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Abstract: Despite significant advances in biological and analytical approaches, a comprehensive
portrait of the proteome and its dynamic interactions and modifications remains a challenging
goal. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule
probes to elucidate protein composition, distribution, and relevant physiological and pharmacological
functions. Click chemistry focuses on the development of new combinatorial chemical methods
for carbon heteroatom bond (C-X-C) synthesis, which have been utilized extensively in the field
of chemical proteomics. Click reactions have various advantages including high yield, harmless
by-products, and simple reaction conditions, upon which the molecular diversity can be easily and
effectively obtained. This paper reviews the application of click chemistry in proteomics from four
aspects: (1) activity-based protein profiling, (2) enzyme-inhibitors screening, (3) protein labeling and
modifications, and (4) hybrid monolithic column in proteomic analysis.

Keywords: click reaction; chemical proteomics; activity-based protein profiling; hybrid mono-
lithic column

1. Introduction

Proteomics is a kind of omics which studies the protein composition, distribution
and changing rules in cells, tissues or organisms. Essentially, it refers to the macroscale
study of protein characteristics, including protein expression level, post-translational
modification, small molecule–protein interaction and so on [1]. Research on the proteome
cannot only provide the material foundation for the law of the activities of life, but also
provides a theoretical foundation and solutions to elucidate and conquer numerous types
of mechanisms of illness [2]. Traditional proteomic methods and analytical approaches
have not been able to elucidate the complete network of interactions and modifications that
proteins may undergo, nor do they evaluate protein activity or functional state in native
environments. Therefore, those challenges emerged have sparked shared interests between
chemists and biologists. To conquer these, a myriad of chemical proteomics methods
have been developed, among which click chemistry can overcome the limitations of the
biological proteome methods, identifying the binding targets in cells and tissues.

Click chemistry was first put forward by K B Sharpless in 2001 [3] which provides a
quick and reliable synthesis method for different molecules to offer a range of reactivities,
orthogonality and utility in various applications. Click chemistry is characterized by good
chemical selectivity, favorable solvent compatibility, diverse modularization, minimum
synthesis requirements and high yield, upon which it considerably reduces the effect
of sensor incorporation on protein activity and reveals the structure and functionality
of proteins. Click reactions commonly comprise of copper (I)-catalyzed azide-alkyne
cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), and inverse-
electron-demand Diels–Alder (IEDDA) reaction and Staudinger ligation (Figure 1) [4]. In

Molecules 2021, 26, 5368. https://doi.org/10.3390/molecules26175368 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1886-2728
https://doi.org/10.3390/molecules26175368
https://doi.org/10.3390/molecules26175368
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26175368
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26175368?type=check_update&version=1


Molecules 2021, 26, 5368 2 of 17

particular, the Cu(I)-catalyzed version of the Huisgen 1,3-dipolar cycloaddition reaction
between azides and terminal alkynes (CuAAC), is the best-known click reaction so far, and
has recently emerged to become one of the most powerful tools in chemical biology and
proteomic applications [5]. In this paper, the applications of click chemistry in chemical
proteomics are summarized and highlighted from four aspects: (1) activity-based protein
profiling, (2) enzyme-inhibitors screening (3) protein labeling and modifications and (4)
hybrid monolithic column in proteomic analysis.
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Figure 1. Schematic reactions of click chemistry.

2. Activity-Based Protein Profiling

Over the past few years, activity-based protein profiling (ABPP) has become a strong
method of chemical proteomics for analyzing proteins’ functional states within a complex
proteome [6,7]. ABPP strategies usually use activity-based probes (ABPs), that are designed
to be recognized by the target protein and react with residues from the active site, which
can efficiently enrich and identify of low-abundance and low-affinity probe-interacting pro-
teins [8]. Many ABPs have been developed for many classes of enzymes, including serine
hydrolases [9,10], cysteine proteases [11], metallohydrolases, phosphatases, deubiquinat-
ing enzymes [12,13], kinases [14,15], various oxidoreductases, and others. Although ABPs
often utilize reporter groups for the direct enrichment or visualization of labeled proteins,
avoiding the need for additional conjugation steps, such bulky groups can hamper cellular
uptake and tissue distribution, potentially limiting their application in living systems. To
improve these problems, compound-centric chemical proteomics approach on the basis
of click reactions were used to enrich and identify enzyme targets, which allow for the
incorporation of chemical groups with highly selective reactivity into small molecules, or
protein modifications without perturbing their biological function, enabling the selective
installation of an analysis tag for downstream investigations (Figure 2). The probe is de-
signed based on the structure of the active molecule, then added to live cells or tissues. It
reacts covalently (via an electrophilic trap or a photo-crosslinking group) or non-covalently
with the target protein. The lysed samples subject to CuAAC reaction attach a fluorophore,
affinity label, or a combination of these elements. Marked proteins are subsequently visual-
ized, identified or quantified using a variety of techniques, such as SDS-PAGE, LC-MS/MS
analysis or confocal imaging [8]. The CuAAC-enabled ABPs were developed for protein
arginine deiminases [16]; ubiquitin mechanisms [12,17], cytochrome P450 enzymes [18],
glycosidases [19], and kinase [20,21].
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Figure 2. Overall workflow of the activity-based protein profiling approach. A probe with an active
group and an alkynyl tag reacts with the active site of target protein in live cells and tissues, then
undergoes CuAAC reaction with an azide containing fluorophore or affinity label. After lysis and
separation, the probe is fluorescently scanned in SDS-PAGE display, LC-MS/MS analysis, or confocal
imaging for identification or quantification.

