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Abstract: Multiplicative degree-Kirchhoff index is a very interesting topological index. In this article,
we compute analytical expression for the expected value of the Multiplicative degree-Kirchhoff index
in a random polygonal. Based on the result above, we also get the Multiplicative degree-Kirchhoff
index of all polygonal chains with extremal values and average values.
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1. Introduction

In this paper, we only consider simple and finite connected graphs. The topological
index is a mathematical descriptor of molecular structure, which is obtained by performing
some numerical operation on the matrix representing the molecular graph. It is an invariant
graph, directly generated from the molecular structure, and used to reflect the size, shape,
branch and other structural features of the molecule, so as to realize the numerical value of
molecular structure information. Molecular topological indices are widely used because of
their simplicity, objectivity and freedom from experience and experiment. More than 200
different types of topological indices have been proposed.

It is well known that the emergence and development of graph theory is closely related
to the study of chemical molecular graphs. Using topological indices, physicochemical
properties and activity parameters of compounds to construct QSPR/QSAR models and to
evaluate and predict their properties has become one of the most active fields in chemistry
research. In recent years, increasing attention has been paid to the development of chemical
workers. A graphical representation of a compound contains atoms as nodes and bonds as
edges. For more detailed information, we can refer to [1–4].

Topological indices can be used to describe chemical structures and are related to the
physical properties, thermodynamic parameters, chemical properties, biological activities
and carcinogenicity of compounds. A graph is an ordered two-tuples G = (V(G), E(G)),
where V(G) is a nonempty set and E(G) is a set disjoint from V(G). V(G) and E(G) are
the vertex set and edge set of G. The number of edges incident at v in G is called the degree
of the vertex v in G and is denoted by dG(v). If u and v are in the same component of G,
we define d(u, v) to be the length of a shortest u− v path in G [5–7].

In 1993, Klein and Randić, academicians of the International Academy of Mathematical
Chemists, discussed the application of effective resistance in chemistry and named the
effective resistance of a graph as the resistance distance of a graph. This was the first time
the concept of resistance distance was put forward in the world, and its proposers pointed
out that the resistance distance has more advantages than the shortest distance in the study
of molecular communication distance and other aspects [8].

The Kirchhoff index is defined as

K f (G) = ∑
{x,y}⊆VG

r(x, y). (1)
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In 2007, the multiplicative degree-Kirchhoff index was defined as [9]

K f ∗(G) = ∑
{x,y}⊆VG

d(x)d(y)r(x, y). (2)

A random polygonal chain Gn with n polygons is composed of a polygonal chain
Gn−1 with n− 1 polygons, where a new terminal polygon Hn is adjacent to a cut edge,
see Figure 1. For n ≥ 3, the terminal polygon Hn can be connected in m ways, which
can describe as a permutation of G1

n,G2
n,G3

n,. . . ,Gm
n . see Figure 2. A random polygon

chain Gn(p1, p2, p3, . . . , pm−1) is the polygonal chain obtained by successively adding ter-
minal polygons. In each addition m(= 3, 4, . . . , n) can randomly select one of the m
connection modes:

• Gm−1 → G1
2m with probability p1,

• Gm−1 → G2
2m with probability p2,

• Gm−1 → G3
2m with probability p3,

•
...

...
...

• Gm−1 → Gm−1
2m with probability pm−1,

• Gm−1 → Gm
2m with probability pm = 1− p1 − p2 − p3 − · · · − pm−1,

where the probabilities p1, p2, p3 , . . . , pm−1 are constants, independent of the parameter m.

Figure 1. A polygonal chain Gn with n polygons.

Gn-2

Figure 2. m types of local arrangements in a polygonal chain.

