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Abstract

INTRODUCTION: The “A/T/N” (amyloid/tau/neurodegeneration) framework provides

a biological basis for Alzheimer’s disease (AD) diagnosis and can encompass additional

changes such as inflammation (“I”). A spectrumof T/N/I imaging andplasmabiomarkers

was acquired in a phase 2 clinical trial of rasagiline in mild to moderate AD patients.

We evaluated these to understand biomarker distributions and relationships within

this population.

METHODS: Plasma biomarkers of pTau-181, neurofilament light chain (NfL), glial fib-

rillary acidic protein (GFAP), other inflammation-related proteins, imaging measures

including fluorodeoxyglucose (FDG) positron emission tomography (PET), flortaucipir

PET, and volumetric magnetic resonance imaging (MRI), and cognitive endpoints were

analyzed to assess characteristics and relationships for the overall population (N = 47

at baseline and N = 21 for longitudinal cognitive comparisons) and within age-decade

subgroups (57-69, 70-79, 80-90 years).

RESULTS: Data demonstrate wide clinical and biomarker heterogeneity in this popu-

lation influenced by age and sex. Plasma pTau-181 and GFAP correlate with tau PET,

most strongly in left inferior temporal cortex (p = 0.0002, p = 0.0006, respectively).

In regions beyond temporal cortex, tau PET uptake decreased with age for the same

pTau-181 or GFAP concentrations. FDGPET and brain volumes correlate with tau PET

in numerous regions (such as inferior temporal: p= 0.0007, p= 0.00001, respectively).

NfL, GFAP, and all imaging modalities correlate with baseline MMSE; subsequent

MMSE decline is predicted by baseline parahippocampal and lateral temporal tau

PET (p = 0.0007) and volume (p = 0.0006). Lateral temporal FDG PET (p = 0.006) and

volume (p = 0.0001) are most strongly associated with subsequent ADAS-cog decline.

NfL correlates with FDG PET and baseline MMSE but not tau PET. Inflammation
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biomarkers are intercorrelated but correlated with other biomarkers in only the

youngest group.

DISCUSSION: Associations between plasma biomarkers, imaging biomarkers, and

cognitive status observed in this study provide insight into relationships among bio-

logical processes in mild to moderate AD. Findings show the potential to characterize

AD patients regarding likely tau pathology, neurodegeneration, prospective clinical

decline, and the importance of covariates such as age.
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Highlights

∙ Plasma pTau-181 and GFAP correlated with regional and global tau PET in mild to

moderate AD.

∙ NfL correlated with FDG PET and cognitive endpoints but not plasma pTau-181 or

tau PET.

∙ Volume and FDG PET showed strong relationships to tau PET, one another, and

cognitive status.

∙ Temporal volumesmost strongly predicted decline in bothMMSE and ADAS-cog.

∙ Volumeandplasmabiomarkers can enrich for elevated tauPETwith age a significant

covariate.

1 BACKGROUND

Alzheimer’s disease (AD) is characterized by progressive amyloid

plaque aggregation (“A”), neurofibrillary tangle (NFT) accumulation

(“T”), and neurodegeneration (“N”) associated with cognitive decline

and functional disability. The “A/T/N” framework1 provides a biolog-

ical basis for AD diagnosis based on hallmark changes and includes

clinical staging that supplements the biological definition. Additional

aspects have been identified, including neuroinflammation (“I”).2 More

broadly, the ATX(N) framework is flexible and can encompass other

key AD pathogenic features with identifiable biomarkers.3 Biomarkers

reflecting AD pathophysiology are measurable using positron emis-

sion tomography (PET) imaging, magnetic resonance imaging (MRI),

cerebrospinal fluid (CSF) assays, and plasma assays. Within a Phase 2

clinical trial of the drug rasagiline in mild to moderate AD patients,4 a

broad set of T/N/I biomarkers was acquired, providing an opportunity

to explore their relationships in this clinical severity range. Our work

focused on understanding relationships toward the goal of efficiently

characterizing patients for clinical trials and eventual clinical care.

1.1 Biomarkers of hallmark AD pathology

Our study measured tau NFT burden using tau PET and plama pTau-

181 (both “T”). Tau PET and plasma pTau-181 correlate across the

AD spectrumwith some discordance primarily in plasma-positive PET-

negative cases.5–8 Plasma pTau-181 levels differentiate AD from other

dementias similar to tau PET, indicate amyloid and tau positivity, and

are associatedwith cognitive decline.5,7–10 Age and sex influencemerit

consideration given observations of greater frontoparietal tau NFT

burden in younger cohorts11,12 and higher burden in females.13

1.2 Biomarkers of function and
neurodegeneration

Several neurodegenerative imaging andplasmamarkerswere included.

Regional cerebral glucose hypometabolism (FDG PET), reflecting

synaptic and neuronal dysfunction and degeneration, and atrophy

(volumetricMRI) (“N”) have shown spatial consistencywithNFT aggre-

gation and phenotype14 and correlate with clinical decline.9,15–17

Plasma neurofilament light (NfL), an etiologically nonspecific protein

subunit released from damaged axons,10,18,19 correlates with atrophy,

hypometabolism,9 and cognitive decline in A+T+ cohorts,18,20 pre-

dictsmore rapid cognitive decline,7,10 and increaseswith age.21,22 Glial

fibrillary acidic protein (GFAP, “N”, “I”) found in astrocytes surround-

ing synapses and expressed with reactive astrogliosis23 increases with

amyloid positivity24 and disease stage, and correlates with tau PET.25

While not AD-specific,24 higher GFAP predicts progression to AD

dementia andaccelerated cognitive decline.26 Levels increasewith age,

with higher levels observed in females.24,26,27
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1.3 Biomarkers of inflammation

