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Abstract: To improve the self-lubrication and anti-ablation performances of C/C (carbon/carbon)
composites from 25 to 800 ◦C, we engineered three layers of composite coatings consisting of SiC–VN–
MoS2/Ta to deposit on the surface of the C/C composites. The tribology and anti-ablation properties
of the composite coatings were experimented under dry sliding wear. The equivalent stress and
deformation of the composite coatings are studied. The results show that the CoFs (coefficients of
friction) of the C/C composites are decreased by 156% at 800 ◦C due to the new generated self-
lubricating compounds from the MoS2/Ta and VN coating. The anti-ablation of the C/C composites
are improved by 25,300% due to the silicon glass, and the generated compounds from V, Mo and Si.
The deformation of the C/C substrate under the protection of these coatings looks like a quadrangular
star. The cack of the C/C composites is easily generated without the protection from coatings.

Keywords: carbon/carbon composites; composite coatings; tribology; anti-ablation;
wide range temperature

1. Introduction

C/C (carbon/carbon) composites consist of pyrolytic carbon and carbon fiber. The
pyrolytic carbon is matrix, and the carbon fiber is the reinforcement. C/C composites
are widely used in military and aerospace industries due to their low density, excellent
thermal shock resistance and chemical stability [1,2]. However, properties such as tribology,
oxidation and weight loss of the C/C composites are poor at high temperatures. It was
found that the CoF (coefficient of frictional) of C/C composites from room temperature
to 200 ◦C was less than 0.2 under the dry sliding wear, and it increased quickly to 0.4 at
650 ◦C [3–5]. The weight loss of the C/C composites increases with the temperature due to
the oxidation and ablation of carbon. The weight loss of C/C composites was more than
5% at 600 ◦C, and more than 15% at 800 ◦C [6–8]. The C/C composites are mostly used
as the materials of aircraft brakes, missile launcher nozzles and the mechanical parts of
aerospace equipment at a wide range of temperatures. The self-lubricating and anti-ablation
performances of C/C composites should be improved due to the poor performances at high
temperature. There were many outstanding academic achievements of C/C composites.
To improve the anti-ablation property of the C/C composites, the compounds of Si such as
MoSi2, CrSi2 and SiC were studied. The oxygen was prevented due to the formation of
liquid silicon glass at high temperature [9–11]. The ceramics such as ZrO2, SiC, Al2O3 and
CrN were applied to improve the anti-wear and anti-oxidation of C/C composites [12–15].
However, the self-lubricating properties of the above ceramics were poor under dry sliding
wear. The CoF of BN was more than 0.25 under a contact load of 10 N, and a dry sliding
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speed of 1 mm/s [16]. The CoF of SiC sintered with Al was higher than 0.6 under dry
sliding wear [17]. The CoF of CrN was more than 0.6 under dry sliding wear [18]. The anti-
ablation of C/C composites was improved through these functional coatings and materials.
However, the self-lubricating properties of these ceramics were even worse than that of
the C/C composites. In order to decrease the CoFs of C/C composites, the self-lubricating
coatings such as graphite, PTFE and DLC (diamond-like carbon) were studied. However,
their self-lubricating properties were invalid and poor at high temperature [19–21]. Though
the CoFs of lubricants such as Ti3SiC2, Ti2AlC and CaF2/BaF2 were lower than that of C/C
composites at 800 ◦C, their lubricating properties were poor at room temperature [22,23].
For example, the CoF of Ti2AlC was less than 0.3 at 800 ◦C under dry sliding wear. However,
it was more than 0.5 at room temperature [24]. Recently, rare earth materials have been
used in composite coatings. The tribological properties of composite coatings improved as
the materials of LaF3, CeO2 and Y2O3 were applied [25–27]. The anti-ablation performance
of C/C composites has improved. However, the self-lubricating properties of the C/C
composites are still poor. The coatings and materials not only should have low CoFs but
also excellent anti-oxidation properties.

The tribology and anti-ablation of C/C composites should be improved at high
temperatures. It was found that the compounds of V, Mo and Ta have excellent self-
lubricating and high anti-ablation ability at high temperatures. In this study, we designed
three layers of composite coatings consist of the SiC-VN-MoS2/Ta and deposited them
onto the surface of a kind of C/C composites. The tribology and anti-ablation of the
C/C composites are hypothesized to be improved by the new generation compounds
from the SiC–VN–MoS2/Ta. We experimented the tribology and anti-ablation properties
of the composite coatings at room temperature and 800 ◦C under dry sliding wear, and
studied the equivalent stress and deformation of composite coatings under normal pressure.
The mechanisms of tribology and anti-ablation are discussed through these experiments
and results.