Let Gn be a polygonal chain with n polygons H1, H2, . . . , Hn. utωt links Ht and Ht+1
with ut ∈ VHt in Gn, ωt ∈ VHt+1 for t = 1, 2, · · · , n− 1. Evidently, both ωt and ut+1 are
the vertices in Ht+1 and d(ωt, ut+1) ∈ {1, 2, 3, . . . , n}. In particular, Gn is the meta-chain
Mn(pm = 1), the ortho-chain O1

n,O2
n, . . . , Om−2

n (pi+1 = 1, 1 ≤ i ≤ m− 2) and the para-chain
Ln(pm = 1) if d(ωt, ut+1) = 1 (i.e., p1 = 1), d(ωt, ut+1) = 2 (i.e., p2 = 1), d(ωt, ut+1) = 3 (i.e.,
p3 = 1), . . . , d(ωt, ut+1)= m(i.e., pm = 1) for all t ∈ {1, 2, . . . , n− 2}, respectively.

Huang, Kuang and Deng [10] calculated the random polyphenyl and spiro chains,
while Zhang and Li et al. [11] calculated the random polyphenylene chain expected values
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of the multiplicative Kirchhoff index. For more information, we can refer to [12–30]. We
compute analytical expression for the expected value of the multiplicative degree-Kirchhoff
index in a random polygonal. We also obtain the multiplicative degree-Kirchhoff index
with extremal values and average values of all polygonal chains. These results will play a
positive role in the study of chemical and physical properties of compounds, drug design
and environmental pollution prediction [31,32].

2. The Multiplicative Degree-Kirchhoff Index in a Random Polygonal Chain

In this part, in random polygonal chain we will compute the expected value of Mul-
tiplicative degree-Kirchhoff index. For a random polygonal chain Gn, the Multiplicative
degree-Kirchhoff index is a random variable. Actually, Gn+1 is Gn connected by an edge to
a new terminal polygonal Hn+1, here Hn+1 is composed of vertices x1, x2, x3,. . . ,x2m, and
the new edge is unx1; see Figure 1. For all v ∈ VGn ,

r(x1, v) = r(un, v) + 1,

r(x2, v) = r(un, v) + 1 +
1 · (2m− 1)

1 + (2m− 1)
= r(un, v) + 1 +

2m− 1
2m

,

r(x3, v) = r(un, v) + 1 +
2 · (2m− 2)

2 + (2m− 2)
= r(un, v) + 1 +

4m− 4
2m

,

...
...

...

r(xm, v) = r(un, v) + 1 +
(m− 1) · (m + 1)
(m− 1) + (m + 1)

= r(un, v) + 1 +
m2 − 1

2m
,

r(xm+1, v) = r(un, v) + 1 +
m ·m

m + m
= r(un, v) + 1 +

m2

2m
,

r(xm+2, v) = r(un, v) + 1 +
(m + 1) · (m− 1)
(m + 1) + (m− 1)

= r(un, v) + 1 +
m2 − 1

2m
,

...
...

...

r(x2m−1, v) = r(un, v) + 1 +
(2m− 2) · 2
(2m− 2) + 2

= r(un, v) + 1 +
4m− 4

2m
,

r(x2m, v) = r(un, v) + 1 +
(2m− 1) · 1
(2m− 1) + 1

= r(un, v) + 1 +
2m− 1

2m
.

(3)

∑
v∈VGn

dGn+1(v) = [(2m− 2) · 2 + 2 · 3]n− 1 = (4m + 2)n− 1. (4)
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And,

2m

∑
i=1

d(xi)r(x1, xi) =
4m2 − 1

3
=

8m3 − 2m
6m

,

2m

∑
i=1

d(xi)r(x2, xi) =
4m2 − 1

3
+

1 · (2m− 1)
2m

=
8m3 + 4m− 3

6m
,

2m

∑
i=1

d(xi)r(x3, xi) =
4m2 − 1

3
+

2 · (2m− 2)
2m

=
8m3 + 10m− 12

6m
,

...
...