Inflammation (“I”) is associated with AD through genome-wide asso-

ciation studies and elevated inflammatory markers in AD patients’

blood samples.28–30 Markers in our study included: proinflamma-

tory cytokines (IL [interleukin] -1β, IL-6, IL-7, IL-12, IL-18, TNF-α
(tumor necrosis factor), FGF-Basic (fibroblast growth factor), GM-

CSF (granulocyte-macrophage colony-stimulating factor), MIF

(macrophage migratory inhibiting factor)); proteins that can act

as cytokines (HGF (hepatocyte growth factor)); anti-inflammatory

cytokines (IL [interleukin] -1ra, IL-4, IL-13, G-CSF [granulocyte colony-

stimulating factor], M-CSF [macrophage colony-stimulating factor]);

chemokines (Eotaxin, IP-10, CTAK [T-cell attracting chemokine], MCP-

1 [monocyte chemotactic protein-1], SDF-1alpha [stromal cell derived

factor], RANTES); and cytokines associated with apoptosis (TRAIL

[tumor necrosis factor-related apoptosis-inducing ligand], PDGF-BB

[platelet-derived growth factor]). While their roles are not fully elu-

cidated in AD, inflammatory cytokine increases relate to a decreased

ability of microglia to clear Aβ, and to cognitive decline.2 IL-1α, IL-1β,
and TNF-α are released by reactive astrocytes and activated microglia

in the presence of Aβ, creating feedback amplifying amyloid plaque

formation.31

1.4 Objectives of this work

Using the biomarkers collected in the rasagiline clinical trial

(NCT02359552), objectives of this post hoc exploratory analysis

were to: (1) characterize the relationship between imaging and plasma

biomarker levels in this mild to moderate AD clinical trial population,

considering age, sex, and apolipoprotein E (APOE) genotype; (2) test

hypotheses that: (a) pTau-181 correlates with tau PET in this popu-

lation, (b) NfL correlates with FDG PET, and (c) baseline tau PET and

NfL predict subsequent cognitive change; (3) explore relationships

between GFAP and other biomarkers; and (4) evaluate the potential

for plasma biomarkers, volumetric, and/or FDG measures to predict

NFT burden as screening support in AD.

2 METHODS

2.1 Rasagiline study design

FDG and tau PET imaging, MRI, plasma biomarkers, and clinical end-

points (Table 1) were acquired from patients with a clinical diagnosis

of mild to moderate AD who participated in a double-blind, placebo-

controlled trial of rasagiline (results described previously4). Data were

acquired under Institutional Review Board approval with informed

patient consent at the Cleveland Clinic Lou Ruvo Center for Brain

Health in Nevada and twoCleveland Clinic sites inOhio. Primary inclu-

sion criteria in the original study were a clinical diagnosis of probable

AD (NINDS-ADRDA criteria), age 50-90, Mini-Mental State Examina-

tion (MMSE) 12-26, and FDG PET pattern of hypometabolism consis-

RESEARCH INCONTEXT

1. Systematic review: The authors performed an extensive

reviewof the literatureusingPubMed, additional internet

searches, and conference abstracts and presentations in

order to develop hypotheses and to compare the findings

of this study to other published findings. Prior relevant

publications are cited.

2. Interpretation: Our findings demonstrated significant

relationships among plasma biomarkers, imaging mea-

sures, and cognitive status. Data also illustrated the

heterogeneity present in mild to moderate Alzheimer’s

disease (AD) populations and covariate influences to be

considered when designing clinical trials or using plasma

and imaging biomarkers to predict tau positron emis-

sion tomography (PET) levels for patient selection and

analysis.

3. Future directions: Future work would involve (a) confir-

mation in a larger study toward use in patient characteri-

zation for clinical trials and care, (b)work toward reducing

variability in plasma biomarkers of neuroinflammation,

and (c) further establishment of normative references for

plasma biomarkers.

tentwithAD. Exclusion criteria includedneurologic, radiologic, or labo-

ratory indicationsof non-ADdementia;medications thatmight interact

with rasagiline; and factors that might preclude study completion.

Patients on stable doses of cholinesterase inhibitors and memantine

for at least 3months prior to randomization were permitted.

Of 96 patients screened, 50 patients, randomized 1:1 rasagiline to

placebo,were enrolled.Our analyses usedbaseline data fromall partic-

ipants for cross-sectional comparisons and from placebo-treated par-

ticipants to explore relationships to cognitive change. After excluding

those with missing plasma biomarker data and follow-up data (for lon-

gitudinal analyses), our analyses included 47 participants at baseline

and 21 placebo-treated participants for longitudinal comparisons.

2.2 Data acquisition and measurement

Clinical endpoints acquired at screening or baseline and at timepoints

up to 26 weeks included MMSE, Alzheimer’s Disease Assessment

Scale–Cognitive Subscale (ADAS-cog), Digit Span, Controlled Oral

Word Association Test (COWAT), and Neuropsychiatric Inventory

(NPI).4 Volumetric MR (T1-weighted) images were acquired at screen-

ing, FDG PET at screening and 24 weeks, and flortaucipir PET images

at baseline and 24 weeks. Plasma pTau-181, NfL, and GFAP were col-

lected at baseline and at week 24; a 48-plex panel of inflammatory

biomarkers was collected at baseline (methods in Supplement).
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TABLE 1 Demographic, cognitive, and biomarker values by total population and age group.