2. Experiment
2.1. Preparations of the Composite Coatings

The density of C/C composites is 1.91 g/cm3. The sizes of the tested specimens
are shown in Figure 1. Firstly, all samples were polished by 400# and 600# SiC paper
successively. The surface roughness of Ra of all samples is 0.85 ± 0.03 µm. The samples
were ultrasonic cleaned under acetone liquid for 10 min to remove the impurities. At last,
all samples were dried at 80 ◦C for 30 min.
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Figure 1. Tested specimens of C/C composites.

The bonding strength of coatings on the surface of the C/C composites is influenced
by CTE (coefficient of thermal expansion). The bonding strength will be decreased if the
difference of the CTE increases [28]. The CTE of C/C composites is 1.5 × 10−6/k, which
is less than that of most materials. For example, the CTE of B4C is 6 × 10−6/k [29]. The
CTE of MoSi2 and MoS2 is 8.1 × 10−6 and 10.8 × 10−6/k, respectively [30,31]. The CTE of
SiC is 2.4 × 10−6/k, which is close to that of C/C composites. The anti-oxidation of the
C/C composites will be improved if a SiC coating is applied on the surface of the C/C
composites. The oxygen was prevented as the liquid silica glass distributed on the surface
of the C/C composites at high temperature [32,33]. The shortage of SiC was the high
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CoF at room temperature and high temperature [34,35]. In this study, the SiC coating was
deposited as a transition layer to connect with the self-lubricating materials with higher
CET than that of the C/C composites.

The thermal spraying technology is not suitable for the deposition of SiC on the surface
of the C/C composites. SiC will be gasified at the thermal spraying temperature, which is
higher than 2700 ◦C. The SiC coating is hardly deposited by cold spraying due to the poor
plastic deformation. The best way to deposit SiC coating is the pack cementation under the
chemical reaction of Si and graphite. The Si, C and Al2O3 powders are used to prepare the
SiC coating on the surface of the C/C composites. The purity of Si, C and Al2O3 powers
are more than 99.98%, and their average sizes are 30 ± 3 µm. The Al2O3 powers are used
to improve the adhesion strength of SiC coating on the surface of the C/C composites,
due to the large specific surface area of the melted Al2O3. The SiC coating was prepared
as follows. Firstly, these samples of the C/C composites were buried and surrounded by
these three mixed powders in a graphite crucible. Then, they were heated in a stove at
1350 ◦C under a normal pressure of Ar gas for 1.5 h. At last, all samples were cleaned in
distilled water under ultrasonic vibration to remove the residue powders.

The oxides of VN such as V2O5 and V4O9 were the self-lubricating materials with low
CoFs at high temperature [36,37]. In addition, the CoF was decreased in some reports as
the compounds generated from VN with Ag [38]. Based on the assumption that the CoF
of the compounds of VN and Ta will be decreased at high temperature, the VN and Ta
were applied. The purity of the VN powers was more than 99.98%, and their average sizes
were 40 ± 3 µm. The VN coating was prepared on the surface of the SiC coating. Then, the
top coating consisted of Ta that was deposited on the surface of the VN coating. The VN
coating was prepared by plasma spraying. The parameters of the coating deposition are
listed as Table 1.

Table 1. Preparation details of the VN coating.

Ar H2 Spraying Distance Powder Feed Rate Spraying Power

12 slpm 10 slpm 100 mm 15 g/min 38 KW

The CoF of VN at room temperature was more than 0.4 [39]. We found that the CoF
of MoS2 was low at room temperature. However, the anti-wear and CoF were poor at
high temperature. MoS2 loses efficacy at high temperature, because it will be oxidized
and decomposed. We found that the CoFs of the compounds such as Ag2MoO4, BaMoO4
and Ag3VO4 were lower than those of VN and MoS2 at high temperatures [38,40]. Thus,
the tribological property of C/C composites will be improved from room temperature to
800 ◦C under the coating consisting of Ta and MoS2.