...
2m

∑
i=1

d(xi)r(xm, xi) =
4m2 − 1

3
+

(m− 1) · (m + 1)
2m

=
8m3 + 3m2 − 2m− 3

6m
,

2m

∑
i=1

d(xi)r(xm+1, xi) =
4m2 − 1

3
+

m ·m
2m

=
8m2 + 3m− 2

6m
,

2m

∑
i=1

d(xi)r(xm+2, xi) =
4m2 − 1

3
+

(m + 1) · (m− 1)
2m

=
8m3 + 3m2 − 2m− 3

6m
,

...
...

...
2m

∑
i=1

d(xi)r(x2m−1, xi) =
4m2 − 1

3
+

(2m− 2) · 2
2m

=
8m3 + 10m− 12

6m
,

2m

∑
i=1

d(xi)r(x2m, xi) =
4m2 − 1

3
+

(2m− 1) · 1
2m

=
8m3 + 4m− 3

6m
.

(5)

Theorem 1. The E(K f ∗(Gn))(n ≥ 1) of the random polygonal chain Gn is

E(K f ∗(Gn)) = {(4m3 + 12m2 + 9m + 2)− (2m + 1)
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i(2m− i)
m

(2m + 1)]pi}
n3

3

+ { 4m3 − 4m2 − 19m− 8
3

+ (2m + 1)
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i(2m− i)
m

(2m + 1)]pi}n2

− {(8m2 − 8m− 9) + 2(2m + 1)
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i(2m− i)
m

(2m + 1)]pi}
n
3
− 1.

Proof. The random polygonal chain Gn+1 is obtained by successively adding a new termi-
nal polygon Hn+1 to Gn by an edge, here Hn+1 is composed of vertices x1, x2, x3,. . . , x2m,
and the new edge is unx1; see Figure 1. Through (2), one has

K f ∗(Gn+1) = ∑
{u,v}⊆VGn

d(u)d(v)r(u, v) + ∑
v∈VGn

∑
xi∈VHn+1

d(v)d(xi)r(v, xi) + ∑
{xi xj}⊆VHn+1

d(xi)d(xj)r(xi , xj).

Note that

∑
{u,v}⊆VGn

d(u)d(v)r(u, v) = ∑
{u,v}⊆VGn \{un}

d(u)d(v)r(u, v) + ∑
v∈VGn \{un}

dGn+1 (un)d(v)r(un, v)

= ∑
{u,v}⊆VGn \{un}

d(u)d(v)r(u, v) + ∑
v∈VGn \{un}

(dGn (un) + 1)d(v)r(un, v)

= K f ∗(Gn) + ∑
v∈VGn

d(v)r(un, v).

Recall that d(x1) = 3 and d(xi) = 2 for i ∈ {2, 3, 4, . . . , 2m}. From (3) and (4), We have
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∑
v∈VGn

∑
xi∈VHn+1

d(v)d(xi)r(v, xi)

= ∑
v∈VGn

d(v)[3(r(un, v) + 1) + 2(r(un, v) + 1 +
1 · (2m− 1)

2m
)

+ 2(r(un, v) + 1 +
2 · (2m− 2)

2m
) + 2(r(un, v) + 1 +

3 · (2m− 3)
2m

)

+ · · ·+ 2(r(un, v) + 1 +
(m− 1) · (m + 1)

2m
) + 2(r(un, v) + 1 +

m ·m
2m

)

+ 2(r(un, v) + 1 +
(m + 1) · (m− 1)

2m
) + · · ·+ 2(r(un, v) + 1 +

(2m− 2) · 2
2m

)

+ 2(r(un, v) + 1 +
(2m− 1) · 1

2m
)]

= ∑
v∈VGn

d(v)[(4m + 1)r(un, v) +
4m2 + 12m + 2

3
]

=(4m + 1) ∑
v∈VGn

d(v)r(un, v) +
4m2 + 12m + 2

3
[(4m + 2)n− 1].

