivocal relation with the marker status (λ1 = M1, λ2 =

M2, . . ., λm = Mm); therefore, there is an equivalence between the sampled marker genotype Z

(λ) and its position λ.

To simplify the notation, by taking γ = {γm}, σ2
γ ¼ fs

2
gm
g and λ = {γm}, the joint prior distri-

bution for unobservable variables is given by:

pðμ; s2

e ; γ;σ
2
γÞ / pðμÞpðs2

eÞ
YM

m¼1

pðγmjlÞpðσ
2
γÞ ð4Þ

where M is the total number of markers and positions in the marker panel.

Joint likelihood of phenotype and marker position. The joint likelihood for the pheno-

typic observation and marker position is expressed as:

pðy; ljμ;s2

e ; γ;σ
2

γÞ ¼ pðyjμ; s2

e ; γ;σ
2

γÞpðljμ; s
2

e ; γ;σ
2

γ ; yÞ ð5Þ

The likelihood for the phenotypic data under the complete model is described by:

pðyjμ; s2
e ; γ;σ

2
γÞ ¼

Yn

i¼1

pðyijμ; s
2

e ; γ;σ
2

γÞ

/ ðs2
eÞ
� n=2exp �

1

2s2
e

Xn

i¼1

yi � m �
XC

j¼1

ZLj

0

ZijðlÞgðlÞdl

0

@

1

A

2
8
><

>:

9
>=

>;

ð6Þ

which can be approximated by:

pðyjμ; s2

e ; γ;σ
2

γÞ ¼/ ðs
2

eÞ
� n=2exp �

1

2s2
e

Xn

i¼1

ðyi � m � ZiPlγ̂Þ
2

( )

ð7Þ

where Pλ is the weight function, which will be described later, and y = {y1, y2,. . .,yn} is the vec-

tor of phenotypic observations.

Through Bayes’ theorem, the posterior distribution can be described by:

pðμ; s2

e ; γ;σ
2

γ jy; lÞ / pðyjμ; s2

e ; γÞpðljμ; s
2

e ; γ;σ
2

γ ; yÞpðμ; s
2

e ; γ;σ
2

γÞ ð8Þ

where pðljμ; s2
e ; γ;σ

2
γ; yÞ is the unknown distribution conditioned on all model parameters.

In this case, the objective is to find pðljμ; s2
e ; γ;σ

2
γ; yÞ; this function can be integrated numeri-

cally with the Metropolis-Hastings algorithm, given the conditioning elements of the
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model and using a uniform distribution [λ(min), λ(max)] to wrap pðljμ; s2
e ; γ;σ

2
γ; yÞ. Thus,

for a bin range [λ(min), λ(max)], each λ can be considered a discrete element and

lim
N!1
½pðljμ; s2

e ; γ;σ
2
γ; yÞ≙ f ðljμ; s2

e ; γ;σ
2
γ; yÞ�, i.e., the continuous probability function can be

approximated by the frequency distribution given the rate of visit to λ along the N runs of the

MCMC algorithm. Thus, f ðljμ;s2
e ; γ;σ

2
γ; yÞ ¼ Pl and the previously described relationship

can be approximated by ĝjl≙ arg:max
g2<

½pðgjyÞ�pðljg; yÞ¼: arg:max
g2<

½pðgjyÞ�Pl.

Markov chain Monte Carlo for functional genomic models. The MCMC by Gibbs sam-

pling was used for the model parameters and the Metropolis-Hastings method was used for

the numerical integration of pðljμ; s2
e ; γ;σ

2
γ; yÞ. To perform the numerical integration, the

genome was divided into bins and a position λj was drawn from each bin. Therefore, the

model dimension for each MCMC run was restricted to the number of bins k. The steps are

described as follows:

1. Initialization: The parameters μ and s2
e are initialized using the mean and variance of the

phenotypic data, respectively; the vector γ is initialized to a value zero and dimension K,

where K is the number of bins in the current model. The matrix that is related to genotypic

state Zλ (n × K) was sampled from the complete matrix Z (n x M), where M� K and the

index λk corresponds to the initial marker position that is sampled in the k-th bin. In this

way, Zlk
was initially sampled on the basis of the median position λk in the k-th bin. The

effect variances of each marker s2
g

were initially assumed to be non-null (0.5). The initial

vector can be represented by:

Ið0Þ ¼ ½mð0Þ; g1
ð0Þ; . . . ; gK

ð0Þ; s2

e
ð0Þ

; s2ð0Þ

g1
; . . . ; s2ð0Þ

gK
;ZlK
� ð9Þ

2. In this step, μ is updated from the following Gaussian conditional distribution:

mj . . . � N
Xn

i¼1

yi �
XK

k¼1

Zlk
glk

 !

n;
s2

e

n

� �"

ð10Þ

Note that the index of summation is K, not M. This is justified by the Bernoulli process

that is observed in stochastic searches during the MCMC, i.e., since λk is sampled at

the t-th iteration, pltk ¼ 1 and plt
:k
¼ 0 for a given bin. Thus, at the t-th iteration,

Zlt Plt γ̂lt ¼
XK

k¼1

Zlk
glk , where Plt is a diagonal binary matrix (M x M) that indicates which

marker is being evaluated within the k-th bin in the t-th iteration. This process makes the

bin model faster.