Clickable probes based on light affinity can be the most common chemical proteomics
tool for capturing and identifying non-covalent targets for small bioactive molecules [22].
These probes include the synthesis and installation of a click group (azide or alkine)
and photoaffinity groups (such as diazirines, benzophenone) to cause as little disruption
as possible to the biological activity of the compounds, which sometimes necessitates a
thorough SAR investigation and even new synthetic channels [23–25]. Cell permeable
sensors with both clickable group and light affinity have been developed to characterize a
variety of clinically approved medications and inhibitors, including kinase inhibitors [26],
γ-secretory enzyme inhibitors [27], β-secretor inhibitors [28], antibiotics [29], NSAIDs [30],
epigenetic regulatory compounds [31], natural products [32], and also protein interactions
with lipids [33] and sterol [34]. Considering that metabolites may participate in functional
sites of proteins, the metabolite-derived click probes can be used as a valuable analytical
tool to plot drug interactions in the proteomes, and even as a tool for uncovering functional
regulators of metabolite binding proteins [33].

As a carbocyclic analog of adenosine, 3-Deazaneplanocin A (DzNep) can inhibit the
activity of histone lysin methyltransferase, which has aroused great interest in epigenetic
research over the past few years [35–37]. However, the molecular mechanism and extra-
cellular targets of DzNep have not been fully understood. Yang et al. developed some
small-molecular probes derived from DzNep that are permeable to the cells, but the bulky
modification groups in the probes usually disrupt the interactions between proteins and
drugs, so it is still challenging to efficiently capture cell targets in situ interactions [26,38–40].
Therewith, Tam and colleagues designed a novel “clickable” affinity-based probe DZ-1,
with minimal structural modification from DzNep (Figure 3). DZ-1 possessed comparative
anti-apoptotic activity as DzNep in MCF-7 mammalian cells. In situ proteome profiling
of DZ-1 was successfully carried out on the basis of pull-down LC-MS/MS analysis. Fi-
nally, some highly enriched proteins were identified as potential cellular protein targets of
DzNep [41].



Molecules 2021, 26, 5368 4 of 17Molecules 2021, 26, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 3. Overall workflow of the cell-based proteome profiling approach followed by large-scale pull-down/LC-MS/MS 
for identification of potential cellular targets of DzNep using affinity-based probe DZ-1. 

Inflammation-related processes are pivotal factors contributing to sepsis-associated 
cardiac dysfunction. Cardiac neutrophil infiltration and subsequent release of myelop-
eroxidase leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to 
chemically modify plasmalogens into 2-chlorohexadecanal (2-ClHDA). To elucidate this 
metabolic process and characterize protein targets for 2-ClHDA, a clickable alkynyl ana-
log, 2-chlorohexadec-15-in-1-al (2-ClHDyA), was used by Prasch and colleagues to iden-
tify its protein targets (Figure 4a). Through CuAAC reaction of 5-tetramethylrhodamine 
azide (N3-TAMRA) and two-dimensional gel electrophoresis, they were able to pinpoint 
51 proteins which form adducts with 2-ClhdYA. Genetic ontology enrichment analysis 
showed that heat shock and chaperone proteins, energetic metabolism and cytoskeleton 
proteins were the key targets for HOCl modified lipids in the heart of mice with endotox-
emia [42]. 

Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal 
(HNE), are primary targets of free radical damage during oxidative stress. Some studies 
have shown that HNE or other electrophilic agents can modify IκB kinase (IKK) [43], tu-
bulin isomer [44], and Keap1 [45,46], leading to the loss of protein function and disturb-
ance of cell signal transmission. In order to fully understand the effect of oxidative stress 
on cellular signaling transduction and disease pathology, it is necessary to analyze HNE 
modified proteins in vivo. Vila and colleagues explored Staudinger’s ligation and CuAAC 
to selectively label proteins with HNE in colon cancer cells, and subsequently pull-down 
by biotin–streptavidin interaction for LC-MS/MS analysis (Figure 4b). The results showed 
that both strategies produced effective biotinylation of HNE-conjugated protein, while 
click chemistry was proven to be superior for recovering proteins [47]. 

Nicotinamide adenine dinucleotide (NAD+), known as oxidoreductase coenzyme, is 
also a multifunctional substrate of many post-translational modification enzymes, such as 
poly-ADP−ribose polymerases (PARP) and sirtuins [48]. The recent studies of noncanon-
ical NAD-binding proteins suggest that powerful chemical tools for profiling the NAD 
interactome are quite necessary. Šileikytė and colleagues developed a NAD+/NADH 
probe, 6-ad-BAD, with two reactive sites for both click reaction and light crosslinking. 
Moreover, the nicotinamide linked to ribose was replaced by a benzamide adenine dinu-
cleotide (BAD) to avoid enzyme digestion (Figure 4c). Results showed that 6-ad-BAD 
could label PARP effectively in a UV dependent manner. Then, the chemical proteomics 
of 6-ad-BAD was evaluated in HEK 293T cell lysate through biotinylated enrichment and 
24 unknown NAD or related nucleotide binding proteins were identified. This clickable 
probe will be useful in future chemical proteomics studies for profiling the NAD+ interac-
tome across different tissues as well as in disease contexts [49]. 