From (5), one has,

∑
{xixj}⊆VHn+1

d(xi)d(xj)r(xi, xj) =
1
2

2m

∑
i=1

d(xi)(
2m

∑
j=1

d(xj)r(xi, xj))

=
1
2
[3× 4m2 − 1

3
+ 2× (

4m2 − 1
3

+
1 · (2m− 1)

2m
) + 2× (

4m2 − 1
3

+
2 · (2m− 2)

2m
)

+ · · ·+ 2× (
4m2 − 1

3
+

(m− 1) · (m + 1)
2m

) + 2× (
4m2 − 1

3
+

m ·m
2m

)

+ 2× (
4m2 − 1

3
+

(m + 1) · (m− 1)
2m

) + · · ·+ 2× (
4m2 − 1

3
+

(2m− 1) · 1
2m

)]

=
8m3 + 4m2 − 2m− 1

3
.

Then

K f ∗(Gn+1) =K f ∗(Gn) + (4m + 2) ∑
v∈VGn

d(v)r(un, v) +
4m2 + 12m + 2

3
[(4m + 2)n− 1]

+
8m3 + 4m2 − 2m− 1

3
.

(6)

For a random polygonal chain Gn, the expected value of the number ∑v∈VGn
d(v)r(un, v) is

a random variable. We can represent it

Rn := E( ∑
v∈VGn

d(v)r(un, v)).

Substituting Rn into (6), we can get the recurrence formula of E(K f ∗(Gn))

E(K f ∗(Gn+1)) =E(K f ∗(Gn)) + (4m + 2)Rn +
16m3 + 56m2 + 32m + 4

3
n +

8m3 − 14m− 3
3

.

We continue to consider the following m possibilities.
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Way 1. Gn −→ G1
n+1. In this way, un gives the same result with the vertex x2 or x2m.

Then, ∑v∈VGn
d(v)r(un, v) is described as ∑v∈VGn

d(v)r(x2, v) or ∑v∈VGn
r(v)d(x2m, v) with

probability p1.
Way 2. Gn −→ G2

n+1. In this way, un gives the same result with the vertex x3 or x2m−1. Then,
∑v∈VGn

d(v)r(un, v) is described as ∑v∈VGn
d(v)r(x3, v) or ∑v∈VGn

d(v)r(x2m−1, v) with prob-
ability p2.
Way 3. Gn −→ G3

n+1. In this way, un gives the same result with the vertex x4 or x2m−2. Then,
∑v∈VGn

d(v)r(un, v) is described as ∑v∈VGn
d(v)r(x4, v) or ∑v∈VGn

d(v)r(x2m−2, v) with prob-
ability p3.
...

...
...

Way m-3. Gn −→ Gm−3
n+1 . In this way, un gives the same result with the vertex xm−2 or xm+4.

Then, ∑v∈VGn
d(v)r(un, v) is described as ∑v∈VGn

d(v)r(xm−2, v) or ∑v∈VGn
d(v)r(xm+4, v)

with probability pm−3.
Way m-2. Gn −→ Gm−2

n+1 . In this way, un gives the same result with the vertex xm−1 or xm+3.
Then, ∑v∈VGn

d(v)r(un, v) is described as ∑v∈VGn
d(v)r(xm−1, v) or ∑v∈VGn

d(v)r(xm+3, v)
with probability pm−2.
Way m-1. Gn −→ Gm−1

n+1 . In this way, un gives the same result with the vertex xm or xm+2.
Then, ∑v∈VGn

d(v)r(un, v) is described as ∑v∈VGn
d(v)r(xm, v) or ∑v∈VGn

d(v)r(xm+2, v) with
probability pm−1.
Way m. Gn −→ Gm

n+1, then un is the vertex xm+1. Then, ∑v∈VGn
d(v)r(un, v) is described

as ∑v∈VGn
d(v)r(xm+1, v) with probability 1− p1 − p2 − p3 − . . .− pm−3 − pm−2 − pm−1.