3. The marker effects (gltk
) are sampled from a Gaussian posterior distribution given the actual

position λk using the following distribution:

gltk
j . . . N

Xn

i¼1

Z2

ltkðiÞ
þ
s2

e

s2
g
lt
k

0

@

1

A

� 1

Xn

i¼1

ZltkðiÞ
ðyi � m �

XK� 1

k�¼1

Zltk�ðiÞ
gltk�
Þ;

Xn

i¼1

Z2

ltkðiÞ
þ
s2

e

s2
g
lt
k

0

@

1

A

� 1

s2

e

0

@

1

Að11Þ
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which is obtained from:

pðgltk j . . .Þ / exp �
1

2s2
e

Xn

i¼1

ðyi � m �
XK

k¼1

Zlk
glkÞ

2

( )

exp �
1

2s2
g
lk

XK

k¼1

g2

lk

8
<

:

9
=

;
ð12Þ

4. As mentioned above, pðljμ; s2
e ; γ;σ

2
γ; yÞ is unknown and the Metropolis-Hastings algo-

rithm [21,22] can be used since it does not require a closed form of the conditional distribu-

tion. In this sense, from an auxiliary distribution, it is possible to sample λ conditional to all

model parameters using α as an acceptability criterion.

In this case, a uniform distribution was used to wrap the λk distribution, where λk was sam-

pled within the bin that is delimited by max(LIk, λk − c) and min(LSk, λk + c), where c is a

constant that defines the tuning in the k-th bin, which is usually fixed at 1% of the bin

range. This uniform distribution is denoted by uðlNEW
k ; l

ðtÞ
k Þ for the k-th bin and the new

position l
NEW
k is accepted in the t-th iteration with probability min(1, αk). Thus, if αk is

accepted, a new position is established, which is denoted by l
NEW
k , and the marker status

ZlNEW
k

is sampled from the complete panel. The decision rule for accepting the new marker

position within the bin is given by:

ak ¼
pðlNEW

jμ; s2
e ; γ;σ

2
γ; yÞuðl

NEW
; l
ðtÞ
k Þ

pðlðtÞk jμ; s2
e ; γ;σ2

γ; yÞuðl
ðtÞ
k ; l

NEW
Þ

ð13Þ

where

pðlNEW
jμ; s2

e ; γ;σ
2
γ; yÞ / exp �

1

2s2
e

Xn

i¼1

yi � m �
XK� 1

k¼1

Zlk
glk � ZlNEWglNEW

 !2( )

ð14Þ

and

pðlðtÞk jμ; s
2

e ; γ;σ
2
γ; yÞ / exp �

1

2s2
e

Xn

i¼1

yi � m �
XK

k¼1

Zlk
glk

 !2( )

ð15Þ

The Hastings correction is given by:

uðlðtÞk ; l
NEW
Þ ¼

1

2c
; if lðtÞk þ c � LSk and lðtÞk � c � LIk

1

cþ lðtÞk � LIk

; if lðtÞk þ c < LSk and lðtÞk � c < LIk

1

cþ LSk � l
ðtÞ
k

; if lðtÞk þ c > LSk and lðtÞk � c > LIk

8
>>>>>>>>><

>>>>>>>>>:
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uðlNEW
; l
ðtÞ
j Þ ¼

1

2c
; se lNEW

þ c � LSj e l
NEW
� c � LIj

1

cþ lNEW
� LIj

; se lNEW
þ c < LSj e l

NEW
� c < LIj

1

cþ LSj � l
NEW ; se lNEW

þ c > LSj e l
NEW
� c > LIj

8
>>>>>>>>><

>>>>>>>>>:

ð16Þ

5. The conditional for the residual variance after accepting the m-th position in the genome is

an inverted chi-squared distribution:

s2

e j . . . � w� 2

esc n;
Xn

i¼1

yi � m �
XK

k¼1

Zlk
glk

 !2 !

ð17Þ

6. Finally, the marker-specific variance s2
g
l

is sampled using an inverted chi-squared distribu-

tion:

s2

gl
j . . . � w� 2

esc ðuþ 1; g2

l
þ S2Þ ð18Þ

Upon chain convergence, the relationship f ðljμ; s2
e ; γ;σ

2
γ; yÞ ¼ Pl was adopted as the fre-

quency distribution, which is related to the number of beats at position λ within a specific bin.

However, the integral

ZL

0

ZðlÞγðlÞdl was used to recompose the genomic genetic value and γ

(λ) remains unknown. Hu et al. [12] used the average effect of bins as the expectation of the

uniform distribution pðljμ; s2
e ; γ;σ

2
γ; yÞ. In the present study, the assumption of the uniform

distribution is relaxed since for each λ, it is attributed number of beats, thereby making it pos-

sible to obtain distributions of several shapes and to approximate

ZL

0

ZðlÞγðlÞdl by ZPlĝ, as

was already demonstrated above. A faster approach is to use the mean of the chains that are

related to marker effects, thereby avoiding designing an additional weight function. It can be

obtained with MCMC on the t-th iteration by assigning the null effect (ĝ ¼ 0) to all markers

whose positions are not visited. Taking ψ as the MCMC chain mean after convergence, we

have c ¼

XN

l¼1

ĝ l

N ¼

t

Xt

l¼1

ĝ l þ tðN � tÞ � 0

tN ¼ t

N �g ¼ P̂l
�g, where N is the total size of the chain,

τ is the number beats at the m-th marker position during the MCMC process and P̂l ¼
t

N.