Figure 3. Overall workflow of the cell-based proteome profiling approach followed by large-scale pull-down/LC-MS/MS
for identification of potential cellular targets of DzNep using affinity-based probe DZ-1.

Inflammation-related processes are pivotal factors contributing to sepsis-associated
cardiac dysfunction. Cardiac neutrophil infiltration and subsequent release of myeloper-
oxidase leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to
chemically modify plasmalogens into 2-chlorohexadecanal (2-ClHDA). To elucidate this
metabolic process and characterize protein targets for 2-ClHDA, a clickable alkynyl analog,
2-chlorohexadec-15-in-1-al (2-ClHDyA), was used by Prasch and colleagues to identify its
protein targets (Figure 4a). Through CuAAC reaction of 5-tetramethylrhodamine azide
(N3-TAMRA) and two-dimensional gel electrophoresis, they were able to pinpoint 51 pro-
teins which form adducts with 2-ClhdYA. Genetic ontology enrichment analysis showed
that heat shock and chaperone proteins, energetic metabolism and cytoskeleton proteins
were the key targets for HOCl modified lipids in the heart of mice with endotoxemia [42].

Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE),
are primary targets of free radical damage during oxidative stress. Some studies have
shown that HNE or other electrophilic agents can modify IκB kinase (IKK) [43], tubulin
isomer [44], and Keap1 [45,46], leading to the loss of protein function and disturbance
of cell signal transmission. In order to fully understand the effect of oxidative stress on
cellular signaling transduction and disease pathology, it is necessary to analyze HNE
modified proteins in vivo. Vila and colleagues explored Staudinger’s ligation and CuAAC
to selectively label proteins with HNE in colon cancer cells, and subsequently pull-down
by biotin–streptavidin interaction for LC-MS/MS analysis (Figure 4b). The results showed
that both strategies produced effective biotinylation of HNE-conjugated protein, while
click chemistry was proven to be superior for recovering proteins [47].

Nicotinamide adenine dinucleotide (NAD+), known as oxidoreductase coenzyme, is
also a multifunctional substrate of many post-translational modification enzymes, such as
poly-ADP−ribose polymerases (PARP) and sirtuins [48]. The recent studies of noncanon-
ical NAD-binding proteins suggest that powerful chemical tools for profiling the NAD
interactome are quite necessary. Šileikytė and colleagues developed a NAD+/NADH probe,
6-ad-BAD, with two reactive sites for both click reaction and light crosslinking. Moreover,
the nicotinamide linked to ribose was replaced by a benzamide adenine dinucleotide (BAD)
to avoid enzyme digestion (Figure 4c). Results showed that 6-ad-BAD could label PARP
effectively in a UV dependent manner. Then, the chemical proteomics of 6-ad-BAD was
evaluated in HEK 293T cell lysate through biotinylated enrichment and 24 unknown NAD
or related nucleotide binding proteins were identified. This clickable probe will be useful
in future chemical proteomics studies for profiling the NAD+ interactome across different
tissues as well as in disease contexts [49].
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Tetrahydrolipstatin (THL, also known as Orlistat) is an FDA approved anti-obesity
drug with potential bactericidal activity. To explore the enzymatic targets of this β-lactam
ring in a complex bacterial proteome, Ravindran and Wenk designed a functional THL–
alkyne analog (Figure 4d) to quantify the lipid esterase activity and enriched the target
proteins in Mycobacterium bovis BCG at different physiologic states [50].

Adam and colleagues used click chemistry as a handy binding method to synthesize
both rhodamine-, and rhodamine and biotin-tagged (trifunctional) sensors from the natural
product (-)–FR182877 [51]. Using this sensor, the researchers identified carboxyesterase-1
as the protein target in the heart of the mouse (Figure 4e). In the same way, Thompson et al.
used click chemistry to covalently label rhodamine with inhibitors for arginine deiminase
4 (PAD4), an enzyme controlled by calcium [52].

Citrullination is the post-translational hydrolysis of peptidyl-arginine to form peptidyl-
citrulline [53–55], which is a reaction also catalyzed by PADs. Abnormal increase of citrul-
linated protein is associated with autoimmune illnesses and cancers [53,56]. Cl-amidine
and F-amidine were reported to permanently inhibit PADs by covalently altering an ac-
tive cysteine site [57–59]. Herein, Nemmara and colleagues developed cell permeable
and “clickable” probes (BB-Cl-Yne and BB-F-Yne) for covalent labeling of the PADs both
in vitro and in cell-based systems [9]. These sensors covalently alter the conserved cysteine
residues in all PAD isozymes and serve as the base for azide-alkyne cycloaddition, and,
subsequently, CuAAC [60] with either TAMRA-N3 or biotin-N3. It is worth noting that such
compounds may be used in several forms, including the off-target recognition of the parent
compounds and ABPPs on the target binding tests, to demonstrate PAD inhibitor efficacy.