All participants

Model with predictors age, sex,

APOE, MMSEa By age group

Difference between age

groups (p-value)

Parameter Age 57-90

Age

p-value
MMSE

p-value
1: Age

57-69

2: Age

70-79

3: Age

80-89 1:2 2:3 1:3

Number (N) 47 12 26 9

Demographic

Age 73.9 (6.9) 65.0 (3.8) 75.0 (3.0) 82.8 (3.4) p< 0.00001 p< 0.00001 p< 0.00001

Sex (F/M) 47%/53% 50%/50% 46%/54% 44%/56% - - -

Education (years) 14.2 (2.6) 14.9 (2.2) 14.0 (2.3) 13.8 (3.7) - - -

APOE genotype%E4+ 76% 83% 85% 44% - 0.02 0.04

Cognitive

MMSE 20.1 (3.5) 18.7 (4.0) 20.4 (3.2) 21.4 (3.2) 0.10 - 0.06

MMSE age-adjusted 18.7 (4.0) 20.9 (3.2) 22.4 (3.2) 0.07 - 0.03

ADAS-cog 24.9 (7.9) - <0.0001 25.9 (9.7) 25.6 (7.5) 21.8 (6.6) - - -

Digit Span 12.5 (3.1) - 0.02 12.3 (3.6) 12.5 (3.2) 12.9 (2.3) - - -

COWAT 24.4 (13.2) - 0.0004 22.5 (17.9) 23.9 (12.3) 28.7 (8.1) - - -

NPI 7.72 (8.27) - - 7.33 (10.2) 7.50 (7.28) 9.00 (9.21) - - -

Tau PET SUVRs

MetaTemporal 1.74 (0.38) 0.013 0.13 1.96 (0.42) 1.69 (0.37) 1.59 (0.18) 0.05 - 0.04

Braak Stage I 1.56 (0.21) 0.18 - 1.64 (0.25) 1.54 (0.21) 1.52 (0.14) - - -

Braak Stage III 1.56 (0.28) 0.05 0.10 1.71 (0.35) 1.52 (0.26) 1.46 (0.11) - - 0.08

Braak Stage IV 1.52 (0.30) 0.011 - 1.71 (0.32) 1.49 (0.29) 1.38 (0.15) 0.05 - 0.01

Braak Stage V 1.41 (0.34) 0.001 0.03 1.65 (0.37) 1.37 (0.33) 1.19 (0.15) 0.07 - 0.01

Braak Stage VI 1.11 (0.17) 0.002 0.02 1.21 (0.16) 1.09 (0.17) 1.01 (0.10) 0.04 - 0.01

Lateral temporal 1.81 (0.45) 0.012 0.09 2.07 (0.12) 1.75 (0.08) 1.60 (0.14) 0.04 - 0.03

Parietal (angular) 1.67 (0.54) 0.004 0.11 1.97 (0.55) 1.65 (0.55) 1.34 (0.27) 0.07 - 0.01

Precuneus 1.62 (0.50) 0.001 - 1.88 (0.50) 1.60 (0.52) 1.29 (0.21) 0.09 - 0.01

Middle frontal 1.43 (0.48) 0.0003 0.02 2.05 (1.12) 1.70 (1.21) 0.73 (0.94) - 0.06 0.01

Total cortical 1.40 (0.30) 0.001 0.03 1.61 (0.31) 1.36 (0.28) 1.21 (0.13) 0.03 - 0.01

FDGPET SUVRs (ref pons)

Medial temporal 0.84 (0.09) 0.013 - 0.82 (0.07) 0.82 (0.09) 0.90 (0.08) - 0.03 0.06

Lateral temporal 0.97 (0.11) 0.09 0.03 0.91 (0.13) 0.97 (0.10) 1.04 (0.11) - - 0.05

Isthmus cingulate 1.10 (0.15) 0.001 0.03 1.03 (0.20) 1.09 (0.11) 1.23 (0.09) - 0.00 0.03

Parietal (angular) 0.96 (0.16) 0.015 0.001 0.90 (0.20) 0.96 (0.14) 1.06 (0.11) - 0.06 0.03

Precuneus 1.21 (0.16) 0.018 0.01 1.14 (0.21) 1.20 (0.14) 1.29 (0.07) - 0.08 0.03

Middle frontal 1.14 (0.16) 0.029 0.02 1.06 (0.19) 1.15 (0.15) 1.22 (0.12) - 0.11 0.05

Volume (MRI) z-scores

Hippocampus −2.12 (1.53) - 0.07 −2.12 (1.27) −2.13 (1.78) −2.07 (1.14) - - -

Lateral temporal −1.69 (0.94) - 0.007 −1.96 (0.99) −1.69 (0.98) −1.32 (0.70) - - 0.11

Parietal (angular) −2.16 (1.18) 0.005 0.09 −2.57 (1.50) −2.27 (0.91) −1.28 (1.09) - 0.03 0.05

Precuneus −1.71 (1.30) - 0.11 −1.82 (1.30) −1.95 (1.20) −0.88 (1.40) - 0.03 -

Middle frontal −1.58 (1.25) 0.005 - −2.07 (1.17) −1.70 (1.21) −0.58 (0.39) - 0.03 0.01

Total cortical −2.65 (1.36) 0.005 0.03 −3.30 (0.36) −2.96 (0.24) −1.33 (0.41) - 0.002 0.003

(Continues)
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TABLE 1 (Continued)

All participants

Model with predictors age, sex,

APOE, MMSEa By age group

Difference between age

groups (p-value)

Parameter Age 57-90

Age

p-value
MMSE

p-value
1: Age

57-69

2: Age

70-79

3: Age

80-89 1:2 2:3 1:3

Plasma biomarkers

pTau-181 pg/mL 6.5 (3.1) 0.002 - 8.0 (2.8) 6.2 (2.7) 5.5 (1.0) 0.06 - 0.01

GFAP pg/mL 392 (158) 0.004 0.03 371 (169) 407 (168) 377 (119) - - -

NfLb pg/mL 26.6 (12.2) <0.001 0.001 36.0 (10.0) 25.1 (12.0) 18.1 (7.1) 0.004 - 0.0004

aSince covariates are combined with MMSE as an initial view of relationships to biomarkers, p-values for MMSE will differ somewhat from those in Table 3,

where covariates were combinedwith the biomarker to predictMMSE or ADAS-cog; variables are adjusted for normal aging.
bNfL values were not adjusted for creatinine clearance or renal function.

