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a b s t r a c t

Sequences of epidemic waves have been observed in past influenza pandemics, such as the Spanish

influenza. Possible explanations may be sought either in mechanisms altering the structure of the

network of contacts, such as those induced by changes in the rates of movement of people or by public

health measures, or in the genetic drift of the influenza virus, since the appearance of new strains can

reduce or eliminate herd immunity. The pandemic outbreaks may also be influenced by coinfection with

other acute respiratory infections (ARI) that increase transmissibility of influenza virus (by coughing,

sneezing, running nose). In fact, some viruses (e.g., Rhinovirus and Adenovirus) have been found to

induce ‘‘clouds’’ of bacteria and increase the transmissibility of Staphylococcus aureus. Moreover,

Rhinovirus and Adenovirus were detected in patients during past pandemics, and their presence is

linked to superspreading events. In this paper, by assuming increased transmissibility in coinfected

individuals, we propose and study a model where multiple pandemic waves are triggered by coinfection

with ARI. The model agrees well with mortality excess data during the 1918 pandemic influenza,

thereby providing indications for potential pandemic mitigation.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recent studies provide empirical evidence of epidemic waves
in past flu pandemics, as in the Spanish influenza of the
1918–1919 (Chowell et al., 2006a, b; Ferguson et al., 2006; Mills
et al., 2004). Mortality excess data and hospitalization data
available for most part of the US, some UK cities and other
European cities, such as Copenhagen and Geneva, show the
occurrence of more than just a single pandemic wave, with
intervals between waves amounting, in some instances, to several
months.

As it was readily recognized, such behaviors pose a serious
challenge to the simplest and most popular pandemic models. Of
course, natural and political barriers can alter the structure of the
contact networks, by possibly reducing interactions between
infected and susceptible individuals, and thus delaying the course
of the epidemics. While this effect may explain pandemic waves in
wide areas (such as the US), its influence is much weaker when
narrower areas are considered (e.g., at city level). Moreover,
possible effects of containment/mitigation strategies may not be
ll rights reserved.

tti@fbk.eu (P. Poletti),
disregarded (Bootsma and Ferguson, 2007; Hatchett et al., 2007),
especially for more recent outbreaks. Other explanations for
pandemic waves should be sought in the genetic variation of the
influenza virus (Castillo-Chavez et al., 1989; Andreasen et al.,
1997; Boni et al., 2004), i.e., the appearance of new strains that
could reduce or eliminate acquired immunity. However, the
presence of more than one strain in the same pandemic outbreak
has not been observed yet. Exogenous time changes in transmis-
sion rates, such as seasonal forcing, is a further candidate
explanation (Colizza et al., 2006, 2007). While the role of seasonal
forcing as a trigger of steady oscillations for endemic diseases, as
measles, is well established (Fine and Clarkson, 1982), and factors
underlying the winter seasonality of influenza have been
suggested (Hemmes et al., 1960), the phenomenon can hardly be
taken as a robust explanation of waves of pandemic flu (at least at
local scale).

Alternative explanations can be advanced in a coinfection
scenario (May and Nowak, 1995; Adler and Losada, 2002). For
instance, can other acute respiratory infections (ARI), such as
Rhinovirus and Adenovirus, be responsible for increasing trans-
missibility (e.g., by coughing, sneezing, running nose) of pandemic
influenza? If this is the case, coinfection with ARI could also be
responsible for epidemic waves, for instance when the dynamics
of the influenza pandemic and the ARI are not synchronized.
Recent works support this hypothesis. In fact, the presence of
respiratory pathologies not directly linked to the pandemic virus
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has been detected in most of past pandemic episodes. In
particular, Rhinovirus and Adenovirus were detected in patients
during past pandemic events (Lloyd-Smith et al., 2005; Brundage,
2006). Moreover, superspreading episodes (Lloyd-Smith et al.,
2005), potentially linked to coinfection events, were detected in
all these cases (Brundage, 2006). Superspreading events in SARS
might also be caused by coinfection with other respiratory
viruses (Bassetti et al., 2005a). The mechanism was also identified
as responsible for increased transmission of Staphylococcus

aureus (Bassetti et al., 2005b). Additional (though indirect)
support to the coinfection scenario can be drawn from a recently
advanced proposal (Edwards et al., 2004), according to which
alteration of the lung airway surface properties by inhaled
nontoxic aerosols is an effective strategy to contain the amount
of exhaled bioaerosol, thus mitigating the spread of airborne
infectious diseases.

