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Eloy Rodrı́guez-Rodrı́guez2, Pascual Sánchez-Juan2, Alfonso Casado1*

1 Department of Ophthalmology, ’Marqués de Valdecilla’ University Hospital, University of Cantabria,

Institute for Research ’Marqués de Valdecilla’, Santander, Spain, 2 Neurology Department and Centro de

Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, ’Marqués de Valdecilla’

University Hospital, University of Cantabria, Institute for Research ’Marqués de Valdecilla’, Santander, Spain,

3 Nuclear Medicine Department, University Hospital Marqués de Valdecilla, University of Cantabria,

Molecular Imaging Group—IDIVAL, Santander, Spain, 4 Department of Anatomy, University of Otago,

Dunedin, New Zealand

* alicialeguileta@gmail.com (ALE); casadorojo@hotmail.es (AC)

Abstract

Objective

To assess and compare the involvement of choroidal thickness (CT) in patients with mild

cognitive impairment (MCI) and dementia due to Alzheimer’s disease (AD) defined by amy-

loid PET and healthy controls (HC).

Methods

Sixty-three eyes from 34 AD patients [12 eyes (19.0%) with dementia and 51 eyes (80.9%)

with MCI], positive to 11C-labelled Pittsburgh Compound-B with positron emission tomogra-

phy (11C-PiB PET/CT), and the same number of sex- and age-paired HC were recruited. All

participants underwent enhanced depth imaging optical coherence tomography (EDI-OCT)

assessing CT at 14 measurements from 2 B-scans. Paired Student t-test was used to com-

pare CT measurements between MCI, dementia and sex- and age-paired HC. A univariate

generalized estimating equations model (GEE) test was performed to compare MCI and

dementia individually with all HC included.

Results

Compared with HC, eyes from patients with positive 11C-PiB PET/CT showed a significant

CT thinning in 5 selected locations (in foveal thickness in vertical scan, in temporal scan at

1500μm, in superior scan at 500μm and in inferior scan at 1000μm and 1500μm, p = 0.020–

0.045) whilst few significant CT reduction data was reported in MCI or dementia individually

versus HC. However, the GEE test identified significant CT thinning in AD compared with all

HC included (p = 0.015–0.046).
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Conclusions

To our knowledge, the present study is the first measuring CT in eyes from MCI and demen-

tia eyes positive to 11C-PiB PET/CT reporting a significant trend towards CT thinning in MCI

patients which became more pronounced in dementia stage. We support further investiga-

tion involving larger and prospective OCT studies in AD population characterized with avail-

able biomarkers to describe whether choroidal vascular damage occurs specifically in

prodromal stages of AD.

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and is the most common cause of

dementia and one of the leading sources of morbidity and mortality in the aging population

[1]. Globally, an estimated 47 million people are affected by dementia and the incidence dou-

bles every 10 years after age 60 years approximately [2].

The hallmark neuropathologic changes of AD are extracellular beta amyloid beta plaques

and neurofibrillary tangles (NFT) comprised of intracellular hyperphosphorylated tau protein

(p-tau). These neuropathological changes are believed to start 15–20 years before the onset of

clinical symptoms of dementia [3]. A definitive diagnosis of AD requires histopathologic post-

mortem examination.

Clinical criteria for the diagnosis of AD have evolved over time and current criteria have

been established by the National Institute on Aging and the Alzheimer’s Association

(NIA-AA) updated in 2011 [4, 5]. The ability to accurately diagnosis AD has improved with

the emergence of new laboratory biomarkers and imaging techniques to measure such neuro-

pathologic damage in vivo [6]. Aβ protein brain deposition is detected by decreased 42–amino

acid form of Aβ (Aβ-42) levels in cerebrospinal fluid (CSF) and positron emission tomogra-

phy/computed tomography (PET/CT) imaging using 11C-labeled Pittsburgh Compound-B

(11C-PiB) ligand [3, 7], which is the most studied and validated PET marker of Aβ. A proper

application of 11C-PiB PET/CT would be useful to predict the conversion of MCI to AD. The

sensitivity and specificity of 11C-PIB-PET for predicting conversion to AD ranged from 83.3%

to 100% and 41.1% to 100%, respectively [8]. Besides, biomarkers of tau deposition (a compo-

nent of NFT) include increased CSF total tau (T-tau) and phosphorylated tau (P-tau). In addi-

tion to the molecular biomarkers, there are several topographic biomarkers used to assess

brain changes that correlate with the regional distribution of neuronal dysfunction associated

with AD [9]. Neurodegeneration is related to cortical atrophy on magnetic resonance imaging

(MRI) and hypometabolism on fluorodeoxyglucose-PET/CT (FDG-PET/CT) [10]. In fact, AD

biomarkers have shown many potential clinical benefits, such as preclinical detection of AD

and an accurate differentiation of AD from dementias of other etiologies [11, 12]. However,

restrictions still exist in clinical practice (such as standardization problems and invasiveness in

the case of CSF markers, and high costs and limited availability in the case of amyloid PET)

and they are not yet recommended for routine diagnostic purposes [10, 13].

Nowadays, research is focused on the diagnosis of AD at early stages in an effort to define

properly prodromal and preclinical forms of AD for design early-intervention clinical trials in

order to apply potential treatments before the damage is established. Mild cognitive

impairment (MCI) is an intermediate stage between normal aging and early dementia charac-

terized by cognitive deficits primarily affecting memory with preserved overall cognitive and
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functional abilities and the absence of a dementia [3, 14]. The specific designation of MCI due

to AD is used when a biomarker associated with AD is present [15].