2.3 Analyses

2.3.1 Baseline characterization

Baseline demographic, cognitive, imaging, and plasma biomarker dis-

tributions were characterized for the study population and three

decade-based age subgroups (57-69, 70-79, 80-90 years; see Supple-

ment). Tau PET standardized uptake value ratios (SUVRs) referenced

to cerebellar cortex (eroded to reduce spill-in) were measured in a

MetaTemporal composite,32 Braak stage composites,33 total cortex,

and individual regions. FDG PET and brain volumes were measured

in the same regions as tau PET, including regions known to exhibit

progressive hypometabolism and atrophy in AD.

Tau PET and FDG PET measures were adjusted for normal aging

using data acquired using the same tracers and protocols in amyloid-

negative cognitively unimpaired individuals as previously described.4

Volumetric measures were adjusted for intracranial volume, age, sex,

and scanner using a normative reference of amyloid-negative cog-

nitively unimpaired individuals as implemented in ADM Diagnostics’

CorInsights MRI® software. Plasma pTau-181, NfL, and GFAP were

adjusted for normal aging using slopes derived from amyloid-negative

cognitively impaired individuals in published studies using the same

assays.18,22,24,34 Normative aging data were not available for inflam-

matory biomarkers (Supplement).

2.3.2 Relationships between biomarkers

Inter-region tau PET relationships were first examined as influenced

by age and other covariates, focusing on relationships with inferior

temporal cortex as it is an early region of NFT spread, used in criteria

for clinical trial participation.35 To test our predefined hypotheses in

this primarily tau PET+ (98%) population, we examined relationships

between (a) plasma pTau-181 and tau PET by region and cortical

average, (b) plasmaNfL and FDGPET in AD-associated regions (medial

temporal, lateral temporal, isthmus cingulate, inferior parietal, middle

frontal), and (c) all biomarkers versus cognitive endpoints at baseline

and 24-week change. We similarly evaluated relationships between

tau PET andNfL, GFAP, FDGPET, brain volumes, and combined plasma

and FDG PET or volumetric biomarkers. As part of these investi-

gations, we compared left-right hemispheric imaging asymmetries

as these ratios remove reference region effects, reducing technical

variability.

The above relationships were evaluated using model fitting (stan-

dard least squares) in JMP v16 statistical software (SAS). Distributions

were examined for normality and variables not meeting this condition

(Shapiro-Wilk and Anderson-Darling tests, significance p < 0.05) were

log10 transformed (all plasma variables were transformed). Covari-

ates of age, sex, APOE genotype; education for cognitive endpoint

comparisons; and cognitive baseline values when evaluating 24-week

cognitive change were included in models when significant or trend

level. Models were also evaluated within each age decade to mini-

mize age effects (particularly for inflammatory markers where normal

aging data were not available) and age correction effects. Nonlinear

models and variable interactions were also investigated. Pearson cor-

relationwas applied except for non-normal distributions or group sizes

below fifteen, where Spearman’s Rank Order (rho) or nonparametric

Wilcoxon tests were used. Given the exploratory nature of this work,

numerous comparisons were made and significance was considered

p < 0.05, uncorrected for multiple comparisons; p-values <0.0001 are

likely candidates to survive Bonferroni correction. To further illustrate

relationship patterns among the imaging biomarkers,wederived voxel-

basedmultivariatemachine learning classifiers as described and shown

in the Supplement.

For cross-correlation heat maps, plasma variables with a coefficient

of variation (standard deviation/mean) greater than 20% after log10

transformation were excluded. Spearman’s Rank Order (rho) correla-

tion was used to generate the younger and oldest age group maps due

to their lower subject numbers.

We also examined whether pTau-181 could have been used as a

screen for tau PET positivity. Participants were considered tau PET+
if their bilateral MetaTemporal SUVR (without partial volume correc-

tion) exceeded 1.2932,36 or other target region SUVRswere positive. A

cutoff was estimated as the value abovewhich all tau PET+ scans were

found and compared to values reported for A- and A+MCI subjects in

a study using the same assay.5



6 of 15 MATTHEWS ET AL.

F IGURE 1 Imaging and plasma biomarker distributions and relationships toMMSE and age. (A) Flortaucipir SUVR images for three subjects of
varying age and tau spatial extent. (B-D) Relationships between tau PET, volume, and FDGPETwithMMSE score, stratified by age-decade (57-69,
blue; 70-79, red; 80-90, green). (E) Relationships of pTau-181, NfL, and GFAP toMMSE stratified by age-decade (same color table). Overall
correlations are apparent as well as an age effect within the biomarker-clinical severity relationships despite adjustment for normal aging. The
unfilled green circle is for one participant in the 80- to 90-year groupwhose plasma values were outliers and are not included in the line of fit. “n.s.”
= not significant (p-values between 0.05 and 0.12 listed as a trend).