Chang and colleagues used a combination of competitive and click chemistry ABPP
(Figure 4g) to study a variety of proteomic reactions to activate carbamates in vitro and
in vivo. They identified several carbamates derivatives, among them, O-aryl and O-
hexafluoroisopropyl (HFIP) carbamates could react selectively with serum hydrolases
in vivo. They used the proteomic specificity of carbamate HFIP to plot in situ images of
monoacylglycerol lipase endocannabinoid hydrolases and α-β hydrolase-6. They proved
that carbamates are the preferred reaction group of serine hydrolase, which can adapt to dif-
ferent structural modifications and produce inhibitors with special potency and selectivity
in the mammalian proteome [61].

Designed to identify chemical probes for functionally related protein families that can
be used in complex natural environments, ABPP is an area that benefits from click chemistry.
Due to the modular and efficient properties of the click reaction, the synthesis of probe
libraries has been greatly simplified. However, there is still lack of a universal chemical
probe or small molecule ligand for all target proteins, and the real-time dynamic imaging
of a specific protein of interest in a live organism remains highly challenging. Due to the
diversity of biological applications, there is no standardized protocol covering the different
aspects of probe preparation, click reaction conditions, or analysis. This results in various
methods that may seem overwhelming to the newcomer. Click reactions can be readily
integrated to both conventional biological techniques such as gel-based fluorescent-labeling,
biotin-based pull-down assay, and many of the upcoming high-throughput bioassays
and characterization techniques such as microarray, LC-MS/MS, etc. Furthermore, click
modules enable the enrichment of protein targets, yet their presence can sometimes perturb
molecular interactions and biological activity. Recent advances in “label-free” proteomic
methods, such as thermal proteome profiling or drug affinity responsive target stability,
represent complementary strategies to plot small molecule–protein interactions, bypassing
the requirement of enrichment handles.

3. Enzyme-Inhibitors Screening

Target-guided synthesis (TGS) is mainly divided into dynamic combinatorial chem-
istry and kinetically controlled TGS. Tethering and in situ click chemistry are representa-
tive strategies, respectively. The former method is based on thiol-disulfide exchange, in
which free sulfhydryl groups on the protein surface react with small fragments containing
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disulfide bonds to form disulfide bonds [62], the latter uses irreversible click reactions to
synthesize two reaction building blocks into a potentially inhibiting compound [63].

Traditional drug development usually depends on pharmaceutical chemistry, whether
in the very beginning of drug discovery or the subsequent stages of drug optimization.
Many enzymes have multiple binding domains, and apart from the active center, the al-
losteric binding sites mainly confer selectivity and potency [64]. In this case, click chemistry
is considered to be a convenient method for assembling fragment-based inhibitors because
of its highly modular and efficient reaction characteristics. As illustrated in Figure 5a,
the combinations of M+N fragments result in potential bidentate inhibitor library (M×N
compounds) for high-throughput screening [65].
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3.1. Protein Kinases

Protein kinases catalyze the phosphorylation of serine, threonine, tyrosine and histi-
dine residues of proteins. Aberrant kinases expressions are involved in numerous illnesses,
including inflammation and cancers [66]. Kalesh and colleagues recently used click chem-
istry to produce 344 Abelson tyrosine kinase (Abl) inhibitors [67]. Later inhibition screening
assays showed that Abl kinase had a preference for short chain azide scaffolds, then 11 lead
compounds with moderate potency were found. Among them, compound 1 is the most
potent hit during screening with IC50 = 700 nM (Figure 5b). Similarly, Klein and colleagues
used this strategy to produce Plasmodium falciparumprotein kinase 7 (PfPK7) inhibitors [68].
The researchers used alkyne/azide-derivatized purine analogs to click on various aromatic
azides/alkynes, and subsequent inhibition screening assays resulted in two potent PfPK7
inhibitors (compound 2 and 3, Figure 5b) with IC50 at 10–20 µM.
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3.2. Cyclooxygenase-2

Cyclooxygenase (COX) catalyzes the transformation of arachidonic acid into prostaglandins,
which plays an important role in human physiology and pathological conditions [69].
Among the three subtypes of COX, COX-2 is considered to be closely related to various
pathological processes, so the development of selective COX-2 inhibitors is a major focus
of pharmaceutical research. Bhardwaj and colleagues demonstrated the use of the COX-2
binding site as a reaction vessel to produce its own potent and selective inhibitors. They
have designed and synthesized a series of pyrazole-based azide building blocks and a
series of corresponding triazole-containing biheterocyclic compounds through the in situ
click chemistry method, and screened out compounds 4 and 5, (Figure 5b), which are
highly effective inhibitors of COX-2 [70].

3.3. O-GlcNAC Transferase

O-GlcNAC transferase (OGT) is a critical enzyme involved in the dynamic O-GlcNAcylation
of nucleoproteins and cytoplasmic proteins. The discovery of cell permeability OGT in-
hibitors is of great significance to elucidate the function and regulatory mechanism of
O-GlcNAcylation [71]. Wang et al. combined the advantages of tethering and in situ click
chemistry to find OGT inhibitors. They reported two cell permeable OGT inhibitors (com-
pounds 6 and 7, Figure 5b), both of which significantly inhibited intracellular O-GlcNAcylation
without side-effects on cell viability. Unusual non-competitive inhibition of OGT was help-
ful to find new inhibitors and explore the regulatory mechanism of OGT [72].