In this paper, we model the role of ARI in the transmission
dynamics of a pandemic outbreak by coupling an SIR model for flu
with an SIS model for ARI. While it is not difficult to develop
models exhibiting wave-like behavior, the proposed model does
not require any ‘‘ad-hoc’’ mechanism, such as the introduction of
time-varying transmission rates. Most notably, with a minimum
number of extra parameters it supplies an empirically testable
conjecture, perhaps worthy to be considered in future studies.

The model proves amenable to theoretical treatment. Specifi-
cally, we can provide the expression for the effective reproduction
number of epidemic flu, and show how this is affected by
coinfection. Next, we show that multiple waves are possible
during the course of a single pandemic episode, and exhibit the
exact conditions for this to occur: the increased transmissibility in
coinfected individuals and non-synchronicity in the time course
of the two infections. With no need for introducing diffusion
structures (see Flahault et al., 2006) and non-constant transmis-
sion rates (e.g., depending on different strains), the model
accounts for the multiple epidemic waves observed in past
pandemics, such as the Spanish influenza.
IS RSSS

SI
II RI

α (SI+RI+II) δ α (SI+RI+II) δ α (SI+RI+II) δ
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βIs, ρII

γ

γ

Fig. 1. Representation of the flow of individuals among epidemiological classes.
2. The coinfection model for pandemic influenza

We consider a coinfection model of an infectious disease,
evolving according to an SIR epidemic model (e.g., pandemic
influenza), with another respiratory infectious disease, evolving
according to an SIS model (e.g., Rhinovirus). We assume that the
effect of the latter on the dynamics of the former is to increase
transmissibility (e.g., by coughing, sneezing, running nose, etc.).

2.1. Modeling ARI

There are more than 100 recognized serotypes (plus some
not typed yet) of Rhinovirus, the principal cause of common cold,
and thus it is unlikely to develop full immunity (Goldmann, 2001).
In fact, a sero-epidemiologic study of Rhinovirus infections
at different ages found that newborns had antibodies to
approximately 20% of 56 serotype (Hamparian et al., 1970).
Moreover, Rhinovirus can be contracted from three to eight times
a year for children and from three to five times a year for adults
(Goldmann, 2001). It is thus reasonable to model ARI through a
SIS model.

As regards the onset of ARI, common colds, like most ARI, are
more common in winter or, in the tropics, during the rainy season.
This frequency has been found to vary, depending on the etiology
of the infection; Rhinovirus infection is more frequent in fall and
spring (Fox et al., 1985), while Coronavirus infection tends to
occur more frequently in winter (Reed, 1981). A review on
common cold is given in Heikkinen and Jrvinen (2003).
2.2. Epidemic transmission model

Individuals are assumed to move among the following
epidemiological states: sS, susceptible to both diseases, sI ,
susceptible to influenza and affected by ARI, iS, affected by
influenza and susceptible to ARI, iI affected by both diseases, rS

recovered from influenza and susceptible to ARI and rI recovered
from influenza and affected by ARI, according to the flow diagram
in Fig. 1. Let SS, SI , IS, II , RS, RI denote the relative frequencies of
individuals in the classes, with SS þ SI þ IS þ II þ RS þ RI ¼ 1.
Individuals susceptible to both diseases (class SS) can acquire
influenza and progress to class IS at the per-capita rate bIS þ rII or
acquire ARI and move to class SI at the per-capita rate
aðSI þ II þ RIÞ, where b is the influenza transmission rate per
person per unit of time (i.e., the average number of effective
contacts per unit time) for the individuals affected by influenza
only, r is the influenza transmission rate per person per unit of
time for the coinfected individuals, and a is the ARI transmission
rate per person per unit of time. Individuals susceptible to
influenza and affected by ARI (class SI) progress to class II at the
per-capita rate bIS þ rII (the same rate of class SS since we assume
changes in transmissibility and not in susceptibility) or move to
class SS at the per-capita rate d, where 1=d is the average duration
of infectivity of individuals affected by ARI. Individuals affected
only by influenza (class IS) recover from influenza at the per-
capita rate g or move to class II at the per-capita rate aðSI þ II þ RIÞ,
where 1=g is the average duration of infectivity of individuals
affected by influenza. Coinfected individuals (class II) recover
from influenza at the rate g or move to class IS at rate d.
Individuals recovered from influenza and susceptible to ARI
(class RS) move to class RI at the rate aðSI þ II þ RIÞ. Finally,
individuals recovered from influenza and affected by ARI (class RI)
move to class RS at the rate d. The full transmission model
is described by the following system of ordinary differential
equations:

_SSðtÞ ¼ �a½SIðtÞ þ IIðtÞ þ RIðtÞ�SSðtÞ þ dSIðtÞ

� ½bISðtÞ þ rIIðtÞ�SSðtÞ
_SIðtÞ ¼ þa½SIðtÞ þ IIðtÞ þ RIðtÞ�SSðtÞ � dSIðtÞ

� ½bISðtÞ þ rIIðtÞ�SIðtÞ
_ISðtÞ ¼ �a½SIðtÞ þ IIðtÞ þ RIðtÞ�ISðtÞ þ dIIðtÞ

þ ½bISðtÞ þ rIIðtÞ�SSðtÞ � gISðtÞ
_IIðtÞ ¼ þa½SIðtÞ þ IIðtÞ þ RIðtÞ�ISðtÞ � dIIðtÞ

þ ½bISðtÞ þ rIIðtÞ�SIðtÞ � gIIðtÞ
_RSðtÞ ¼ �a½SIðtÞ þ IIðtÞ þ RIðtÞ�RSðtÞ þ dRIðtÞ

þ gISðtÞ
_RIðtÞ ¼ þa½SIðtÞ þ IIðtÞ þ RIðtÞ�RSðtÞ � dRIðtÞ

þ gIIðtÞ

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

. (1)

To assume that coinfection leads to increased transmissibility
means considering r4b in system (1). Initial times for influenza
and ARI will be denoted by t0 and tari

0 , respectively.
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2.3. Reproduction numbers

The basic reproduction number R0 is the threshold parameter
which determines whether or not the introduction of an
infectious agent leads to an epidemic outbreak (Diekmann and
Heesterbeek, 2000). It is essentially the average number of
secondary cases a single infected individual will cause in a
population with no immunity to the disease (Anderson and
May, 1992). When R0o1 the infection will die out with certainty,
otherwise an epidemic outbreak will occur and, in general, the
larger the value of R0, the harder it is to control the epidemic.

It is trivial to check that for the ARI the threshold parameter is
given by

Rari
0 ¼

a
d

. (2)

In fact, the ARI is modeled by a classical SIS where the susceptible
class is given by the sum of SS, IS and RS classes, while the infected
class is given by the sum of SI , II and RI classes. The condition a4d
ensures the endemic persistence of ARI in a completely suscep-
tible population.

As regards influenza, its dynamics is not described by a
classical SIR model (with exception of the case r ¼ b, which we do
not consider) and its threshold condition depends on the
dynamics of ARI. In particular, we will see that an influenza
outbreak can be induced by the presence of ARI even though
b=g (the basic reproduction number of influenza in absence of
ARI) is less than 1. Most importantly, at least a second epidemic
wave, due to coinfection with ARI, can be induced after a first
outbreak.

System (1) admits the following equilibria:
(a)
 in absence of ARI:

ðSS; SI ; IS; II ;RS;RIÞ ¼ ðS
%;0;0;0;1� S%;0Þ, (3)
(b)
 with ARI at the endemic equilibrium:

ðSS; SI ; IS; II ;RS;RIÞ ¼ ðS
%d=a; S%

ð1� d=aÞ,
0;0; ð1� S%

Þd=a; ð1� S%
Þð1� d=aÞÞ, (4)

where S%
2 ð0;1� is the proportion of individuals susceptible

to influenza.
1 Since in general all the elements of the matrix �ðS� DÞ�1 (see Appendix A)

are real positive numbers if and only if ISðtÞpd=a, it follows that Eq. (8) holds only

if ISðtÞpd=a. However, this is a non-restrictive condition since it only requires that

a fraction of the proportion of individuals susceptible to ARI ðISðtÞÞ is less than or

equal to the proportion of susceptible individuals at the equilibrium ðd=aÞ.
S%
¼ 1 means a completely susceptible population and this case

corresponds to the beginning of the pandemic influenza epi-
demics (i.e., S%

¼ S%
ðt0Þ ¼ 1) in absence of ARI (Eq. (3)) or when

ARI is at its endemic state (Eq. (4)), which implies tari
0 ot0. The case

0oS%o1 can be interpreted as the equilibrium at the end of an
epidemic wave (i.e., S%