Under a posterior Gaussian distribution, we have c ¼ P̂l
�g ¼ Pl arg:max

g2<

½pðgjyÞ�. Thus, the

prediction of the final genomic genetic value is given by Zc ¼ ĝ .

Implementation of the analysis. The algorithm for the Gibbs sampler and Metropolis-

Hastings was implemented using R software [23]. The chain size of 5000 samples was consid-

ered after burning the first 1000 iterations and thinning two every other samples. All data and

R library BFBM 1.0 are available in the supplemental files.
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Model predictive ability. To compare the functional model, classical genome selection

models were used, such as the Bayes B and Bayesian Lasso models, with the BGLR function of

the BGLR package [24], functional model, with the binmod function of the PAS package [25]

and the RR-BLUP model with the mixed.solve function [26] of the RR-BLUP package; All

libraries are available in R software CRAN [24]).

To evaluate the predictive ability relative to true simulated values, the mean squared error

(MSE) was used, which is defined by:

EQM ¼
1

n

Xn

i¼1

ðgi � ĝ iÞ
2
¼

1

n

Xn

i¼1

ðyi � m̂ � ZcÞ2 ð19Þ

In addition to MSE, the coefficient of determination R2 was estimated between predicted

genetic value ĝ i and true value g through linear regression.

A cross-validation procedure was performed to evaluate the model’s ability to predict

untested genotypes. For this, a 5-fold procedure was applied on all heritability scenarios and

R2 between the predicted and observed values was estimated. For real data, 6-fold cross-valida-

tion was performed.

Results

Simulated data analysis

Fig 2 shows the absolute effects of the simulated QTL and the absolute effects that were

obtained by RR-BLUP (RR), Bayes B (BB) and Bayesian Lasso (BL) for different levels of heri-

tability. It was observed that the QTL that presented large effects were mapped by the three

methods and the genomic distribution of the effects followed a similar pattern. However, in

general, it presented a strong shrinkage effect, thereby underestimating the true values, with

the exception of BB with the heritability level of 0.8. In this scenario, Bayes B has outperformed

RR-BLUP and Bayesian Lasso, since its predicted values for the four QTL were similar to the

simulated values. For the other heritability levels, the BB method performed similarly to the

others. As expected, as the heritability increases, the resolution of methods in defining causal

regions also increases producing a spike effect on the simulated QTL. However, even with high

heritability, RR and BL showed downward bias due to the shrinkage effect.

Fig 3 shows the absolute effects of the simulated QTL and the absolute effects that were pre-

dicted by the methods for Bin 0.01, Bin 0.005 and Bin 0.001 for the three heritability levels. It is

observed that most QTL with large simulated effects were mapped by all bin models, i.e., the

effects that were predicted by the bin models showed similar patterns and the bin models gen-

erally obtained estimates that were closer to the true values, thereby presenting better genome

resolution than traditional models (RR, BB and BL). The genomic profile at Bin 0.001 was sim-

ilar to that obtained by BB for heritability level 0.8. However, it had the advantage of identify-

ing an additional QTL on Chromosome 5, where three causal signals were simulated.

Moreover, for lower heritability levels, the genome profile that was obtained by the Bin method

remained constant. In summary, only on high heritability the Bayesian GS models (more spe-

cifically the Bayes B) was able to remove the LD noise on the SNP effect (high resolution map-

ping) indicating the power of bins model to remove this bias even in low heritability’s

scenarios.

Another interesting result was the power of the Bin method in identifying QTL on the same

chromosome. This result can be observed in bins 0.01 and 0.005. For Bin 0.01, the three QTL

were well represented, including the effect magnitude. However, false-positive signs were

found in chromosomes 2 and 7 in this bin configuration.
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Table 1 presents the mean squared error (MSE) and the coefficient of determination (R2)

between the true and predicted values using the considered methods under different scenarios

of heritability.

In the F2 population, it was observed that the regression models that were used in this study

performed very differently according to the heritability scenario, i.e., RR-BLUP performed

best for heritability level 0.2, Bayesian Lasso for heritability level 0.5, and Bayes B for heritabil-

ity level 0.8. The best configuration of Xu et al. (2012) model performed better than Bayesian

regression models, but it was less accurate than the bin model configurations. The bin model

outperformed all models in terms of predictive ability and had the highest values of R2. How-

ever, the lowest values of MSE occurred for the Xu et al. (2012) model in the heritabilities 0.2

Fig 2. Absolute simulated actual effects of QTL along the genome and absolute estimates from methods rr-BLUP (RR), Bayes B (BB) and

Bayesian Lasso (BL). Colored dots represent the 12 true QTL, which are distributed across 12,150 SNP over 10 linkage groups. There is a scale

difference.

https://doi.org/10.1371/journal.pone.0222699.g002
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and 0.5, and when the heritability level was high, the lowest value of MSE occurred for the Bin

0.001 (1000 marker per bin). However, bin methods generally show high predictive ability of

the true genomic genetic value.

In the F1 population, it was observed that Bayes B was better among the Bayesian regres-

sion models and rr-BLUP in all heritabilities. The Xu et al. (2012) model outperformed the

regression models only in the heritability 0.5, but in all scenarios it was overcome by the bin

configurations. In this LD configuration, the bin model superiority in predicting the true val-

ues were slightly inferior to F2 populations. However, the lowest values of MSE occurred in the

Xu et al. (2012) model in the heritabilities 0.2 and 0.5, and when the heritability level was high,

the lowest value of MSE occurred for the Bayes B.