3 RESULTS

3.1 Baseline characteristics

Table 1 and Supplemental Table S1 list baseline values for demo-

graphic, cognitive, imaging, and plasma measures overall and by age

group, with examples in Figure 1. p-values are listed for age andMMSE

(representing clinical severity), which were included as model inputs

along with sex and APOE 4 status.

Participants (N = 47) ranged from age 57–90 years (74 6.9); 54%

were female and 78% were APOE4 carriers. Baseline cognitive scores

varied as: MMSE (20.1 3.5, range 12-27), ADAS-cog (24.9 8.0, range

9-50), COWAT (24.4 13.2, 0-60), Digit Span (12.5 3.1, 6-21), and NPI

(7.7 8.3, 0-32). Cognitive scores were unaffected by age, sex, and APOE
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genotype except MMSE scores were slightly higher in older partici-

pants (p = 0.04). APOE4 carrier percentage was lower in participants

aged 80–90 (44%) versus 57–69 (83%) and 70–79 (85%).

Tau PET patterns were consistent with Braak staging33,37 and het-

erogeneous in intensity, extent, and asymmetry. Uptake was most

pervasive in younger participants, variable at age 70–79, more limited

in participants age 80–90 (Figure 1A), and inversely related to MMSE

(Table 1, Figure 1). Age-related differences were observed increas-

ingly in Braak Stages IV and later with greatest disparity in anterior

cingulate and frontal regions such as middle frontal cortex (R = 0.58,

p = 0.00002). Temporoparietal and middle frontal glucose metabolism

and volumes characteristic of AD were reduced compared to cog-

nitively unimpaired, amyloid-negative reference values, and more

pronounced with younger age (Table 1, Figure 1C,D) in frontoparietal

regions (individual examples in Supplemental Figure S1).

Age-adjusted pTau-181, NfL, and GFAP (Figure 1E) were ele-

vated with higher concentrations in younger participants. Sex was

significant only for GFAP and CTAK (females > males, p = 0.0005,

p= 0.008). APOE genotype was significant for SDF-1alpha (e4 Noncar-

riers>Heterozygous>Homozygous, p= 0.005).

3.2 Tau PET inter-region relationships

Tau PET values correlated between regions, particularly in the same

hemisphere, diminishingwith later Braak stages andwhere uptake var-

ied with age. Left inferior temporal SUVRs correlated with left middle

temporal (R = 0.95), fusiform (R = 0.92), superior temporal (R = 0.91),

inferior parietal (R = 0.87), isthmus cingulate (R = 0.87), middle frontal

(R= 0.82), precuneus (R= 0.81), and lateral occipital regions (R= 0.67),

p-values <0.00001. Average inferior temporal SUVRs correlated with

MetaTemporal (R = 0.99) followed by Braak Stage IV (R = 0.97), Corti-

cal Average (R = 0.92), Braak Stage V (R = 0.88), and Braak Stage VI (R

= 0.75) (p-values<0.00001).

3.3 Relationships of plasma and imaging
biomarkers to tau PET

3.3.1 pTau-181 association with tau PET

Plasma pTau-181 levels correlated positively with tau PET (Table 2,

Figure 2A) in regions including Inferior Temporal (left p= 0.0002, bilat-

eral p = 0.0008), MetaTemporal (p = 0.01), Cortical Average (p = 0.04),

and Braak Stage III (p = 0.01), IV (p = 0.01), and V (p = 0.04). Except

for medial and inferior temporal regions, for the same pTau-181 con-

centrations regional tau PET was greater with younger age (Figure 2).

Strongest correlations between pTau-181 and tau PET were in tempo-

ral cortex in older age groups and inCorticalAverage andBraakStageV

regions in the youngest group (Figure 2A). One 84-year-old had a high

pTau-181 value corresponding only with their lateralized left inferior

temporal tau and was otherwise an outlier (examples in Supplemental

Figure S1).

In this population, pTau-181 values could have been used to exclude

one tau PET-negative participant. Using a cutoff of 1.29 for inferior

temporal tau SUVR that included all tau PET+ individuals, 1 of 46

would have been a false positive.

3.3.2 GFAP association with tau PET

Plasma GFAP concentrations correlated positively with tau PET,

strongest in inferior temporal cortex (left p = 0.0006, bilateral

p = 0.002), similar significance to pTau-181 (Table 2, Figure 2B). Asso-

ciation slopes in later Braak stage regionsweremore consistent across

age groups than for pTau-181 but for the same GFAP values, tau PET

was greater with lower age.

3.3.3 Other plasma associations with tau PET

Plasma NfL associations with tau PET were limited to regions includ-

ing Braak stage V (p = 0.05), middle frontal (p = 0.03), precuneus (p

= 0.07), and inferior parietal (p = 0.09). Most inflammatory plasma

biomarkers did not correlate with tau PET, but negative correlations

were observed in the youngest group for Eotaxin in MetaTemporal (R

= −0.75, p = 0.003) and Cortical Average (R = −0.60, p = 0.03), and for

IL-7 inMetaTemporal (R=−0.57, p= 0.04).

3.3.4 Imaging associations with tau PET

FDG PET and volumetric MRI measures correlated negatively with

tau PET (Table 2, Figure 2, Supplemental Figure S2), significant after

correction for multiple comparisons in several regions. Tau PET left-

right hemisphere asymmetries in inferior temporal and inferior parietal

regions correlated with asymmetries observed in volume and glucose

metabolism (R = 0.60–0.68, p-values <0.00001) (image association

patterns in Supplemental Figure S3).

3.3.5 Combined imaging and plasma biomarkers

Combining temporal volumetric measures with either pTau-181 or

GFAP further increased model association with tau PET (R = 0.80,

p < 0.00001) over the variables individually (pTau-181 R = 0.53, vol-

ume R= 0.73) (Table 2). For prediction of tau PET uptake in later-stage

regions (e.g., parietal, middle frontal), plasma biomarkers did not add

further to volumetric models.