According to the above discussion, we obtain

Rn =p1 ∑
v∈VGn

d(v)r(x2, v) + p2 ∑
v∈VGn

d(v)r(x3, v) + p3 ∑
v∈VGn

d(v)r(x4, v)

+ · · ·+ pm−3 ∑
v∈VGn

d(v)r(xm−2, v) + pm−2 ∑
v∈VGn

d(v)r(xm−1, v) + pm−1 ∑
v∈VGn

d(v)r(xm, v)

+ (1− p1 − p2 − p3 − . . .− Pm−3 − Pm−2 − pm−1) ∑
v∈VGn

d(v)r(xm+1, v)

=p1[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
1 · (2m− 1)

2m
)((4m + 2)n− 1) + (

4m2 − 1
3

+
1 · (2m− 1)

2m
)]

+ p2[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
2 · (2m− 2)

2m
)((4m + 2)n− 1) + (

4m2 − 1
3

+
2 · (2m− 2)

2m
)]

+ p3[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
3 · (2m− 3)

2m
)((4m + 2)n− 1) + (

4m2 − 1
3

+
3 · (2m− 3)

2m
)]

+ · · ·

+ pm−3[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
(m− 3) · (m + 3)

2m
((4m + 2)n− 1) + (

4m2 − 1
3

+
(m− 3) · (m + 3)

2m
)]

+ pm−2[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
(m− 2) · (m + 2)

2m
((4m + 2)n− 1) + (

4m2 − 1
3

+
(m− 2) · (m + 2)

2m
)]

+ pm−1[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
(m− 1) · (m + 1)

2m
((4m + 2)n− 1) + (

4m2 − 1
3

+
(m− 1) · (m + 1)

2m
)]

+ (1− p1 − p2 − · · · − pm−1)[ ∑
v∈VGn−1

d(v)r(un−1, v) + (1 +
m ·m
2m

)((4m + 2)n− 1) + (
4m2 − 1

3
+

m ·m
2m

)].
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Substitute the expectation for the above equation, E(Rn) = Rn, we obtain

Rn =Rn−1 + {(2m2 + 5m + 2)−
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i · (2m− i)
m

(2m + 1)]pi}n

+
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i · (2m− i)
m

(2m + 1)]pi −
2m2 + 15m + 10

3
.

Let

V =
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i · (2m− i)
m

(2m + 1)]pi.

Wi = (2m + 1)[(2m2 + 5m + 2)− 2m + i · (2m− i)
m

(2m + 1)].

Hence,

Rn = Rn−1 + [(2m2 + 5m + 2)−V]n + V − 2m2 + 15m + 10
3

.

By the calculation

R1 = E( ∑
v∈VGn

d(v)r(u1, v)) =
4m2 − 1

3
.

Based on the above results, we have

Rn ={ (2m2 + 5m + 2)
2

− 1
2

m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i · (2m− i)
m

(2m + 1)]pi}n2

+ {1
2

m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i · (2m− i)
m

(2m + 1)]pi +
2m2 − 15m− 14

6
}n + 1.

Thus,

Rn = [
(2m2 + 5m + 2)

2
− 1

2
V]n2 + [

1
2

V +
2m2 − 15m− 14

6
]n + 1.

Substituting Rn into (6), we have

E(K f ∗(Gn+1)) =E(K f ∗(Gn)) + (4m + 2)Rn +
16m3 + 56m2 + 32m + 4

3
n +

8m3 − 14m− 3
3

=E(K f ∗(Gn)) + (4m + 2){[ (2m2 + 5m + 2)
2

− 1
2

V]n2 + [
1
2

V +
2m2 − 15m− 14

6
]n + 1}

+
16m3 + 56m2 + 32m + 4

3
n +

8m3 − 14m− 3
3

.

By these calculations, E(K f ∗(G1)) =
8m3−2m

3 .