Fig 3. Absolute simulated actual effects of QTL along the genome and absolute estimates from the methods for Bin 0.001, Bin 0.005 and Bin 0.01.

Colored dots represent the 12 true QTL, which are distributed across 12,150 SNP over 10 linkage groups. There is a scale difference.

https://doi.org/10.1371/journal.pone.0222699.g003
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For humans dataset the Xu model presented the worst results requesting models where the

number of bins ranged from 161 to the total panel of SNPs. The number of bin used our

model was resilient to different LD structures presented good prediction ability independent

from the population. In general the bins models performed very well in this LD structure inde-

pendently of the bins number. Also, the bin model presented the best resolution in the genome

scanning, presenting estimate of additive effect closer to simulated one (S10 and S11 Figs).

Table 1. Mean Square Error (MSE) and coefficient of determination (R2) of the RR-BLUP, Bayes B, Bayesian Lasso, Bin 0.01, Bin 0.005 e Bin 0.001 models, for the

three heritabilities considering three population structures.

Population Models Heritabilities

0.2 0.5 0.8

MSE R2 MSE R2 MSE R2

F2 rr-BLUP 1.171 0.736 0.902 0.843 0.638 0.896

Bayes B 1.587 0.676 0.882 0.846 0.543 0.927

Bayesian Lasso 1.546 0.685 0.859 0.851 0.637 0.888

Bin 0.01 1.187 0.815 0.884 0.871 0.400 0.963

Bin 0.005 1.161 0.813 0.871 0.875 0.442 0.958

Bin 0.001 0.993 0.838 0.747 0.903 0.398 0.961

XU 0.683� 0.784 0.571�� 0.882 0.420��� 0.942

F1 rr-BLUP 2.183 0.496 1.488 0.766 0.932 0.908

Bayes B 2.121 0.524 1.286 0.825 0.668 0.952

Lasso Bayesiano 2.183 0.496 1.461 0.774 0.923 0.910

Bin 0.01 2.026 0.566 1.117 0.868 0.696 0.948

Bin 0.005 1.946 0.600 1.022 0.889 0.830 0.927

Bin 0.001 1.746 0.678 1.666 0.706 1.427 0.785

XU 1.642� 0.447 0.857��� 0.841 0.699��� 0.921

Eucalyptus rr-BLUP 2.219 0.586 1.487 0.784 0.475 0.910

Bayes B 2.147 0.452 1.363 0.765 0.873 0.903

Lasso Bayesiano 2.100 0.505 1.745 0.773 0.457 0.901

Bin 0.01 2.021 0.558 0.995 0.785 0.385 0.915

Bin 0.005 2.245 0.625 1.078 0.790 0.245 0.913

Bin 0.001 2.075 0.641 0.925 0.813 0.285 0.927

XU 1.386# 0.529 1.247# 0.636 0.514## 0.951

Humans rr-BLUP 1.681 0.306 1.276 0.570 0.837 0.812

Bayes B 2.184 0.274 1.189 0.589 0.623 0.846

Lasso 2.176 0.273 1.011 0.582 0.521 0.775

Bin 0.01 2.032 0.400 1.066 0.642 0.519 0.905

Bin 0.005 2.273 0.368 1.044 0.644 0.510 0.904

Bin 0.001 0.944 0.407 0.654 0.781 0.532 0.838

XU 2.871�# 0.266 1.604#� 0.547 0.585### 0.844

� Best Xu model with 10 bins.
# Best Xu model with 2 bins.

�� Best Xu model with 90 bins.
##Best Xu model with 36812 bins.

��� Best Xu model with 190 bins.

�# Best Xu model with 191 bins
#�Best Xu model with 370 bins
### Best Xu model with 2741 bins

https://doi.org/10.1371/journal.pone.0222699.t001
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This result has confirmed the model ability to deal problems related to biased estimates of the

true additive values in which has been observed in shrinkage models.

The results that are shown in Fig 3 and Table 1 indicate that the number or size of the bins

that divide the genome may influence the result of analyses, although the genomic profiles

among the methods are not substantially divergent. One way to determine the number of bins

is to use the LD as breakpoint information, to construct the so-called "natural bins" [9,14],

where contiguous markers with high LD form an interval that presents similar information.

However, given the stochastic nature of our model, it is expected for the breakpoints to be nat-

urally built by the approximated function f ðljμ; s2
e ; γ;σ

2
γ; yÞ ¼ Pl, which will converge to a

uniform distribution pλ¼
:

{λ|λ 2 S� [λ(min), λ(max)]}� q under the scenario of blocks with

high LD. To better understand this statement, consider Fig 4, which shows the scanning profile

of Pλ across the simulated genome (with the QTL positions) for the model Bin 0.005 and a her-

itability level of 0.8.

According to Fig 4, the algorithm runs through the genome randomly and with constant

weight Pλ� q until it identifies the signal of a possible QTL and generates a sharp peak. More-

over, high-frequency (or high-probability) points that are close to the main peaks are observed.