¼ S%
ðt̄Þ for t̄bt0, eventually t̄!þ1)

generated by influenza alone in absence of ARI (Eq. (3)) or when
ARI is at its endemic state (Eq. (4)), for instance when tari

0 4t̄. The
basic reproduction number (or effective reproduction number,
depending on the context) R0 in the two equilibria (3) and (4) has
been computed by employing the next-generation operator
technique (Diekmann and Heesterbeek, 2000) (details for
computing R0 at the equilibrium (4) are given in Appendix A,
equilibrium (3) can be treated in a similar way).

For the equilibrium (3) we obtain:

R0 ¼ S%b=g, (5)

and for the equilibrium (4) we obtain:

R0 ¼ S% b
g
d
aþ

r
g 1�

d
a

� �� �

¼ S% b
g

1

Rari
0

þ
r
g 1�

1

Rari
0

 !" #
with r4b. (6)
Eqs. (5) and (6) have a straightforward interpretation: when the
basic reproduction number of ARI a=d is below 1, ARI is not
persistent, thus no coinfection can occur, and the appro-
priate basic reproduction number for flu is the standard SIR
threshold S%b=g (i.e., b=g in a fully susceptible population). On the
other hand, when the basic reproduction number of ARI a=d is
above 1, then a substantial part of the population can be infected
with ARI at the onset of the influenza epidemics. In this case a
typical influenza infective individual would cause, during his/her
whole period of infectivity, b=g new infections if he/she is not
coinfected with ARI, which occurs with probability S%d=a and r=g
if he/she is coinfected with ARI, which occurs with probability
S%
ð1� d=aÞ.
From Eq. (6) it follows that for each value of Rari

0 41, it does
exist a threshold value r̄ðRari

0 Þ such that R041. Moreover, r̄ðRari
0 Þ is

a decreasing function of Rari
0 and

lim
Rari

0 !þ1

r̄ðRari
0 Þ ¼ g=S% and lim

Rari
0 !1þ

r̄ðRari
0 Þ ¼ þ1.

This has two noteworthy consequences. First, for S%
¼ 1 a

sufficiently large endemic infective fraction of ARI is capable to
trigger an epidemic outbreak of influenza even if b=go1. Second,
even if an influenza outbreak has arrived to its end with 0oS%o1,
a sufficiently large increase of the infective fraction of ARI toward
its endemic state is capable to trigger a further pandemic wave.
As expected, larger values of r are required for lower vales of Rari

0

(see Fig. 2).

2.4. Sequences of epidemic waves

In the previous sections, we argued that a second epidemic
wave can be generated after ARI has reached its endemic
equilibrium. However, a full sequence of epidemic waves can
be generated throughout the growing phase of the dynamics
of ARI.

Let us consider the fraction of individuals infected by ARI
JðtÞ ¼ SIðtÞ þ IIðtÞ þ RIðtÞ, the fraction of individuals susceptible to
influenza SðtÞ ¼ SSðtÞ þ SIðtÞ and the proportion of individuals
susceptible to influenza but affected by ARI among total
susceptibles to flu xðtÞ ¼ SIðtÞ=SðtÞ. From Eq. (1) it follows that
the dynamics of xðt) is described by the following forced linear
differential equation:

_xðtÞ ¼ aJðtÞ � ðdþ aJðtÞÞxðtÞ. (7)

Therefore, we can express x in terms of J: xðtÞ ¼ xðJðtÞÞ. The
following equation, which can be computed by applying the same
technique employed for obtaining Eqs. (5) and (6) and where we
omit explicit dependence on t, represents the effective reproduc-
tion number1:

Re ¼
b
g

gþ d
gþ dþ aJ

þ
r
g

aJ

gþ dþ aJ

� �
SS

þ
b
g

d
gþ dþ aJ

þ
r
g

gþ aJ

gþ dþ aJ

� �
SI

¼ S½AðJÞð1� xðJÞÞ þ BðJÞxðJÞ�. (8)