Finally, we obtain the expected value formula
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E(K f ∗(Gn)) = {(4m3 + 12m2 + 9m + 2)− (2m + 1)
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i(2m− i)
m

(2m + 1)]pi}
n3

3

+ {4m3 − 4m2 − 19m− 8
3

+ (2m + 1)
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i(2m− i)
m

(2m + 1)]pi}n2

− {(8m2 − 8m− 9) + 2(2m + 1)
m−1

∑
i=1

[(2m2 + 5m + 2)− 2m + i(2m− i)
m

(2m + 1)]pi}
n
3
− 1.

Thus,

E(K f ∗(Gn)) =[(4m3 + 12m2 + 9m + 2)− (2m + 1)V]
n3

3
+ [

4m3 − 4m2 − 19m− 8
3

+ (2m + 1)V]n2

− [(8m2 − 8m− 9) + 2(2m + 1)V]
n
3
− 1.

as desired.
In particular, if we let(p1, p2, p3, . . . , pm−1, pm) = (1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0),

(0, 0, 1, . . . , 0, 0), . . . , (0, 0, 0, . . . , 1, 0), (0, 0, 0, . . . , 0, 1) or (0, 0, 0, . . . , 0, 0), by Theorem 1,
we can obtain the multiplicative degree-Kirchhoff index of the polygonal meta-chain
Mn(p1 = 1),the polygonal ortho-chain O1

n, O2
n, O3

n ,. . . ,Om−2
n (pi+1 = 1, 1 ≤ i ≤ m − 2),

the polygonal para-chain Ln(pm = 1), as

K f ∗(Mn) =
16m3 + 12m2 − 1

3m
n3 +

16m4 − 16m3 − 28m2 − 2m + 3
3m

n2 − 8m4 − 14m2 − 5m + 2
3m

n− 1,

K f ∗(O1
n) =

24m3 + 8m2 − 10m− 4
3m

n3 +
16m4 − 40m3 − 16m2 + 28m + 12

3m
n2 − 8m4 − 16m3 − 6m2 + 15m + 8

3m
n− 1,

K f ∗(O2
n) =

32m3 − 4m2 − 28m− 9
3m

n3 +
16m4 − 64m3 + 20m2 + 82m + 27

3m
n2 − 8m4 − 32m3 + 18m2 + 51m + 18

3m
n− 1,

...
...

...

K f ∗(Om−3
n ) =

4m4 + 12m3 − 7m2 − 14m− 4
3m

n3 +
4m4 − 4m3 + 29m2 + 40m + 12

3m
n2 − 8m3 + 24m2 + 23m + 8

3m
n− 1,

K f ∗(Om−2
n ) =

4m4 + 12m3 + 5m2 − 2m− 1
3m

n3 +
4m4 − 4m3 − 7m2 + 4m + 3

3m
n2 − 8m3 −m + 2

3m
n− 1,

K f ∗(Ln) =
4m4 + 12m3 + 9m2 + 2m

3m
n3 +

4m4 − 4m3 − 19m2 − 8m
3m

n2 − 8m3 − 8m2 − 9m
3m

n− 1.

K f ∗(Oi
n) = [(4m3 + 12m2 + 9m + 2)−Wi+1]

n3

3
+ [

4m3 − 4m2 − 19m− 8
3

+ Wi+1]n2 − [(8m2 − 8m− 9) + 2Wi+1]
n
3
− 1,

Obviously,

K f ∗(Mn) + K f ∗(Ln) = K f ∗(O1
n) + K f ∗(O2

n) + · · ·+ K f ∗(Om−2
n ).

Corollary 1. For a random polygonal chain Gn (n ≥ 3), the para-chain Ln reaches the maximum
and the meta-chain Mn reaches the minimum of E(k f ∗(Gn)).