The low-frequency points on the wavelets correspond to the established breakpoints and the

Fig 4. Simulated effects and relative frequency of the Bin 0.005 model. Panel A shows the absolute simulated effects. Panel B shows the relative

frequency of the Bin 0.005 model for the heritability level of 0.8 in the Metropolis-Hastings algorithm.

https://doi.org/10.1371/journal.pone.0222699.g004
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pathway within these points is clearly uniform, as expected. Note that the positions of these

bins in the genome are irrelevant since they are used only to optimize the stochastic search.

However, as observed, the number of bins can influence the analysis in terms of speed and

power of detection of true positive signals. For instance, the results in Fig 4 suggest possible

natural bins (breakpoints) that could be established using sudden changes in the signals of the

function Plj . However, establishing these breakpoints without prior analysis may not be trivial.

For better visualization, one can zoom in on the function Plj to examine the wavelet pattern of

Fig 4 at specific points, as described in Fig 5.

In Fig 5, the wavelet function, which is represented by Plj , for various bins in the Bin model

0.005 (200 markers per bin) is presented.

The artificial bins, at first glance, did not match with the true LD blocks. On the other

hand, the stochastic searching was more effective in found the signal based on LD structure.

Based on Fig 5, four bins could be established: the first appears before the first dashed red line

in, the second between the first two dashed red lines, the third between the second and third

dashed lines, and last after the last dashed line. The question arises of whether the candidate

natural bins that are obtained through MCMC scanning have a biological interpretation i.e.

matching with LD blocks.

To answer this question, a heat map was constructed for this range (Bin 1:14); the results

are shown in Fig 6.

The heat map (Fig 6) has grouped the markers with high LD, in which the redder the mark-

ers cells are, the greater the linkage disequilibrium (in the same cluster). Thus, it is possible to

Fig 5. Relative frequency for the first 14 bins (Bins 1:14) of the Bin 0.005 model for the heritability level of 0.8. The dashed lines represent the

possible natural bins that can be established instead of the first 14 bins, which are fixed a priori, with the Bin 0.005 model.

https://doi.org/10.1371/journal.pone.0222699.g005
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observe that there are three blocks with high LD from Bin 1:14, i.e., two breakpoints and two

possible natural bins. Thus, the LD pattern that is obtained through the heat map corroborates

with the stochastic searching as illustrated in Fig 5 and suggest that the establishment of natu-

ral and artificial bins (on the contrary to the number of bins) can be irrelevant in functional

models when using numerical algorithms to obtain Plj .

Fig 6. Genomic pattern and heat map of the first 14 bins obtained in the Bin 0.005 model. Panel A shows the genomic window related to the pattern

on the first 14 bins obtained in the Bin 0.005 model. Panel B shows the heat map related to the disequilibrium pattern for correspondent genomic

window. The closer to red, the greater the linkage disequilibrium.

https://doi.org/10.1371/journal.pone.0222699.g006
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The cross-validation results are shown in Fig 7. As observed in the prediction of true simu-

lated values, the bin functional model showed better performance in predicting missing values

in the low-heritability scenario. For the heritability level of 0.2, the bin model outperformed all

methods and achieved the limit of prediction, namely, R2 = 0.201. At the heritability level of

0.5, RR-BLUP (R2 = 0.503) and the bin functional model (R2 = 0.511) were equivalent. This

was also observed in 0.8 heritability level (R2 = 0.782 vs 0.805). Bayesian Lasso and Bayes B pre-

sented the following results for heritability levels of 0.2 (0.167 vs 0.165) and 0.8 (0.748 vs

0.787), respectively.

The same predictive pattern was observed for F1 population in all scenarios. The similar

pattern of k-fold results at heritability of 0.2 were observed being the best bin model achieving

values of R2 of 0.21 vs 0.163; 0.164; 0.167 for RR-BLUP, Bayesian Lasso and Bayes B respec-

tively. For the heritability of 0.5, the results were 0.509 vs 0.491; 0.487; 0.493 and for heritability

of 0.8 the results were 0.782 vs 0.774; 0.763; 0.774 for bin model, RR-BLUP, Bayesian Lasso

and Bayes B respectively.

Predictive results in Eucalyptus data

The cross-validation results obtained from Eucalyptus data indicate that the bin model was

equivalent to the comparison methods (RR-BLUP, Bayes B and Bayesian Lasso). The average

Fig 7. Predictive accuracy estimated through 5-fold cross-validation in simulated data at heritabilities 0.2, 0.5 and

0.8 for RR-BLUP (RR), Bayes B (BB), Bayesian Lasso (BL) and Bin 0.01 models.

https://doi.org/10.1371/journal.pone.0222699.g007
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R2 values that were estimated by considering all folds were 0.30, 0.28, 0.286 and 0.283 for Bin

model, RR-BLUP, Bayes B and Bayesian Lasso, respectively. The genome patterns of marker

effects are given in Fig 8. In general, the bin functional model presented a higher-resolution

pattern of marker effects than the comparison methods, thereby indicating its potential as a

prediction method.

Using the Eucalyptus genome structure to simulate the genes, again the superiority of bin

model on the concurrent models is evident. In all scenarios, the bin model was superior in

ranking and predicting the simulated genotypic values (Table 1). The LD pattern of causal

regions and the genomic pattern can be observed at Fig 9.