3.4 Relationships of plasma and imaging
biomarkers to FDG PET

Plasma NfL correlated with FDG PET as hypothesized, with significant

relationships in precuneus (R = −0.51, p = 0.0003), inferior parietal
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TABLE 2 Relationships between tau PET and plasma biomarkers, FDG PET, and volume (MRI).

pTau-181 GFAP FDGPET Volume

Volume+
pTau-181

Volume

+GFAP

Parameter Ra pb Ra pb Ra pb Ra pb Ra Ra

Inferior temporal: L 0.52 0.0002 0.48 0.0006 0.48 0.0008 0.70 p< 0.00001 0.76 0.75

Inferior temporal 0.47 0.0008 0.44 0.002 0.48 0.0007 0.68 p< 0.00001 0.74 0.73

Middle temporal 0.57 0.01 0.53 0.04 0.56 0.00004 0.73 p< 0.00001 0.80 0.77

Meta temporal 0.53 0.01 0.50 0.03 0.50 0.0003 0.71 0.00002 0.74 n.i.

Cortical average 0.63 0.04 0.60 0.009 0.68 0.002 0.72 0.00004 0.75 0.73

Braak III 0.52 0.01 0.46 0.01 0.55 0.004 0.72 0.00002 0.73 n.i.

Braak IV 0.53 0.01 0.50 0.03 0.52 0.001 0.67 p< 0.00001 0.68 n.i.

Braak V 0.57 0.04 0.60 0.008 0.68 0.002 0.71 p< 0.00001 0.75 0.74

Braak VI - - - - 0.57 0.01 0.60 0.01 n.i. n.i.

Amygdala 0.39 0.04 - - 0.37 0.10 0.46 0.004 0.49 0.48

Inferior parietal 0.56 0.02 0.54 0.03 0.65 0.002 0.75 p< 0.00001 n.i. n.i.

Isthmus cingulate 0.57 0.07 0.59 0.04 0.64 0.003 0.69 0.0001 0.72 0.71

Precuneus - - 0.53 0.07 0.68 0.001 0.73 0.00001 n.i. n.i.

Middle frontalc 0.61 0.11 0.64 0.003 0.75 p< 0.00001 0.75 p< 0.00001 n.i. 0.78

Lateral occipital - - - - 0.62 0.0003 0.60 0.0005 n.i. n.i.

Asymmetry inf temp 0.68 p< 0.00001 0.60 0.00001

Asymmetry inf parietal 0.60 p< 0.00001 0.63 0.00001

aR is an absolute square root of R-squared value for model, including age, sex, and APOE genotypewhere significant or trend.
bp-value is the value associatedwith the biomarker after correction for age, sex, andAPOEgenotype, and therefore does not always correspond to the overall

R-value for eachmodel; “-”meansneither significant nor trend; “n.i.”means that theadditionof theplasmamarkerdidnot improveModelR-value as compared

to volume only; analyses are limited to univariate relationships and do not reflect prediction that may be obtainedwithmultivariatemodels.
cCorrelation values are for FDGPET and volumetric regions that had greatest correspondence to the tau PET region listed.

(R=−0.40, p= 0.0005), isthmus cingulate (R=−0.59, p= 0.02), middle

frontal (R=−0.53, p=0.0002), and lateral temporal regions (R=−0.36,
p = 0.01), similar across age groups. GFAP correlated with FDG PET in

lateral temporal (R = −0.37, p = 0.009) and middle frontal regions (R =
−0.57, p = 0.003). Plasma pTau-181 correlated with FDG PET only in

left inferior temporal cortex (R=−0.47, p= 0.001), where the relation-

ship between pTau-181 and tau PETwas alsomost significant. Volumes

correlated with FDG PET for all regions tested (R-values 0.60–0.51,

p-values 0.00004–0.003). Volumetric left-right hemispheric asymme-

tries correlated with left-right asymmetries in FDG PET in inferior

temporal (R=0.74, p<0.00001) and inferior parietal cortices (R=0.77,

p< 0.00001). (Supplemental Table S2, Figure S2)

3.5 Relationships between plasma biomarkers

Associations were found for the overall population between GFAP and

NfL (R = 0.64, p = 0.0001), GFAP and pTau-181 (R = 0.62, p = 0.0001),

andNfL andpTau-181 (R=0.46, p=0.001). Age influenced theGFAP to

NfL relationshipwith younger participant values positively (Figure 3A).

GFAP correlated with pTau-181 most strongly in the youngest group

(Figure 3B). PTau-181 correlated with NfL in the youngest group

(R= 0.71), and somewhat in the middle age group (R= 0.40), but not in

the oldest group.

Figure 3C-H shows inflammatory plasma biomarker relationships

that were consistent across all age groups: IL-13 versus IL-1 beta and

TRAIL, TNF-alpha versus G-CSF and IL-7, and IL-7 versus G-CSF and

Exotaxin. Figure 3I presents a heatmap showing relationships between

all plasma and selected imaging biomarkers and MMSE for the 70- to

79-year-old age group (all groups in Supplemental Figure S4). Within

all age groups, relationships are most prominent among NfL, GFAP,

pTau-181 and imaging biomarkers, and among inflammatory biomark-

ers, which also exhibit subclusters (Figure 3I). Correlations between

tau PET and inflammatory biomarkers Eotaxinlog10, IL-7, and MCP-1

were noted only in the youngest group.