The previous formula illustrates the action of a typical infective in
the phases that typically occur at the end of an epidemic wave
(IS � 0 and II � 0), and clearly shows the avenue through which
epochs of increasing prevalence of ARI (i.e., increasing J) can favor
further epidemics. The quantities AðJÞ and BðJÞ are reproduction
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Fig. 2. (a) Threshold value r̄ðRari
0 Þ for different values of b=g (keeping fixed g ¼ 0:25) and S%

¼ 1. (b) For S%
¼ 1, b ¼ 0:2 and g ¼ 0:25, dashed line represents the proportion

of infected individuals in the absence of ARI, while solid line represents the proportion of infected individuals in presence of ARI (a ¼ 1, d ¼ 0:25, r ¼ 0:8, t0 ¼ tari
0 ¼ 0). (c)

As in (a) but for S%o1 (at the end of the first epidemic wave). (d) For S%o1, dashed line represents the proportion of infected individuals before the onset of ARI, while solid

line represents the proportion of infected individuals after the onset of ARI. Parameters employed: b ¼ 0:3, g ¼ 0:25, a ¼ 1, d ¼ 0:25, r ¼ 0:8, t0 ¼ 0 and tari
0 ¼ 200.
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numbers themselves: AðJÞ characterizes the situation where the
susceptible pool is fully composed by individuals free from ARI,
whereas BðJÞ characterizes the situation where the susceptible
pool is fully composed by individuals infected by ARI. Both AðJÞ

and BðJÞ are increasing in J. Moreover BðJÞ4AðJÞ holds for all J and
as J increases the composition of the susceptible pool is modified
by increasing the percentage of susceptible with ARI. Therefore Re

is an increasing function of the prevalence of ARI, suggesting that
even if at the end of an epidemic wave Re is below 1, it may well go
above threshold at subsequent times as a consequence of the
growing dynamics of ARI.

Eq. (8) can be approximated in terms of the total number of
individuals infected by ARI J and the total number of individuals
susceptible to influenza S, thus obtaining Re ¼ ReðJ; SÞ. In fact,
in all epidemiologically meaningful circumstances the following
relationships hold: SS � Sð1� JÞ and SI � SJ (see Appendix B).
Thus, equation ReðJ; SÞ ¼ 1 can be written as

JSðarþ gðr� bÞÞ þ Sbðgþ dÞ � Jag ¼ gðgþ dÞ, (9)

which is a hyperbole in S and J. Since S is non-increasing and J is
non-decreasing (if Jðt0Þo1� d=a), Eq. (9) allows the computation
of the minimum number of susceptible individuals S%

m required
for inducing an epidemic wave. By setting J ¼ 1� d=a, which
is the proportion of individuals infected by ARI at the endemic
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equilibrium, we get

S%

m ¼
gða� dÞ þ gðgþ dÞ

rða� dÞ þ bðgþ dÞ þ gðr� bÞð1� d=aÞ , (10)

which, for b ¼ r, corresponds to g=b, as for classical SIR models.
Eqs. (9) and (10) allow splitting the phase plan ðJ; SÞ into three
regions: Re41, Reo1 and no waves, as shown in Fig. 3a. All
trajectories end in the segment E ¼ fðJ; SÞ : J ¼ 1� d=a; S 2 ½0; S%

m�g.
Let us suppose that Sðt0Þ 2 ðg=b;1�. If b ¼ r, S%

m is squeezed over
g=b (and region Reo1 disappears) and trajectory can cross the line
Re ¼ 1 only once. If r4b, the curve can be crossed many times,
accounting for sequences of epidemic waves. Let us suppose that
Sðt0Þ 2 ðS

%

m; g=b� (this requires that r4b). In this case influenza
alone cannot generate an outbreak (since Sðt0Þb=go1) but
epidemic waves (possibly more than one) can be generated as a
consequence of coinfection if the infected fraction with ARI is
increasing over time. A simulated example is shown in Fig. 3b–d.