In the Fig 9, as also observed in the true data, the best resolution of the genomic structure is

evident. But, for the simulated data the best genome resolution converged to best predictions

(Table 1). Also, plotting the weight matrix Plj vs. LD pattern, it was revealed the robustness of

method to deal with different LD structures since the model was able to find causal region

even in LD window showing in low LD blocks where natural bins are absents (Fig 10).

Discussion

Functional models and computational efficiency

A genome panel with a high density of markers that presents high linkage disequilibrium con-

tains several redundant markers that do not provide any new information and may lead to

Fig 8. Genomic profile of 611 Eucalyptus plants genotyped with 36,812 SNPs obtained from the models. (A) Bin 0.01, (B) Bayesian Lasso, (C) Bayes

B and (D) RR-BLUP.

https://doi.org/10.1371/journal.pone.0222699.g008

Functional models

PLOS ONE | https://doi.org/10.1371/journal.pone.0222699 October 23, 2019 18 / 27

https://doi.org/10.1371/journal.pone.0222699.g008
https://doi.org/10.1371/journal.pone.0222699


multicollinearity problems in the high-dimensional models that are used in the genomic selec-

tion framework, thereby generating statistical and computational challenges. Xu [9] claims

that the current genome-wide analysis is tailored to the opposite situation to the previously

observed situation in QTL mapping, i.e., in QTL mapping methods, the objective was to satu-

rate the genome with pseudo-markers that are based on a small number of pivotal markers,

whereas the present situation requires eliminating markers that have the same amount of

information.

It is clear that regression models of marker-specific variance, such as those that are used in

the Bayesian alphabet [8], present problems in large panels, which are associated with limited

phenotypic information, i.e., the larger the marker panel, the greater the computational

demands in the estimation of marker effects and the more severe the multicollinearity prob-

lems. Hu et al. [12] proposed the continuous genome model, which uses a genomic functional

approximation through artificial bins and reference markers as breakpoints in searching for a

low-dimensional representation of the infinitesimal model.

In the present study, we proposed a more direct approach of functional models and numer-

ical integration of the genomic function and relaxed the assumption of high-LD blocks in the

bins. This enabled a type of weighted mean across the bins to be obtained instead of an average

effect under a Haar wavelet assumption on the marker intervals [12]. We sought to find empir-

ically a weighted function that describes the marker effect based on its genomic position. In

this sense, the current bin approach is very similar to the knots that are used in spline regres-

sions since various piecewise functions can be obtained by the flanking markers. In other

Fig 9. Genomic profile relates to 611 Eucalyptus plants simulated from the 36,812 SNPs obtained the real data. The models used were the Bin 0.01,

Bayesian Lasso, Bayes B and RR-BLUP models. The dots represent the position e effects of simulated genes.

https://doi.org/10.1371/journal.pone.0222699.g009
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words, instead of fitting a polynomial spline within each knot [27] we sought to build an

empirical function that visits the candidate markers and their genomic positions using the

Metropolis-Hastings algorithm. We allow ourselves to use the terms “bins” and “knots” synon-

ymously since in the functional spline model, each knot represents a piecewise polynomial

function that is delimited by breakpoints [27].

In general, the assumption of a Haar wavelet (1 0–1) is based on the previous establishment

of natural bins, which are founded on breakpoint markers that present an objective justifica-

tion (e.g., high-LD blocks) [28]. However, the size of natural bins may vary depending on the

genetic background, population crossing structure and sample size. For instance, introducing

(or deleting) an individual in the current sample can produce new breakpoints; thus, new bins

may be established. Therefore, in this study, we prefer to use the so-called artificial bins or

knots instead of the biological breakpoints since the number of knots does not depend on the

sample [9].

In all LD scenarios used here, the bin model outperformed the candidate models. These

results agree with our initial assumption that the providing natural bins, based on LD, are not

necessary in continuous genome if stochastic searching is performed. On this framework, it

was allowed that the bin model identified true spike pattern where the other models were effi-

cient only on high heritability scenarios (Figs 2 and 3 and S10 and S11 Figs). Therefore, the

number of bins or knots, in our context, no longer depends on where the bins will be

Fig 10. Weighted function describing the Genomic profile relates to 611 Eucalyptus plants simulated from the 36,812 SNPs obtained the real

data. The dots represent the position e effects of simulated genes. The heat map represents the genomic LD around the simulated QTLs.

https://doi.org/10.1371/journal.pone.0222699.g010
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established, but on the number of bins to be used, thereby making the accuracy in the fitting of

p(λ|y, γ) and γ(λ) equal to the computational demand.

In the scenarios described above, the number of bins was selected to accelerate the regres-

sion by minimizing the computational demand. For instance, the model bin 0.001 was fitted

using only 12 markers per round of MCMC, which required a computation time that was

practically insignificant given the available computational resources. It was approximately

3500 times faster than the full model. Since the library BGLR is compiled using Fortran and C,

it very difficult to compare the computational performance with S language used in R. But,

using one round of MCMC for each candidate model on S language, the bin model with 12

markers outperformed the Bayesian RR-BLUP, BayesB and LASSO in 2100, 3050 and 3750

times respectively.

The requested computational demand is inversely related to the number of bins, i.e., the

smaller the number of bins, the faster the MCMC process and lower the computational

demand. For instance, the model Bin 0.001 was 3000 times faster than the model Bin 0.1. Fur-

thermore, model Bin 0.001 (1000 markers per bin) achieved the best predictive ability among

all evaluated bin configurations and multiple traditional full regression models of genomic

selection. This comparison was done using a workstation Intel1 Xeon1 E5 20 core 80 GB

2TB.