3.6 Relationships to cognitive endpoints

Several biomarkers correlated with cognitive endpoints (Table 3),

including: NfL and GFAP with baseline MMSE (R = 0.50, p = 0.0005;

R = 0.39, p = 0.007) and ADAS-cog (R = 0.30, p = 0.04; R = 0.37,

p= 0.01); Tau PET with baselineMMSE in regions including total corti-

cal (R= 0.37, p= 0.009) and middle frontal (R= 0.42, p= 0.002), which
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F IGURE 2 Relationships between tau PET and other imaging and plasma biomarkers. Relationship between tau PET in (A) total cortical, (B)
inferior parietal, and (C) left inferior temporal regions as compared to pTau-181log10, GFAPlog10, regional FDG SUVR, and regional volumes.
Correlation coefficients are shown for the three age-decade groups: (1) 57–69 years (blue), (2) 70–79 years (red), (3) 80–90 years (green). (D, E)
The relationships between hemispheric asymmetry in the inferior iemporal region for tau PET as compared to volume and FDGPET, respectively.

correlated with ADAS-cog (R = 0.40, p = 0.006); FDG PET with MMSE

and ADAS-cog in regions including precuneus (R = 0.41, p = 0.004; R

= 0.40, p = 0.005) and caudal middle frontal (R = 0.45, p = 0.002; R =
0.37, p = 0.01); and volumes with MMSE in lateral temporal (R = 0.42,

p = 0.005) and temporoparietal regions. Combining NfL or GFAP with

volume resulted in the strongest relationships with MMSE (R = 0.58,

p= 0.0002; GFAP not significant whenNfL included).

Parahippocampal and lateral temporal tau PET and volumes were

most predictive of 24-week decline in MMSE (R = 0.72, p = 0.0005; R

= 0.73, p = 0.0006). Lateral temporal FDG PET and volume were most

predictive of 24-week decline in ADAS-cog (R = 0.69 p = 0.006; R =
0.81, p = 0.0002). Inflammatory biomarkers listed in Table 3 showed

relationships to subsequent cognitive change but did not relate to

baseline cognition.
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F IGURE 3 Plasma biomarker relationships. Plasma biomarker relationships are shown by age group (A-H) and in an overall comparison that
includes imaging biomarkers shown for the 70- to 79-year age group (I). (“_t” in variable names indicates log10 transformation).
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TABLE 3 Relationships between biomarkers and cognitive endpoints at baseline and 24-week change.

Parameter

Baseline (N= 47) 24-Week change (N= 21)

MMSE ADAS-cog MMSE ADAS-cog

R p* R p* R p* R p*

Plasma biomarkers

pTau-181 - - - - - - - -

NfLlog10 −0.50 0.0005 0.30 0.04 - - - -

GFAPlog10 −0.39 0.007 0.37 0.01 - - - -

Eotaxin log10 - - - - 0.58 0.01 - -

G-CSF1 log10 - - - - 0.68 0.008 - -

HGF log10 - - - - 0.66 0.007 - -

IL-7 log10 - - - - 0.65 0.008 - -

TNF-alpha log10 - - - - 0.57 0.006 - -

Tau PET

Parahippocampus - - - - 0.68 0.0007 - -

Meta temporal −0.28 0.05 - - 0.62 0.003 - 0.10

Total corticallog 10 −0.37 0.009 0.28 0.05 0.46 0.04 - -

Middle frontallog10 −0.44 0.002 0.40 0.006 - - - -

Braak Stage III −0.33 0.02 - 0.10 0.71 0.0004 - -

Braak Stage IV - - - - 0.62 0.002 - 0.10

Braak Stage Vlog 10 −0.37 0.009 0.32 0.03 - - - -

FDGPET (reference pons)

Medial temporal - - - - 0.52 0.02 - -

Lateral temporal 0.36 0.01 - 0.07 0.42 0.05 0.69 0.006

Isthmus cingulate 0.39 0.008 - 0.09 - - - -

Caudal middle frontal 0.45 0.002 −0.37 0.01 - - 0.60 0.01

Precuneus 0.41 0.004 −0.40 0.005 - - - -

Inf. parietal (angular) 0.42 0.003 −0.36 0.01 - - 0.57 0.05

Volume

Hippocampus - - - - 0.62 0.01 - -

Parahippocampus 0.33 0.08 - - 0.78 0.0006 0.61 0.03

Lateral temporal 0.42 0.005 0.32 0.03 0.66 0.0002 0.81 0.0001

Middle frontal - - - 0.09 - - - 0.07

Inferior parietal 0.32 0.03 - - - - 0.63 0.01

TemporoParietal combination 0.40 0.005 0.30 0.04 0.62 0.005 0.67 0.008

TempParFrontal combination 0.42 0.003 0.33 0.02 0.54 0.02 0.76 0.0007

Total cortical 0.37 0.01 0.30 0.04 - - 0.71 0.003

Volume+ Plasma biomarker

Lateral temporal+NfL 0.58 0.0002 0.41 0.02 n.i. n.i. n.i. n.i.

Lateral temporal+GFAP 0.51 0.001 0.46 0.02 n.i. n.i. n.i. n.i.

TempParFront+NfL 0.57 0.0002 0.49 0.02 n.i. n.i. n.i. n.i.

TempParFront+GFAP 0.50 0.002 0.49 0.02 n.i. n.i. n.i. n.i.