3.4. α-Glucosidases

The family of enzymes α-Glucosidases play an important role in carbohydrate di-
gestion in vivo [73]. Inhibition of α-glucosidase activity could reduce the level of plasma
glucose after surgery, therefore it has been considered as an important target for the
treatment of type II diabetes mellitus [74,75]. Wang and colleagues synthesized a series
of 2,4,5-triarylimidazole-1,2,3-triazole derivatives using CuAAC and evaluated their in-
hibitory effects on α-glucosidase. Among them, a new type of structural α-glucosidase
inhibitor (compound 8, Figure 5b) was identified, which can be used as a lead compound
for further development of α-glucosidase inhibitors [76].

The development of enzyme inhibitors is another important area where click chem-
istry plays a positive role. It is considered to be a convenient fragment-based inhibitor
assembly strategy, in which a large number of potential bipedal inhibitors are generated
with minimum synthetic effort. Ingenious strategies such as in situ click chemistry have so
far shed some light on new ways of producing potent inhibitors against certain enzymes.
However, this strategy is still in its infancy, requires a large amount of protein, and the
amplification effect is relatively poor except in some highly optimized conditions.

4. Protein Labeling and Modifications

Protein labeling and modification are widely used in industry, agriculture, and
medicine, and have high research value. Protein labeling refers to the process of covalently
linking enzyme, fluorescein, biotin and other markers to antibodies or other proteins, and
specifically reacting with the detected products to form multiple complexes [77]. Protein en-
gineering is based on the relationship between the structure of protein molecules and their
biological functions. Through chemical, physical and molecular biological methods, gene
modification or gene synthesis is carried out to modify the existing protein, or to produce a
new protein to meet the needs of human production and life [78]. Next, we will summa-
rize the applications of click chemistry in the labeling of new proteins, post-translational
modification of proteins, and protein engineering.

4.1. Labeling of New Proteins

Although CuAAC has a variety of ligands, these reactions are mainly limited to cell sur-
face markers [79]. The direct labeling of intracellular biomolecules remains to be explored
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to a great extent. Beatty and colleagues reported for the first time the utility of the CuAAC
reaction for labeling newly synthesized proteins in bacteria (Figure 6). Escherichia coli cells
were treated with 19 kinds of natural amino acids and alkyne functionalized unnatural
amino acid, homopropargylglycine (HPG), to prepare recombinant protein Bastar with
alkyne group. Previous work has demonstrated that alkynyl amino acids can be incorpo-
rated easily into recombinant proteins in a residue-specific manner. HPG serves effectively
as a methionine (Met) surrogate even without modification of the translational machinery
of the host. Then, the bacterial cells were treated with tris (benzyltriazolylmethyl) amine
(TBTA) and azide functionalized coumarin at 4 ◦C for 14 h for CuAAC reaction. After a
large amount of washing, cells were stimulated at 395 nm, and the fluorescent emission
was monitored. Only when HPG, azido-coumarin and Cu (I) TBTA were co-incubated the
cells, the fluorescence intensity increased significantly. Confocal fluorescence microscopy
and polyacrylamide gel electrophoresis confirmed the successful labeling of the Bastar
protein in E. coli [80].

Molecules 2021, 26, x FOR PEER REVIEW 9 of 17 
 

 

4.1. Labeling of New Proteins 
Although CuAAC has a variety of ligands, these reactions are mainly limited to cell 

surface markers [79]. The direct labeling of intracellular biomolecules remains to be ex-
plored to a great extent. Beatty and colleagues reported for the first time the utility of the 
CuAAC reaction for labeling newly synthesized proteins in bacteria (Figure 6). Escherichia 
coli cells were treated with 19 kinds of natural amino acids and alkyne functionalized un-
natural amino acid, homopropargylglycine (HPG), to prepare recombinant protein Bastar 
with alkyne group. Previous work has demonstrated that alkynyl amino acids can be in-
corporated easily into recombinant proteins in a residue-specific manner. HPG serves ef-
fectively as a methionine (Met) surrogate even without modification of the translational 
machinery of the host. Then, the bacterial cells were treated with tris (benzyltriazolylme-
thyl) amine (TBTA) and azide functionalized coumarin at 4 °C for 14 h for CuAAC reac-
tion. After a large amount of washing, cells were stimulated at 395 nm, and the fluorescent 
emission was monitored. Only when HPG, azido-coumarin and Cu (I) TBTA were co-
incubated the cells, the fluorescence intensity increased significantly. Confocal fluores-
cence microscopy and polyacrylamide gel electrophoresis confirmed the successful label-
ing of the Bastar protein in E. coli [80]. 

 
Figure 6. TBTA assisted CuAAC labeling of newly synthesized proteins in bacterial cells. Met analogs containing terminal 
alkyne were metabolized and incorporated into target proteins in bacterial cells, and then TBTA assisted CuAAC to react 
with azide modified coumarin fluorophores. 