Functional models predictive ability

The predictive ability of the Bayesian functional model, in most settings, was higher than those

of the RR-BLUP, Bayes B and Bayesian Lasso models (Table 1). This corroborates the results of

[9,12] and can be explained by the smoothing effect on markers’ collinearity and the strong

shrinkage problems that emerge from the model constraints. Taking this into account, the

functional model reduced the shrinkage effect in the true QTL, which was reflected by the

high-resolution scanning of the genome and the lower MSE value [12]. Thus, problems that

are related to the downwardly biased estimation that is observed in shrinkage methods [11] in

true positives effects may be avoided.

If K!M (e.g., the number of bins is equal to the number of markers), the bin model con-

verges to the classical regression method of the Bayesian alphabet (best Xu’ model for human’s

data). Thus, in addition to the three bin configurations that are shown above, other scenarios

with more bins were tested (e.g., bins of 10 markers). However, an increase in the predictive

accuracy of the simulated true values was not observed; only an increase in computational

demand was observed converging to predictive values that were near the values that were

obtained by the full regression model (0.678, 0.838 and 0.902 for heritability levels of 0.2, 0.5

and 0.8, respectively). This result indicates that the bin model can outperform the original full

marker model in terms of estimation and predictive ability. However, this advantage, as

observed in spline functional models, depends on the correct setting of knots across the

genome.

The bin model outperformed the comparison models in predicting missing values in sce-

narios of simulated unbalance. In three heritability scenarios, the bin model outperforms all

comparison models, which suggests its applicability in GS to predicting untested genotypes in

different LD structures. As in true value prediction, the higher the simulated heritability, the

more similar are the predictions among the GS methods. Equivalent results were observed by

[9], although the model performance was not evaluated for different unbalance scenarios and

heritability levels.

It is not our intention in this study to give a detailed description of the functional model in

Eucalyptus spp., but instead to use these data to illustrate how the bin model performs on
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various populations and LD structures. Instead to those observed in F2 population, high LD

blocks in Eucalyptus were not evident (Fig 10). Only three LD blocks were observed in the

chromosome 7, 8 and 10 in genomic regions near to simulated QTLs. In these circumstances,

the stochastic walking was not very evident as in F2 high LD blocks. The low LD disequilib-

rium can be attributed to mixture population involving four eucalyptus species: E. grandis, E.

urophylla, E. globulus and E. camaldulensis. Even in this circumstances, the Plj was effective in

searching for candidate regions and helped to obtain a high resolution in genomic profile (Fig

9). The individual pattern of LD blocks is available in supplemental material (S1–S9 Figs).

The results of the cross-validation study along with the pattern of the marker effect

throughout the genome indicate the power of the method in predicting missing values and

depicting a more realistic pattern of marker effects across the genome, where several markers

exhibit some effect but the majorities do not pay a role in the genomic architecture. The diffi-

culty of BB, RR and BL in presenting a realistic picture of the distribution of the genetic effects

for circumference at breast height (CBH) was evident, since all markers seem to contribute

equally to this trait.

The predictive differences in eucalyptus using the observed phenotypic simulated values

can be the indicative that the genomic architecture can influence the predictive results.

Whereas in the Fig 9, few peaks were observed due the number of QTLs simulated, in the Fig 8

several candidate peaks were observed suggesting several QTLs controlling the CBH. In the

other hand, the genomic profile given by the other models did not present great differences

even in polygenic structures (Figs 8 and 9). Since the true position of QTL for the real data is

not known, it is very complicate to infer about the superiority of the bin model on the other

models in long- run selection. However, the simulated results associated to LD pattern in euca-

lyptus suggested that bin model in polygenic structures could be very attractive to genomic

selection in long-run even in low LD populations.

The choice of the most suitable model for use in genome analysis may depend on several

interconnected attributes, such as the genetic architecture (e.g., number of genes, LD decay,

heritability, and the presence of dominant and other non-additive effects), population struc-

ture (e.g., sample size and pedigree), marker density and number of phenotyped individuals

[12,14,16,29,30]. According to Su et al. [16], major QTL for traits with low heritability and

polygenic traits, even those that are highly heritable, are often difficult to detect in high-dimen-

sional shrinkage models.

Daetwyler et al. [29] note that the efficiency of each method depends on the genetic archi-

tecture and simulated scenario. Under these circumstances, the model assumptions are an

important factor. For instance, in polygenic or infinitesimal scenarios, the GBLUP (or

RR-BLUP) model is likely to have better predictive capacity compared to Bayesian regression

models of marker-specific variance. Under the simulated scenario considered in this study

(polygenic architecture with SNP effect that is sampled from a Gaussian distribution with zero

mean and common variance), the RR-BLUP model, which assumes the same prior hyperpara-

meters, could be favored. However, the RR-BLUP Gaussian prior, with homogenous variance,

did not favor the model uniformly across the prediction scenarios and this method outper-

formed the Bayesian models only for the heritability level of 0.2.