2.5. Analysis of the Spanish influenza

We fit model (1) to the time series fmtg
T
t¼1 of weekly mortality

excess during the Fall 1918 and Winter 1919 waves of the
1918–1919 Spanish pandemic in Birmingham, Cardiff, Coventry,
Leicester, Liverpool, London, Manchester, Newcastle upon Tyne,
Nottingham, Portsmouth and Sheffield.2

By assuming that coinfection does not affect induced mortality
we approximated the excess of mortality at time t by the
following equation:

mt � ~mt ¼ �ðISðtÞ þ IIðtÞÞ. (11)

Parameters values and procedure employed for their computation
are reported in Table 1. 1=g was sampled from a gamma
distribution in order to obtain an average infectious period of
influenza approximately between 2 and 4 days (Ferguson et al.,
2005; Longini et al., 2005). 1=d was sampled from a gamma
distribution in order to obtain an average infectious period of ARI
approximately between 7 and 10 days (Heikkinen and Jrvinen,
2003). Variability in the average duration of infectious periods of
both influenza and ARI allowed us to estimate confidence
intervals for all the other epidemiological parameters. Moreover,
we assumed tari

0 4t0. Since the basic reproductive number R0 of

http://influenza.sph.unimelb.edu.au
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Table 1
Model parameters

Parameter Description Mean value 95% CI Procedure

N Number of individuals 8664693 Fixeda

1=g Average duration of flu infectious period 2.94 days (1.79, 4.34) Sampledb

1=d Average duration of ARI infectious period 8.47 days (6.82, 10.04) Sampledc

r Intrinsic growth rate of the fall wave 0:2 days�1 Estimatedd

b Transmission rate of flu 0:54 days�1 (0.43, 0.76) Computed as r þ g
a Transmission rate of ARI 0:96 days�1 (0.79, 1.09) Fitted

r Transmission rate of flu for coinfected individuals 1:6 days�1 (1.44, 2.25) Fitted

� Mortality rate 0:0069 days�1 (0.0041, 0.0142) Fitted

t0 Initial time of flu �1:86 weeks ð�2:35;�1:22Þ Fitted

tari
0

Initial time of ARI 16.56 weeks (15.52, 17.65) Fitted

R0 Reproduction number of the fall wave 1.58 (1.36, 1.86) Computed as b=g

a See Smallman-Raynor et al. (2002).
b Sampled from a gamma distribution with shape parameter 20 and scale parameter 0.15.
c Sampled from a gamma distribution with shape parameter 111.8421 and scale parameter 0.076.
d Estimated by fitting the cumulative number of cases with an exponential model.
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Fig. 4. (a) The best-fit solution obtained by fitting model (1) to the GB data (filled circles, initial time 24 August 1918). (b) Distribution of R0. (c) Distribution of r=b.
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the fall wave can be estimated from the data through the equation
R0 ¼ 1þ r=g, where r is the intrinsic growth rate, and R0 for
system (1) in absence of ARI is b=g (see Eq. (5)), we estimated the
transmission rate of influenza as b ¼ r þ g. We fix the initial
number of infected individuals by influenza and by ARI to 1. The
other model parameters, namely transmission rate for ARI, a,
transmission rate for influenza in coinfected individuals, r, death
rate, �, initial time for influenza, t0, and initial time for ARI, tari

0

were estimated through least squares fitting to the number of
influenza deaths over time. By sampling g and d from their
respective gamma distributions, 500 different model realizations
were employed to estimate confidence intervals for the model
parameters.

Fig. 4a shows the comparison between the observed data and
the model predictions (coefficient of determination: R2

¼ 0:82,
95% CI (0.79, 0.84)). Some of the discrepancies between the fit and
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the data can of course be due to phenomena not accounted for by
the model. This may well be the case for the observed difference
in slope in the decay phase of the first wave. The poor fit observed
may be due to military demobilization at the end of the first world
war (Ferguson et al., 2006) that makes the data uncompliant with
any classical SIR model (by eliminating these points from the
computation, we obtain an average estimate of R2

¼ 0:93). The
discrepancy in the height of the first peak can be better explained
as an effect of our choices—namely, to have estimated the
transmission parameter, b, from the intrinsic growth rate r,
instead of leaving it as a free parameter to be estimated by least
squares fit.