*p-values are after adjustment for covariates including age, sex, education, APOE e4 carrier status, and (for longitudinal cognitive change) baseline cognitive

values; R-values are for the model including the biomarker(s) and covariates; “-” is neither significant nor trend; TempPar comb. = combination of temporal

and parietal volumes; TempParFront combination = combination of temporal, parietal, and frontal volumes; “n.i.” means no improvement to combination as

compared to variables alone.
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4 DISCUSSION

This post hoc exploratory study examined biomarkers of pathology,

function, neurodegeneration, and inflammation within the same mild

to moderate AD population, providing several insights. It illustrates

the substantial diversity across all aspects of the “A/T/N + I” frame-

work and clinical status present in a mild to moderate AD dementia

population. Findings supported our hypotheses that pTau-181 would

correlate with tau PET and that NfL would correlate with FDG PET in

this population. GFAP related to tau PET similarly to pTau-18, and to

cognition. Strong regional relationships were found between volumes,

FDG PET, and tau PET, corroborating findings in other studies.14–17,38

Age-related differences beyond those attributable to normal aging

were observed within and between biomarkers, which may underlie

different clinical trajectories.39

One novel aspect of our work was the comprehensive set of

biomarkers, including inflammatory markers, acquired at the same

timepoint. In addition, while relationships between pTau-181, GFAP,

and NfL plasma biomarkers and imaging biomarkers have been

demonstrated across broad ranges of clinical severity and longitudinal

progression,9,17 our results show that these relationships hold within

this later stage of mild to moderate AD. The correlation between

plasma pTau-181 and tau PET is of note because it was within a

primarily tau-positive, demented population rather than a spectrum of

unimpaired or early prodromal individuals and tau-positive dementia

patients.

Our work also sought an understanding of implications for tau spa-

tial distribution and burden versus plasma biomarkers as influenced

by age. The findings that for different age groups, the same pTau-181

concentration predicted different local tau burden in later-stage

Braak regions and correlated most strongly with different spatial

patterns suggest that age, in addition to AD variants,14,38 should be

considered if attempting to predict NFT distribution from plasma

values. Further, the strong relationships between regional volume and

tau PET suggest that plasma-based pathology confirmation can be

combined with volumetric measurement to provide greater insight

to NFT distribution. The participant with high lateralized temporal

tau PET uptake, low cortical uptake, and highest pTau-181 values,

if not an outlier, raised questions regarding pTau and NFT burden

relationships to be addressed by studying a larger number of similar

cases.

Plasma GFAP correlated with tau PET, and did so more consistently

in oldest participants than pTau-181. AlthoughGFAP is associatedwith

amyloid, it also correlates with cognitive decline, which is associated

with tau, in amyloid-positive patients.40 NfL was not associated with

tau PET but correlated with FDG PET, and with pTau-181 in the

youngest age group. NfL is a nonspecific marker of neurodegeneration,

and while FDG PET patterns reflect disease type and phenotype,41

hypometabolism also reflects overall neuronal damage arising from

comorbidities.42

The distinct clusters observed for (a) neurodegenerative (pTau-181,

GFAP, NfL) and (b) inflammation plasma biomarkers were consistent

with a study of a subset of these markers in other AD cohorts.30 This

clustering was consistent across age groups, with inflammatory sub-

clusters that varied by age group. Inflammation biomarkers (Eotaxin,

IL-7, MCP-1) related inversely to tau PET only in the youngest sub-

group.While four inflammationbiomarkers (includingEotaxin and IL-7,

Table 3) correlated with subsequent change in MMSE, directional-

ity was not consistent with literature associating higher levels with

greater clinical decline and greater pathology.43,44 Further study is

warranted, including earlier disease stages.

Findings suggested that in this later-stage population, volumetric

measuresweremore useful in predicting cognitive decline than plasma

markers. FDG and tau PET showed predictive association and may

have greater sensitivity in earlier stages of disease, and with alternate

approaches to tau PET measurement.45 Plasma biomarkers may be

predictive with longer follow-up, given short-term cognitive measure

variability.

Ourwork corroborated andextendeduponprior intermodality rela-

tionship findings, focusing on this later-stage population. The spatial

variation and age association of tau PET were consistent with previ-

ous studies10,21,46,47 aswas the correspondencebetween tauPET, FDG

PET, and volumetric MRI.14,17,38 Our results suggest that, within this

population, volumetric measures can be combined with pTau-181 and

GFAP, with consideration to age, to increase prediction of likely tau

spatial distribution. Given its potential benefit in clinical trial and diag-

nostic screening, this is an area for further research, usingmultivariate

machine learning approaches.

There are limitations in this exploratory study. The sample size

was small with 47 participants available for baseline comparisons

and 21 participants to compare cognitive change. Amyloid PET was

not available; however, based on other studies, positivity may be

inferred in those who are tau PET positive.48 Since there were no

amyloid-negative cognitively unimpaired controls, referencedatawere

used to establish normal aging adjustments; these were not available

for inflammatory markers, mitigated by comparisons within age sub-

groups. Since most participants were tau positive, demonstration of

plasma-based selection was limited. While a commercial platform was

used for plasma measurements, cross-site and cross-platform vari-

ability are undergoing industry refinement and comparisons to other

studies require caution. Ptau-217, not measured, has advantages over

pTau-181 including amyloid sensitivity and tau specificity49 though

in this later stage, population results may be similar.10,21,46,47 Renal

function can affect pTau-181 and NfL measures and could be evalu-

ated next.50 Our results apply to a mild to moderate AD population

and findings may differ in earlier stages with less NFT burden and

neurodegeneration.

The associations between pTau-181, GFAP, FDG, and regional atro-

phy as compared to tau PET and cognitive status observed in this study

demonstrate the potential to efficiently characterize and stratify both

pathology and neurodegenerative effects in AD patients for clinical

trials and care. The inflammatory biomarker clustering observed pro-

vides a basis for further investigation of the role of “I” in the A/T/N/X

framework.
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