Proof. Though Theorem 1, we have

E(K f ∗(Gn)) =
m−1

∑
i=1

(−Wi
n3

3
+ Win2 − 2Wi

n
3
)pi + (4m3 + 12m2 + 9m + 2)

n3

3

+
4m3 − 4m2 − 19m− 8

3
n2 − 8m2 − 8m− 9

3
n− 1.
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When n ≥ 3, by taking the partial derivative of E(K f ∗(Gn)), one has

∂E(K f ∗(Gn))

∂pi
= −Wi

n3

3
+ Win2 − 2

3
Win < 0.

∂E(K f ∗(Gn))

∂p1
= −4m4 − 4m3 − 3m2 + 2m + 1

m
n3

3
+

4m4 − 4m3 − 3m2 + 2m + 1
m

n2

− 2
3
· 4m4 − 4m3 − 3m2 + 2m + 1

m
n < 0,

∂E(K f ∗(Gn))

∂p2
= −4m4 − 12m3 + m2 + 12m + 4

m
n3

3
+

4m4 − 12m3 + m2 + 12m + 4
m

n2

− 2
3
· 4m4 − 12m3 + m2 + 12m + 4

m
n < 0,

∂E(K f ∗(Gn))

∂p3
= −4m4 − 20m3 + 13m2 + 30m + 9

m
n3

3
+

4m4 − 20m3 + 13m2 + 30m + 9
m

n2

− 2
3
· 4m4 − 20m3 + 13m2 + 30m + 9

m
n < 0,

...
...

...

∂E(K f ∗(Gn))

∂pm−1
= −4m2 + 4m + 1

m
n3

3
+

4m2 + 4m + 1
m

n2 − 2
3
· 4m2 + 4m + 1

m
n < 0.

When (p1, p2, p3, . . . , pm−1, pm)=(0, 0, 0, . . . , 0, 1)(i.e., pm = 1), the para-chain Ln reaches
the maximum of E(K f ∗(Gn)), (i.e., Gn ∼= Ln). If p1 + p2 + p3 + . . . + pm−1 = 1, let
pm−1 = 1− p1 − p2 − . . .− pm−2 (0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, . . . , 0 ≤ pm−2 ≤ 1), Then

E(K f ∗(Gn)) =
m−2

∑
i=1

(−Wi
n3

3
+ Win2 − 2Wi

n
3
)pi + (−Wm−1

n3

3
+ Wm−1n2 − 2Wm−1

n
3
)(1− p1 − p2 − · · · − pm−2)

+ (4m3 + 12m2 + 9m + 2)
n3

3
+

4m4 − 4m2 − 19m− 8
3

n2 − 8m2 − 8m− 9
3

n− 1.

Therefore,

∂E(K f ∗(Gn))

∂pi
= −(Wi −Wm−1)

n3

3
+ (Wi −Wm−1)n2 − 2

3
(Wi −Wm−1)n < 0.

∂E(K f ∗(Gn))

∂p1
= −(4m3 − 4m2 − 7m− 2)

n3

3
+ (4m3 − 4m2 − 7m− 2)n2 − 2

3
· (4m3 − 4m2 − 7m− 2)n < 0,

∂E(K f ∗(Gn))

∂p2
= −4m4 − 12m3 − 3m2 + 8m + 3

m
n3

3
+

4m4 − 12m3 − 3m2 + 8m + 3
m

n2

− 2
3
· 4m4 − 12m3 − 3m2 + 8m + 3

m
n < 0,

...
...

...

∂E(K f ∗(Gn))

∂pm−2
= −12m2 + 12m + 3

m
n3

3
+

12m2 + 12m + 3
m

n2 − 2
3
· 12m2 + 12m + 3

m
n < 0.

Thus, (p1, p2, p3, . . . , pm−1, pm)=(0, 0, 0, . . . , 1, 0)(i.e., pm−1 = 1), E(K f ∗(Gn)) cannot be
minimized. As above, If p1 + p2 + p3 + . . . + pi = 1, let pi = 1− p1 − p2 − . . .− pi−1 (0 ≤
p1 ≤ 1, 0 ≤ p2 ≤ 1, . . . , 0 ≤ pi−1 ≤ 1), (i ≥ 3); then, we have
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E(K f ∗(Gn)) =
m−3

∑
i=1

(−Wi
n3

3
+ Win2 − 2Wi

n
3
)pi + (−Wm−2

n3

3
+ Wm−2n2 − 2Wm−2

n
3
)(1− p1 − p2 − · · · − pm−3)

+ (4m3 + 12m2 + 9m + 2)
n3

3
+

4m3 − 4m2 − 19m− 8
3

n2 − 8m2 − 8m− 9
3

n− 1.