Based on this argument, it could be imagined that the Bin model would present lower pre-

dictive ability under the infinitesimal scenario since our functional model uses stochastic

search, which tends to select markers that have greater effect and penalizes to zero those

markers that are not included in the current MCMC process. To include markers that exhibit

minor effects, the functional model could be fitted using many bins; however, it will con-

verge to the computational problems that were previously discussed. Another problem is
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that the true genetic architecture is unknown and in incorrect "guess" about the number of

bins may decrease the Bin model’s performance relative to RR-BLUP or GBLUP (the “no

free lunch” theorem). It is evident that in a polygenic/infinitesimal scenario with a Gaussian

stochastic process with common variance, RR-BLUP may present better predictive ability;

however, the advantage of the bin methods relies on their asymptotic property when K!M.

In a polygenic/infinitesimal scenario, the GBLUP random regression model (which is theo-

retically equivalent to RR-BLUP) is more accurate than Bayesian regression models; con-

versely, these Bayesian models, have presented advantages in the oligogenic or polygenic

scenarios [29].

According to Su et al. [16], a bin is defined as a linkage disequilibrium (LD) block in which

all SNPs are identically segregated. According to Fig 4, it is possible to construct causal disequi-

librium blocks naturally during the genomic search since, as was emphasized above, if there is

high linkage disequilibrium among markers in a genomic window, p(λ|γ) will be uniform. In

addition, if the phenotypic vector y provides no information on p(λ|γ), the distribution p(λ|γ)

converges to a discrete uniform distribution throughout the bin where λ is allocated. Thus, the

functional model, using stochastic search, seeks to describe LD bins naturally (as natural

knots) and could be used in a two-stage analysis. Similar to an ad hoc procedure, it could per-

form the initial scanning with an arbitrary number of bins by capturing the information from

p(λ|γ) and establish breakpoints to be used in a further analysis, similar to that proposed by Xu

[9]. The high-frequency signals of p(λ|γ) are candidates for natural breakpoints (but not LD

blocks limits as discussed above), as used by Xu [9], i.e., one can use artificial bins to automati-

cally obtain natural bins.

Yu et al. [14] argue that the precise estimation of the LD breakpoints depends on the

marker density in a specific genomic window: the breakpoints can be identified more accu-

rately in a higher-marker-density scenario. In Eucalyptus, some LD blocks were observed in

the genomic window related to simulated QTL, but not in high LD (Fig 10). In these circum-

stances, the establishment of artificial bins will be very difficult and the uniform searching pat-

tern showed in F2 was not observed. Therefore, one could understand that our model might be

more robust to be applied in different LD structures than bin model proposed by Xu [9] as

showed in humans and eucalyptus results where the bin model was not the best one requesting

the whole SNP panel to increase the accuracy.

Since the objective in several genomic studies is to detect candidate genes that may control

quantitative traits, functional models that are based on the artificial bin methodology may be a

good tool for studying the genetic architecture of traits. Thus, given the genomic profile that

was obtained in Figs 2, 8 and 9, functional models could be easily applied in genome-wide

association studies (GWAS) to identify candidate regions. It is because the penalized posterior

arg:max
g2<

½pðgjyÞ�pðljg; yÞ does not show strong shrinkage effect, such as that observed in the

penalized models allowing statistical tests on the markers effects. For example, recently, Wu

et al. [31] performed a study on constructing haplotypes (similar to the natural bins) in the

bovine genome to detect candidate genes that affect traits that are related to meat quality.

According to these authors, most significant QTL that were detected by individual SNP analy-

sis were also identified using the haplotype-based analysis. Other bins/ haplotypes models has

been proposed, including those assuming convolution of Gaussian distribution supposing

independency among haplotypes blocks in GWAS [32]. Given that haplotypes are supposed as

independent the GS could be applied on the piecewise kernels of the Gaussian in order to pre-

dict the genotypic values since the ML estimators are equivalent to independent multiple

regression. The problems with these models in GWS are related with identificability i.e., the

sum of “independent” bins predictors distributed across the kernel of multiplied Gaussian
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does not match with the mean of the resulted likelihood and the model expectation plus vari-

ance are not more linear. While this might be a problem in GWS framework, it is not for

GWAS as proposed by the authors. Our model keeps the model identifiability since the penalty

Plj allows that all markers contribute to predict the genomic values and convolution or multi-

plication of Gaussian is not necessary.

The main advantage of applying the bin method that is associated with functional models

in genomic selection (GS) is that it places the GS models back in the genetic setting since the

marker positions and LD information are again taken into account in the search for causal

regions, whose identification may contribute to the accurate prediction of genomic values.

Additionally, any penalized regression model or the Bayesian alphabet framework can be

adapted to the bin model, thereby enabling a fast analysis. Thus, since this methodology cap-

tures the gene pattern independent of LD blocks, this approach is expected to be more efficient

than parametric/semi-parametric predictive machinery since the long-term success of geno-

mic selection depends on the relationship between causal regions and the presence of LD

blocks.

Based on the results that are described above, it is inferred that Bin models are a potential

tool for the prediction of genomic values. This approach unifies the predictive and QTL

searching models for depicting the genetic architecture based on the functional relationship

between the effect of an SNP and its position. For the set of simulated scenarios, the proposed

method showed advantages over the RR-BLUP, Bayes B and Bayesian Lasso methods in pre-

dicting genomic values and missing phenotypic information. Although the predictive ability

among the models was similar for Eucalyptus real data, the bin functional model achieved

high-resolution scanning of the genome for causal regions, thereby highlighting the potential

of the method for use in both prediction and genomic association studies.
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