The average value of the reproduction number of influenza for
the first wave is R0 ¼ 1:58 (see Fig. 4b). Transmission parameter
for class II is in average 3.1 times that of class IS (see Fig. 4c) and
1.7 times that of ARI (see Fig. 4d). The cumulative attack rate is
estimated to be 63% at the end of the first wave and 85.4% at the
end of the second wave. Proportion of deaths is estimated to be
slightly lower than 1%.

It is worth noticing that we tried to fit the proposed model to
the Summer 1918 (data not shown) and Fall 1918 waves but the
results were unsatisfactory. In fact, the Summer wave is
characterized by a higher reproductive number (R0 ¼ 1:89, by
assuming 1=g ¼ 2:94 days) and a much lower mortality excess
with respect to the fall wave. However, the introduction of a
specific induced mortality rate for coinfected individuals �c in
Eq. (11) (i.e. by assuming mt � ~mt ¼ �ISðtÞ þ �cIIðtÞÞ allowed us to
obtain a fit which compares reasonably well with actual data.
3. Conclusions

Mathematical models have been employed to study the spatio-
temporal spread of influenza (Rvachev and Longini, 1985; Flahault
et al., 1988; Viboud et al., 2003) and evaluate the impact of
different containment/mitigation strategies (Longini et al., 2004,
2005; Germann et al., 2006; Ferguson et al., 2005, 2006; Colizza
et al., 2007). A review is given in Riley (2007). We have employed
a simple compartmental model with homogeneous mixing to
describe the transmission dynamics during the Spanish flu
pandemic. The model accounts for sequences of epidemic waves
induced by coinfection with another acute respiratory infection
during its growth phase.

While simple, the model appears compatible with historical
data. However, many area of improvement can be identified.

Compartments for symptomatic and asymptomatic individuals
can be introduced. In fact, the occurrence of asymptomatic cases
for influenza is well known. Moreover, differences between the
two classes in influenza transmission are suspected. This can
drastically affect the outcomes of the model—for example, the
estimated value of attack rate.

Increased susceptibility to influenza in individuals affected by
ARI may well represent an extra factor for the spread of influenza,
in addition to the one (increased influenza transmission in
coinfected individuals) that we have considered throughout the
paper.

Introduction of increased induced mortality in coinfected
individuals would help considerably in the explanation of
historical data. Yet it encounters a major obstacle in the lack of
(specific) reliable data needed to estimate induced mortality
parameters. However, introduction of induced mortality in
coinfected individuals in Eq. (11), and its estimates by least
squares do allow good fits of the Summer and Fall waves.

More realistic models can also be derived by adding compart-
ments for latent, hospitalized individuals and by considering age
structured populations.
Despite its simplicity, however, if significant evidence of the
importance of coinfection in enhancing the transmissibility of
flu—here only hypothesized—should be found in the future, this
would open further avenues to pandemic mitigation.

Good fits of the mortality data may as well be obtained by
more parsimonious models—for example, by introducing an ‘‘ad-
hoc’’ time-varying transmission rate allowing an increase in
transmissibility during the pandemic course. Yet, the advantage
of the coinfection model is that it is based on an empirically
testable hypothesis. Moreover, by adding a minimal number of
extra parameters, it can provide useful policy indications as
regards pandemic mitigation.

Sequences of epidemic waves can also be obtained by
considering multiple ARI. In fact, more than one kind of
ARI has been found in patients affected by influenza in past
pandemics.

Another mechanism potentially inducing sequences of pan-
demic waves is the change of the transmissibility rate of ARI ðaÞ
for coinfected individuals, for example through a mechanism of
increased transmissibility similar to the one we have assumed for
the transmissibility of influenza.

Finally, we have shown that sequences of epidemic waves can
be generated during the exponential growth phase of ARI. The
number of epidemic waves that can be generated is a decreasing
function of Rari

0 , and no more than two waves should be generated,
provided that Rari

0 is large enough. Future work will be devoted to
investigating this hypothesis.
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Appendix A. Computing R0

Let us consider the Jacobian J of the system (1) restricted to the
influenza infectious classes IS and II , at the equilibrium (4). It can
be written as

J ¼ T þS� D, (12)

where

T ¼ S%
bd=a rd=a

bð1� d=aÞ rð1� d=aÞ

 !

is a matrix whose elements are all real positive numbers, and they
correspond to the transmission rates of the influenza;

S ¼
�að1� d=aÞ d
að1� d=aÞ �d

 !

is a real matrix with positive off-diagonal elements corresponding
to transition between the influenza infectivity classes;

D ¼
g 0

0 g

 !

is a real positive diagonal matrix which elements represent the
recovery rates for the influenza.