Therefore,

∂E(K f ∗(Gn))

∂pi
= −(Wi −Wm−2)

n3

3
+ (Wi −Wm−2)n2 − 2

3
(Wi −Wm−2)n < 0, (m− 3 ≥ 3).

The minimum value can only be reached if p1 + p2 = 1. Then let p1 = 1− p2 (0 ≤ p2 ≤ 1)

E(K f ∗(Gn)) =(−W1
n3

3
+ W1n2 − 2W1

n
3
)(1− p2) + (−W2

n3

3
+ W2n2 − 2W2

n
3
)p2

+ (4m3 + 12m2 + 9m + 2)
n3

3
+

4m3 − 4m2 − 19m− 8
3

n2 − 8m2 − 8m− 9
3

n− 1.

Thus,

∂E(G(K f ∗n ))
∂p2

= (W1 −W2)
n3

3
− (W1 −W2)n2 +

2
3
(W1 −W2)n > 0.

Therefore, E(K f ∗(Gn)) reaches its minimum value when p2 = 0 (i.e., p1 = 1); that is
Gn ∼= Mn.

3. The Average Values for the Multiplicative Degree-Kirchhoff Index

Let Θn be the set of all polygonal chains with n polygons. Here, we calculate the
average value of the multiplicative degree-Kirchhoff index.

K f ∗avr(Θn) =
1
|Θn| ∑

G∈Θn

K f ∗(G).

In order to obtain the average value K f ∗avr(Θn), we let p1 = p2 = . . . = pm = 1
m in the

random polygonal chain of E(K f ∗(Gn)). According to Theorem 1, we have

Theorem 2. The K f ∗avr(Θn)(n ≥ 1) for the multiplicative degree-Kirchhoff index of the random
chain Gn is

E(K f ∗(Gn)) =[(4m3 + 12m2 + 9m + 2)− 1
k

m−1

∑
i=1

Wi]
n3

3
+ [

4m3 − 4m2 − 19m− 8
3

+
1
m

m−1

∑
i=1

Wi]n2

− [(8m2 − 8m− 9) +
2
m

m−1

∑
i=1

Wi]
n
3
− 1.

After calculation, we obtain the equations

K f ∗avr(Θn) =
1
m

K f ∗(Mn) +
1
m

K f ∗(O1
n) +

1
m

K f ∗(O2
n) + · · ·+

1
m

K f ∗(Om−2
n ) +

1
m

K f ∗(Ln).

4. Concluding Remarks

In this paper, we compute an expression for the expected value of the multiplicative
degree-Kirchhoff index of a random polygonal chain. We also calculate the extremal value
and average value of this index. Polygonal chemicals have various molecular structures,
and their physicochemical properties are becoming increasingly important; refer to [33–35].
These studies have important applications for us to solve some chemical problems related
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to life and production, as well as for us to predict the physical and chemical properties of
molecules and synthesize new compounds and new drugs.

Nowadays, computational chemists can identify the various physical, chemical and
pharmaceutical properties of molecules by statistical methods using a large amount of data.
Topological indices based on the distance between vertices of graphs play an important
role in characterizing molecular graphs and establishing the relationship between molec-
ular structures and features and are used to predict the physicochemical properties and
biological activities of compounds. With the rapid development of science and technology,
the demand for new materials and drugs in the manufacturing and pharmaceutical fields
is increasing day by day. In order to purposefully and quickly synthesize new substances,
the topological index has once again become a research hotspot [36,37].
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