Based on the assumption that the CoF of compounds generated from MoS2, VN and
Ta will be low at high temperature, three layers of C/C composites were designed in this
study. From the bottom to the top, the sandwich layers deposited on the surface of C/C
composites were the SiC, VN and MoS2/Ta. The layer of MoS2/Ta was deposited by
liquid spraying. Ta powder was 100 nm, and its purity was 99.98%. MoS2 powder was
100 nm, and its purity was 99.99%. The mixed ratios of Ta and MoS2 powders were 25%
and 75%, respectively. Ta and MoS2 powders were not deposited by thermal spray, because
these powders are oxidized at high temperature from the thermal spray flame. Liquid
spraying was the deposition method of coating formation. The mixed liquids consisted of
PI (Polyimide), epoxy resin of E-44, acetone and the mixed powders. The PI and the epoxy
resin were used as binders, and the acetone was a solvent. The preparation details of top
layer are presented as follows: the spraying distance was 80 mm; moving speed of gun
was 100 mm/s; and spraying angle was 95◦ ± 3◦. After spraying, all samples were heated
under 220 ◦C in the Ar gas protection stove for 2 h. The three layers of composite coatings
are shown in Figure 2.
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2.2. Frictional Experiments at Room Temperature and 800 ◦C

All samples were tested using a ball-on-disk tribometer of UTM-2 friction and wear
test equipment (Center for Tribology (CETR), Campbell, CA, USA). All samples were tested
three times to eliminate the randomness of experiments. The normal contact load was
5 N, which is the same load as a kind of roll bearing made from C/C composites [41]. The
working temperature increased from room temperature to 800 ◦C. Thus, two temperatures
of 25 and 800 ◦C were applied in this study. The material of the ball was the 440 C stainless
steel. The roughness of Ra of the contact surface was 0.8 µm. The experiment details
are listed in Table 2. The CoFs of the C/C composites and the coatings under different
temperatures are shown in Figure 3.

Table 2. Details of frictional test.

Work Condition
Frictional Distance Contact Load Sliding Velocity Time Temperature

mm N mm/s min ◦C

Dry sliding wear 5 5 20 30 25/800
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2.3. Weight Loss at 800 ◦C

The high CoF and oxidation at high temperature are the two shortages of the C/C
composites. We found that the composite coatings of the SiC-VN-MoS2/Ta have high-
efficiency to decrease CoF at 800 ◦C. The C/C composites are easily oxidized at high
temperature. The C will be decomposed as the CO2 and CO. The formula of weight loss of
oxidation is expressed as follows [42]:

w =
m0 − m1

m0
× 100% (1)

where w is the weight loss, m0 is the mass before the test and m1 is the mass after the test.
The ablation tests accompanied the frictional experiments in the UTM-2 friction and

wear test equipment. The temperature first increased from room temperature to 800 ◦C.
Then, for the ablation test, the temperature remained at 800 ◦C for 15 min. At last, the
temperature decreased from 800 ◦C to room temperature. The weight loss of the C/C
composites under the protection of three layers composite coatings is shown in Figure 4.
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2.4. Bearing Capacity and Crack Generation Analysis

The bearing capacity and crack generation of coatings are not clear and hard to
measure during the frictional movements at different temperatures. The equivalent stress
and the deformation of the composite coatings are studied in this paper to illustrate
the bearing capacity and the crack generation. The studies of stress and deformation of
composite coatings were simulated by ABAQUS. Before the simulation, the modulus of
elasticity and Poisson’s ratio of the MoS2/Ta composite coatings were experimented by the
tensile testing machine of MTS and nano indentation instrument of Hysitron, respectively.
The mechanical properties of the composite coatings of the SiC-VN-MoS2/Ta are shown
in Table 3 [43,44].

Table 3. Mechanical properties of the SiC-VN-MoS2/Ta.