Note that all the elements of the matrix

�ðS� DÞ�1
¼

1

gðgþ aÞ
dþ g d

að1� d=aÞ að1� d=aÞ þ g

 !
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are real positive, so it is possible to estimate R0 as the dominant
eigenvalue of the next-generation operator K defined as

K ¼ � TðS� DÞ�1

¼
S%

gðgþ aÞ

½bðdþ gÞ þ rða� dÞ�d=a ½bdþ rða� dþ gÞ�d=a

½bðdþ gÞ þ rða� dÞ�ð1� d=aÞ ½bdþ rða� dþ gÞ�ð1� d=aÞ

 !
.

Since detðKÞ ¼ 0, it follows that the dominant eigenvalue of K is

R0 ¼ S% b
g
d
aþ

r
g 1�

d
a

� �� �
.

Similar arguments allow the calculation of Eqs. (5) and (8).
JeJ0 J

Fig. B1. In the phases plan ðJ; xÞ trajectories (dashed lines) tend to ðJe ; JeÞ along the

bisector x ¼ J.
Appendix B. Approximating SI ðtÞ and SSðtÞ

In what follows we show that SSðtÞ � SðtÞð1� JðtÞÞ and, conse-
quently, that SIðtÞ � SðtÞJðtÞ in all epidemiologically meaningful
circumstances.

B.1. Approximation for small values of Rari
0

Let us consider Eq. (7). By assuming a small enough value
of Rari

0 , that is by taking the limit Rari
0 ! 1þ, we can suppose that:
(1)
 _xðtÞ � 0, since exchanges rate between classes SIðtÞ and SSðtÞ is
determined by ARI;
(2)
 JðtÞ � 0, since in general JðtÞo1� 1=R0 if Jðtari
0 Þo1� 1=R0.
Thus we can obtain the following relationship for xðtÞ:

xðtÞ �
JðtÞ

JðtÞ þ 1

and by considering the first-order Taylor expansion of xðtÞ about
JðtÞ ¼ 0 we obtain

xðtÞ � JðtÞ,

that is SIðtÞ � SðtÞJðtÞ and, consequently, SSðtÞ � SðtÞð1� JðtÞÞ.

B.2. Global dynamics of xðtÞ and JðtÞ

More in general, let us consider the equation system

_JðtÞ ¼ ða� d� aJðtÞÞJðtÞ;

_xðtÞ ¼ aJðtÞ � ðdþ aJðtÞÞxðtÞ:

(
(B.1)

The first equation describes the dynamics of the class of
individuals infected by ARI, whose explicit solution is the
following logistic function:

JðtÞ ¼
J0ð1� 1=Rari

0 Þ

J0 � ðJ0 � 1þ 1=Rari
0 Þ e

�dðRari
0 �1Þt

.

The second equation is Eq. (7). The system (B.1) admits two
equilibria, namely ð0;0Þ and ðJe; JeÞ, where Je ¼ 1� 1=Rari

0 . It is easy
to show that the latter is globally asymptotically stable (see the
phase plan in Fig. B1, considering that _JðtÞ40 if Rari

0 41 and _xðtÞ40
if xðtÞoaJðtÞ=ðaJðtÞ þ dÞ, and _xðtÞo0 otherwise). Moreover,
let us define the quantity CðtÞ ¼ xðtÞ=JðtÞ. The following equation
holds:

_CðtÞ ¼ að1� CðtÞÞ,

whose explicit solution CðtÞ ¼ 1� ð1� C0Þ e
�at globally converges

to C1 ¼ 1. This means that convergence to the equilibrium ðJe; JeÞ

is obtained along the bisector axis x ¼ J (see Fig. B1), indepen-
dently from Rari

0 . Moreover, convergence is faster for large values of
a or when xðt0Þ � Jðt0Þ (that results in C0 ¼ 1), that is in all
epidemiologically meaningful circumstances. This means that the
following approximations for SIðtÞ and SSðtÞ hold: SIðtÞ � SðtÞJðtÞ

and, consequently, SSðtÞ � SðtÞð1� JðtÞÞ.
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