4.2. Protein Post-Translational Modifications 
Protein post-translational modifications (PTMs) refer to a covalent process during or 

after protein translation, that is, to change the properties of proteins by adding modifica-
tion groups to one or several amino acid residues or cutting off groups by protein hydrol-
ysis. More than 300 different PTMs have been found, including phosphorylation, glyco-
sylation, acetylation, ubiquitination, carboxylation and disulfide pairing [81]. 

Among the different PTMs, protein glycosylation regulates important mechanisms 
associated with cellular communication, which plays a major role in immune reactions, 
inflammation and cancerous metastases [5]. Some studies have reported a mutant galacy-
tosyltranferase which can transfer an N-azidoacetylgalactosamine (GalNAz) residue onto 
O-GlcNAc modified proteins, therefore the bio-orthogonal reaction provided an elite 
chemical method for glycomics studies [82,83]. Zaro and colleagues exploited click reac-
tions to isolate and identify glycosylated proteins. Specifically, they demonstrated the 
metabolic intake of N-acetylglucosamine analog GlcNAlk on O-GlcNAcylated proteins in 
NIH-3T3 cells. After lysing in SDS, the azido-azo-biotin was applied to the soluble pro-
teins, followed by enrichment with streptavidin beads. The biotinylated proteins were 
then released upon sodium dithionite treatment and separated with SDS-PAGE (Figure 
7). Ultimately, the LC-MS resulted in the identification of 374 proteins modified by Glc-
NAlk [84]. 

Figure 6. TBTA assisted CuAAC labeling of newly synthesized proteins in bacterial cells. Met analogs containing terminal
alkyne were metabolized and incorporated into target proteins in bacterial cells, and then TBTA assisted CuAAC to react
with azide modified coumarin fluorophores.

4.2. Protein Post-Translational Modifications

Protein post-translational modifications (PTMs) refer to a covalent process during or
after protein translation, that is, to change the properties of proteins by adding modification
groups to one or several amino acid residues or cutting off groups by protein hydrolysis.
More than 300 different PTMs have been found, including phosphorylation, glycosylation,
acetylation, ubiquitination, carboxylation and disulfide pairing [81].

Among the different PTMs, protein glycosylation regulates important mechanisms
associated with cellular communication, which plays a major role in immune reactions,
inflammation and cancerous metastases [5]. Some studies have reported a mutant galacy-
tosyltranferase which can transfer an N-azidoacetylgalactosamine (GalNAz) residue onto
O-GlcNAc modified proteins, therefore the bio-orthogonal reaction provided an elite chem-
ical method for glycomics studies [82,83]. Zaro and colleagues exploited click reactions to
isolate and identify glycosylated proteins. Specifically, they demonstrated the metabolic
intake of N-acetylglucosamine analog GlcNAlk on O-GlcNAcylated proteins in NIH-3T3
cells. After lysing in SDS, the azido-azo-biotin was applied to the soluble proteins, followed
by enrichment with streptavidin beads. The biotinylated proteins were then released upon
sodium dithionite treatment and separated with SDS-PAGE (Figure 7). Ultimately, the
LC-MS resulted in the identification of 374 proteins modified by GlcNAlk [84].
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Li and colleagues developed a gel mass spectrometry method to identify O-GlcNAC
modified proteins using peracetylated N-azidoacetylglucosamine (Ac4-GlcNAC) in A549
cells. After conjugating with click chemistry (CuAAC and SPAAC) in vitro and strepta-
vidin resin enrichment, the O-GlcNAc modified proteins were isolated by SDS-PAGE and
identified by mass spectroscopy (Figure 8). Analysis of the proteomic data indicated that
229 suspected modified O-GlcNAc proteins were identified with a conjugate sample of
Biotin-Diazo-Alkyne and 188 proteins with a conjugate sample of Biotin-DIBO-Alkyne, of
which 114 overlapped. This method combined with metabolic markers, click chemistry,
affinity enhancement, SDS-PAGE separation and mass spectrometry will adapt to suit for
other PTMs of proteomics [85].
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(CuAAC)/Biotin-DIBO-alkyne-probe (SPAAC).

As a common post-translational modification, ubiquitination can regulate a variety
of protein substrates in different cellular pathways [86]. Meanwhile, deubiquitinating
enzymes (DUBs) realize the process of deubiquitination by cutting the isopeptide bond
between the C-terminal of ubiquitin and the lysine residue of the target protein, or by poly-
merizing the isopeptide bond between the distal and proximal ubiquitin of the ubiquitin
chain. The unactivated terminal alkynyl group in active probes is considered as a standard
reaction site for labeling cysteine deubiquitinating enzymes (Figure 9a). These probes
are widely used to monitor the activity of DUBs in infection, disease and treatment, or to
discover new DUBs and their active cysteine. Mons and colleagues have designed a series
of probes to study the reactivity of terminal alkynyl groups towards DUBs (Figure 9b).
The core of the probes is rhodamine linked to the total synthesized ubiquitin1–75(Ub1–75).
Different reaction groups were attached to the carbon end of ubiquitin, in which 2 and 3 are
replaced by methyl and phenyl, respectively. In order to study the importance of terminal
protons, the substitution at C3 makes the volume of the probe larger (4, 7). Propionamide
served as a negative control because it had no reactive group. The possibility of thiol
alkynyl click reaction targeting deubiquitinating enzymes in cells was studied. Moreover,
the target range of propargyl derivatives targeting cysteine was extended from terminal
alkynyl to internal substituted alkynyl [87].