Mechanical Property SiC VN MoS2/Ta C/C Ball

Modulus of elasticity (GPa) 410 178 27.57 21 211
Poisson’s ratio 0.14 0.29 0.37 0.25 0.30

Density (kg/m3) 3100 6130 4560 1910 7850
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The bearing capacity and crack generation of the composite coatings were studied
at room temperature. The properties at 800 ◦C have not been studied for the following
reasons. Firstly, it is very hard to measure the physical properties of these composite
coatings at 800 ◦C. Secondly, the analysis method can be referenced from the results at
room temperature in this paper. Thus, only bearing capacity and the crack generation
under room temperature are shown in this paper. The method and the results presented
here can be referenced to study the bearing capacity and crack generation if the physical
properties of these sandwich coatings are measured at 800 ◦C in the future. The explicit
dynamic simulation was applied for this study. The contact surface of the frictional ball
and the surface of the MoS2/Ta coating is defined as frictional contact under the CoF
of 0.22. The surfaces of the VN, SiC and C/C composites are all defined as bonded
contacts which cannot separate from each other. Based on the relative motion, the bottom
surface of the C/C base was fixed, and the frictional ball was restrained as a rigid body
moving at a speed of 10 mm/s parallel to the coating surface. During the simulation,
a 5 N concentrated force was applied on the reference point located at the center of the
frictional ball. During the solving of the surface-to-surface contact problem, the mechanical
constraint formulation and sliding formulation were set as kinematic contact method and
small sliding, respectively. These coatings were regarded as isotropy during the finite
element analysis [45,46]. The meshes of these three coatings are defined as the eight-node
hexahedral element. The contact surfaces are finely meshed. The details of the meshes of
all parts are shown in Figure 5.

By the finite element analysis, the results of the bearing capacity and the crack genera-
tion of the composite coatings are shown in Figure 6.
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To analyze the equivalent stress and the deformation of the C/C substrate under
protection of the composite coatings, the comparisons of the C/C substrate without the
coatings are shown in Figure 7.
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3. Results and Discussions
3.1. Tribological Properties at Different Temperature

The three layers of composite coatings are shown in Figure 2. We found that the
thickness of the SiC coating was 5 ± 2.5 µm. The thicknesses of VN coating and MoS2/Ta
coating were 20 ± 2 µm and 12 ± 2 µm, respectively. These coatings were compact. There
were no cracks among different layer interfaces. The CoFs of C/C substrate at room
temperature and at 800 ◦C are shown in Figure 3. The average CoFs of the composite
coatings at room temperature and 800 ◦C were 0.22 and 0.28, respectively. The average
CoFs of the C/C substrate at room temperature and 800 ◦C were 0.16 and 0.46, respectively.
Although the lubrication performance of the composite coatings was worse than that of
the C/C composites, the anti-wear and the wear depth of the composite coating improved.
The wear marks were scanned by the white light interference 3D profilometer of Contour
Elite I (Bruker, Madison, WI, USA). As shown in Figure 8, the wear depth and width of
the composite coatings are smaller than that of the C/C substrate. As the frictional ball
moved on the surface of C/C composites, the carbon was crushed. These tiny wear details
can be ground to transfer film. Thus, the C/C composites achieved low CoF, and had self-
lubrication performance. However, the anti-wear of the pyrolytic carbon and carbon fiber
is poor. The C/C substrate is easily sheared. As these three layers of composite coatings
were applied on the surface of the C/C substrate, the anti-wear property improved due to
the hardness of the SiC, VN and Ta. The CoF of the PI, SiC and Ta are higher than that of
carbon at room temperature. This is why the CoF of the C/C substrate was lower than that
of the composite coatings at room temperature.

The CoF of C/C substrate significantly increased to 0.46 under the temperature
of 800 ◦C. The high CoF is due to the chemisorption of oxygen on the surface of C/C
composites [4]. There was no self-lubricating performance, because C/C composites are
oxidized at high temperature. The carbon of the C/C substrate loses lubrication. It was
burnt, and the surface of C/C substrate was rough due to the ashes. The CoF of composite
coatings was 0.28 under the temperature of 800 ◦C. The low CoF at high temperature is
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attributed to the new generations of TaxMoyOz, TaxVyOz, VxOy and MoxOy. The CoFs
decreased due to these self-lubricating materials generated at high temperature.
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3.2. Anti-Ablation Properties at 800 ◦C

The weight loss of C/C composites was 22.86%, as shown in Figure 4. However, the
weight loss of C/C substrate was only 0.09% under the protection of multiple coatings. The
wight loss of the C/C composites was higher than 20% and even 100% at high temperature.
The CO and CO2 will be generated and escape from the C/C composites. The weight
loss of the C/C aircraft brake was 1.18% at 700 ◦C as the B4C and borosilicate glass were
applied on their surface [47]. The weight loss of the C/C composites was 0.41% at 700 ◦C
under the protection coating consisting of B2O3 and SiO2 [48]. The reasons are presented
as follows. The solid SiC melts at 800 ◦C. The C/C substrate is enclosed with liquid glass,
and oxygen is prevented from contacting carbon. The CO and CO2 are prevented from the
C/C composites. Additionally, the oxygen is absorbed from the air, and reacts with SiC,
V and Mo at high temperature. The weight is increased by the new generated SiO2 and
VxOy at high temperature. Thus, the wight loss of C/C composites is only 0.09% under the
protection from SiC–VN–MoS2/Ta.

3.3. Bearing Capacity and Crack Generation

The stresses and deformations of the composite coatings are shown in Figures 6 and 7.
The equivalent stresses of the MoS2/Ta coating, VN coating and the SiC coating are
27.03 MPa, 13.62 MPa and 12.02 MPa, respectively. The nephograms of these stresses
are not symmetrical. The stress of the MoS2/Ta coating distributes like a narrow ellipse.
However, the regularity and symmetry of the ellipse shown in Figure 6b,c are better than
that of the stress distribution shown in Figure 6a. As the frictional ball moves forward, the
stress distribution varies with the direction of the frictional ball. Firstly, the VN coating
and the SiC coating do not contact the frictional ball directly. Secondly, the physical
properties of these coatings are different. Thus, the stress distributions of the VN coating
and the SiC coating are different from that of the MoS2/Ta coating. The deformations
of the MoS2/Ta coating, VN coating and SiC coating at the normal direction are 0.2751,
0.1750 and 0.1283 µm, respectively. There are many wrinkles presented on the surface of
the MoS2/Ta coating. The deformations of the VN coating and the SiC coating look like
five-pointed star and quadrangular star, respectively. The contact style of the frictional pair
is the point to surface. A small circle point appears in all pictures of Figures 6 and 7. The
top layer coating is sheared by the reciprocating frictional ball. These wrinkles and cracks
are generated due to the large normal force and shear force from the moving ball. However,
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the VN coating and SiC coating mainly bear the normal force. The tiny shear force is just
from the local deformation of the MoS2/Ta coating. The coating collapses around the
contact point under the normal force. Thus, the deformation looks like a star. Moreover,
these three coatings have support actions. The deformation of the C/C substrate shown in
Figure 7b is better than that of the SiC coating shown in Figure 6f, and the deformation
of the SiC coating is better than that of the VN coating shown in Figure 6e. The farther
away the frictional ball is, the smaller the crack generation will be. This result also can be
found in Figure 7b,d. Without the protection of composite coatings, the crack generation of
C/C composites is easy. The numerical values of the stress distribution and deformation
of the C/C composites are much higher than that of C/C substrate under the coating
protection. This illustrates that the bearing capacity of C/C substrate is improved by these
composite coatings. There are some cracks presented in Figure 7d. The deformation of
C/C composites is much worse than that of MoS2/Ta coating under the same contact.
However, the deformation of the C/C substrate under the coating protection looks like a
quadrangular star.

The tribology and weight loss are serious problems of aircraft brakes, nozzle throats
of rocket engines and bearings made by C/C composites at high temperatures. Though
the weight loss of C/C composites could be sharply reduced by orders of magnitude
under the protection of composite coatings such as B4C, ZrB and CrSi2, the self-lubrication
was still poor at high temperature. However, the new designed composite coatings of
SiC–VN–MoS2/Ta have the excellent properties of tribology and anti-ablation from room
temperature to 800 ◦C.

4. Conclusions

Three layers of composite coatings consisting of SiC, VN and MoS2/Ta were designed
and experimented at a wide range of temperatures. Through these results of dry sliding
wear and ablation, the following conclusions are drawn.

(1) The CoF of C/C composites decreased by 156% when the SiC–VN–MoS2/Ta were
coatings prepared at 800 ◦C. The oxides and compounds of V, Mo and Ta have self-
lubricating performances at high temperatures.

(2) The weight loss of C/C composites at 800 ◦C decreased by 25,300% under the protection
of SiC–VN–MoS2/Ta coatings. Oxygen is prevented from contacting C/C composites.

(3) The deformation of the C/C substrate under the coating protection looks like a
quadrangular star. Without coating protection, cracks appear on the surface of the
C/C composites. The cack of the C/C composites is easily generated without the
coating protection.
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