Molecules 2021, 26, 5368 11 of 17

Molecules 2021, 26, x FOR PEER REVIEW 11 of 17 
 

 

core of the probes is rhodamine linked to the total synthesized ubiquitin1–75(Ub1–75). Dif-
ferent reaction groups were attached to the carbon end of ubiquitin, in which 2 and 3 are 
replaced by methyl and phenyl, respectively. In order to study the importance of terminal 
protons, the substitution at C3 makes the volume of the probe larger (4, 7). Propionamide 
served as a negative control because it had no reactive group. The possibility of thiol al-
kynyl click reaction targeting deubiquitinating enzymes in cells was studied. Moreover, 
the target range of propargyl derivatives targeting cysteine was extended from terminal 
alkynyl to internal substituted alkynyl [87]. 

 
Figure 9. (a) Mechanism of activity-based probe targeting cysteine DUBs via thiol alkynyl click re-
action. (b) A group of substituted alkynes in active probes (ABPs) targeting cysteine DUBs. Synthetic 
ubiquitin lacking glycine residues at the C-terminal (Ub1−75) was modified with fluorescent rhoda-
mine group at the N-terminal as reporter, and propargylamide (Prg) or propargylamide derivative 
2–10 at the C-terminal as cysteine thiol-reactive electrophilic. Propylamide (Prp) was a non-covalent 
control. 

4.3. Protein Engineering 
Natural microbial rhodopsin is a seven-fold transmembrane protein. As a kind of 

photosensitive ion channel or ion pump, it has been widely used in optogenetic modula-
tion [88]. The genetically encoded voltage indicators of rhodopsin were modified to be 
genetically encoded membrane potential probes by electrochromic detection of mem-
brane potential. On the basis of Förster resonance energy transfer, a rhodopsin type mem-
brane potential probe was developed, which can realize an all-optical study of electro-
physiology of cultured neurons. Peng’s research group designed a series of fluorescent 
membrane potential probes hybrid voltage indicator (HVI) with high sensitivity and sig-
nal-to-noise ratio. They used the enzyme mediated probe incorporation method to specif-
ically bind the trans-cyclooctene part to the mutants of Acetabularia acetabulum rhodop-
sin II (Ace2), which was subsequently derivatized with tetrazine-conjugated organic 
fluorophores via the inverse-electron-demand Diels–Alder cycloaddition (IEDDA) reac-
tion. The resulting HVI had a dye protein structure and exhibited a strong electrochromic 
effect, which can be used for an all-optical electrophysiological study of cultured neurons 
[89]. 

The application of click chemistry in protein labeling and modification has greatly 
promoted the development of chemical proteomics. However, it is important to note that 

Figure 9. (a) Mechanism of activity-based probe targeting cysteine DUBs via thiol alkynyl click
reaction. (b) A group of substituted alkynes in active probes (ABPs) targeting cysteine DUBs.
Synthetic ubiquitin lacking glycine residues at the C-terminal (Ub1−75) was modified with fluorescent
rhodamine group at the N-terminal as reporter, and propargylamide (Prg) or propargylamide
derivative 2–10 at the C-terminal as cysteine thiol-reactive electrophilic. Propylamide (Prp) was a
non-covalent control.

4.3. Protein Engineering

Natural microbial rhodopsin is a seven-fold transmembrane protein. As a kind of
photosensitive ion channel or ion pump, it has been widely used in optogenetic modula-
tion [88]. The genetically encoded voltage indicators of rhodopsin were modified to be
genetically encoded membrane potential probes by electrochromic detection of membrane
potential. On the basis of Förster resonance energy transfer, a rhodopsin type membrane
potential probe was developed, which can realize an all-optical study of electrophysiology
of cultured neurons. Peng’s research group designed a series of fluorescent membrane
potential probes hybrid voltage indicator (HVI) with high sensitivity and signal-to-noise
ratio. They used the enzyme mediated probe incorporation method to specifically bind
the trans-cyclooctene part to the mutants of Acetabularia acetabulum rhodopsin II (Ace2),
which was subsequently derivatized with tetrazine-conjugated organic fluorophores via
the inverse-electron-demand Diels–Alder cycloaddition (IEDDA) reaction. The resulting
HVI had a dye protein structure and exhibited a strong electrochromic effect, which can be
used for an all-optical electrophysiological study of cultured neurons [89].

The application of click chemistry in protein labeling and modification has greatly
promoted the development of chemical proteomics. However, it is important to note that
most clinically approved drugs target membrane receptors, but relatively few chemical
probes have been developed for this broad class of proteins. The click reaction for new
protein labeling is operationally similar to conventional pulse-labeling with 35S-methionine
but avoids the technical challenges of high-resolution autoradiography. That being said,
further work for the protein labeling with alkynyl amino acid side chains in mammalian
cells is needed, and click chemistry has been used in only a few types of PTMs. There-
fore, determining the exact location and exact structure of modifications on proteins
remains challenging.



Molecules 2021, 26, 5368 12 of 17

5. Hybrid Monolithic Column in Proteomic Analysis

Since the end of 1980s, Hjertén and Svec first used monolithic columns as steady-state
phases for rapid separation of small and macro molecules [90,91]. Therefore, different
monolithic columns containing organic polymer, inorganic silicon or a hybrid matrix of
organic silicon were reported [92,93]. At present, organic monolithic columns and inor-
ganic silicon monolithic columns have been largely utilized in the separation field [94,95].
Monolithic columns of organic polymer normally contain polyacrylamide, polyacrylate,
polymethylmethacrylate and polystyrene, which have good acid and alkali resistance,
simple preparation and easy surface modification [96]. However, they will dilate in cer-
tain organic solvents, potentially altering the pore structure of polymer matrix, thereby
reducing the mechanical stability and service lifetime. On the contrary, inorganic silica
gel has good resistance to organic solvents and high mechanical stability, but its surface
functionalization requires tedious operation process and more time, which limits the appli-
cation of monolithic silica column [97,98]. The organic-inorganic hybrid monolithic column
combines their respective advantages with large specific surface area, high performance,
and convenient preparation. The hybrid monolithic column prepared or modified by
thiol-ene click reaction can be used to separate and purify proteins.

Liu and colleagues developed hybrid monolithic silanes by co-condensing tetram-
ethoxysilane and vinyltrimethoxysilane and studied the change of vinyl content of hybrid
monolithic silanes treated with vinyldimethylexysilane. In addition, through the thiol-ene
click reaction of vinyl with 1-octadecanethiol, sodium 3-mercapto-1-propanesulfonate
and 2,2′-(ethylenedioxy)diethanethiol/vinylphosphonic acid, the surface properties of
the whole matrix can be easily adjusted, which can be used as the analytical column in
LC-MS/MS for separating and analyzing the tryptic digest of the HeLa cells [99].

Polyhedral oligomer silsesquioxane (POSS) is a hybrid material with cage-like struc-
ture and nanoscale size [100,101]. The inherent properties of POSS, such as good resistance
to temperature/oxidation and an excellent tolerance to pH, make it appropriate to prepare a
new type of monolith column [102,103]. Ma and colleagues reported a pure POSS-based hy-
brid monolithic column (Figure 10), which was prepared by self-polymerization of acrylate
(monolith I) with acrylopropyl polyoctahedral silsesquioxane (acryl-POSS) as crosslinking
agent and 3-(triallyl silyl) propyl acrylate (TAPA) as a monomer. As a result, monolithic
column I can be further modified by thiol-ene click reaction with penicillamine (monolithic
II) and 1-octadecanethiol (monolithic III). The three monolithic columns were characterized
and then applied to the separation of various small molecules and the determination of
trypsin digestion solution of HeLa cells by reciprocal liquid chromatography [104].
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Wu and colleagues constructed a POSS-based hybrid monolithic column using methacryl
substituted POSS and N-(2-(methacryloyloxy)ethyl)-dimethyloctadecyl ammonium bro-
mide [105]. The column showed excellent mechanical stability and better chromatographic
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performance than conventional alkoxysilane-based monolithic columns without tailing
spikes, which could successfully separate proteins from tryptic digests of bovine serum
albumin [106,107]. In addition, a new POSS-VBI-Cys column, developed by Han et al.,
demonstrated good separation selectivity for glycoprotein and non-glycoprotein. It is
worthy to exploit its performances for separation of intact proteins and in-depth proteome
applications [108].

6. Considerations and Looking Forward

Looking back at the past twenty years, the introduction of chemical strategies to parse
and enrich subsets of the “functional” proteome has empowered mass spectrometry (MS)-
based methods to delve more deeply and precisely into the biochemical state of cells and
its perturbations by small molecules. The emerging click chemistry provides a powerful
tool for the proteomics research, fundamentally promoting the development of chemical
biology and molecular biology. This paper mainly highlights the applications of click
chemistry in activity-based protein profiling, enzyme-inhibitors screening, protein labeling
and PTMs, and hybrid monolithic column for protein purification. ABPP and chemical
proteomics are designed to identify the chemical probes of allied functional protein families,
which can be used in a complex natural environment. Because of the modularization as
well as high efficiency of click reaction, synthesizing a diverse compound library for high-
throughput screening of enzyme inhibitors is becoming much easier. In spite of these
attributes, the efficiency of click reaction needs to be further improved. Some PTMs are
large and heterogeneous, making their recognition by proteomics software challenging,
thus PTM-selective enrichment is necessary prior to MS analysis. However, we should be
clear that the application areas of click chemistry in PTMs are limited. The development
of specific sensors for all kinds of protein post-translational modifications remains to be
a major research focus in the future. Furthermore, optimization for the non-toxic click
reaction conditions, and strategy development with superior tissue penetrating ability to
conduct sensitive metabolic labeling experiments on living animals are also pointcuts and
considerations for future research. We can expect researchers to delve further into the
application of click chemistry in the cutting edge of proteomics, contributing significantly
towards a better understanding of our life processes.
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