Investigation of new biomarkers has involved the evaluation of the eye, as AD pathogenesis

is associated with impairments in visual function [16]. Several evidence indicates that AD also

affects the retina, a developmental outgrowth of the brain [17–19], possibly causing these

symptoms. Among the characteristics it shares with the brain, the retina contains neurons,

astroglia, microglia, microvasculature with similar morphological and physiological properties

[17–20].

Optical coherence tomography (OCT) is a non-invasive imaging device used clinically to

evaluate a variety of ophthalmic and systemic diseases, as glaucoma or multiple sclerosis [21,

22]. Hence, several reports demonstrated retinal nerve fiber layer (RNFL) thinning [23, 24],

retinal ganglion cell layer (RGCL) degeneration [24, 25] and choroidal thinning [26–30] in

patients with dementia or MCI due to AD. The choroid is a vascular structure lying under reti-

nal pigmentary epithelium (RPE) and is regulated by the autonomic nervous system. The cho-

roidal blood nourishes the outer layers of the retina (photoreceptors) and the RPE which

maintains the outer blood-retinal barrier [31]. Several researchers observed Aβ deposits in

choroidal vascular tissue in a mouse model of AD and in post-mortem analysis of the eyes

from AD patients. Based on these findings, they proposed that accumulation of Aβ in the cho-

roid may cause vascular damage in accordance with the development of angiopathy in the

brain due to Aβ deposits [32, 33]. It is currently possible to investigate in vivo the involvement

of CT in AD. It could be assessed using spectral-domain OCT (SD-OCT), with the enhanced

depth imaging modality (EDI) technology [34]. Choroidal thinning was reported in dementia

patients [26–29] and in MCI patients [30] through spectral-domain OCT (SD-OCT) using

EDI technology. However, these previous studies suffered some limitations. Firstly, they only

used neuropsychological tests (mainly MMSE) for AD diagnosis among their inclusion crite-

ria. Besides, all these studies were performed in patients with dementia due to AD, except one

of them which included MCI patients [30].

For this reason, we conducted a study to assess anatomical variations in the CT in patients

with MCI and dementia due to AD defined by positive 11C-PiB PET/CT, to determine whether

CT is reduced compared with control subjects.

Methods

Patient/subject groups

We conducted a cross-sectional study including patients in the AD continuum (MCI and

dementia) with positive 11C-PiB PET/CT (MCI and AD) compared with cognitively healthy

age- and gender-matched controls recruited consecutively from the Neurology and Ophthal-

mology departments of the University Hospital Marqués de Valdecilla (UHMV), between May

2016 and June 2018. The study cohort of the present submission overlaps with our previous

work [25].

Healthy control subjects (HC) were volunteers recruited among family members of patients

attending the ophthalmology clinic with a complaint of dry eye.

The study protocol and the written consent was approved by the Ethics Committee of the

UHMV, and it was performed in accordance with the principles of the Declaration of Helsinki.

Written consent forms were signed by all participants prior to examinations. All patients

enrolled were able to understand the information contained in the written consent and they

were not legally incompetent.

Inclusion and exclusion criteria. All were outpatients that met research diagnostic crite-

ria for probable AD MCI or AD dementia with evidence of the AD pathophysiological process
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(in our case defined by a positive amyloid-PET) following the recommendations of the

National Institute on Aging-Alzheimer’s Association [35]. Clinical diagnoses as MCI or

dementia were established by a committee of four neurologists (SLG, PSJ, ERR, and CL). The

differentiation of dementia from MCI rests on the determination of whether or not there is sig-

nificant interference in the ability to function at work or in usual daily activities.

All patients were assessed to exclude other neurological or psychiatric etiologies and they

underwent a comprehensive neuropsychological battery conducted by two trained neuropsy-

chologists (AP, MGM), that included the main cognitive domains (memory, language, praxis,

visual perception, and frontal functions). Besides, all patients underwent 11C-PiB PET/CT at

the Nuclear Medicine Department of the UHMV. 11C-PiB synthesis and image acquisition

have been described elsewhere [36]. PET/CT scans were visually interpreted by two experi-

enced nuclear medicine and radiology specialists (JJB, IB) as positive or negative for cortical

PiB uptake (Fig 1).

All participants underwent a thorough ophthalmic examination on the day of OCT imag-

ing, by order of eye assessments: best-corrected visual acuity (Snellen charts), anterior segment

biomicroscopy, refraction, OCT measurements, axial length (AL) assessment, IOP quantifica-

tion with Goldmann applanation tonometer (GAT) and dilated fundus examination. Partici-

pants received one drop of tropicamide 1% and phenylephrine per eye for pupil dilation after

IOP measurement to avoid modifications in choroidal thickness due to phenylephrine instilla-

tion as it has been previously reported [37]. The refractive error was recorded using an auto

refractometer Canon RK-F1 (Canon USA Inc., Lake Success, NY, USA). Axial length (AL) was

measured by Lenstar LS 900 (Haag Streit AG, Koeniz, Switzerland). Each individual was ran-

domised to decide which eye was to be examined first, using the method described by Dulku

[38].

Exclusion criteria included a refractive error> 6.0 or< 6.0 diopters (D) of spherical equiv-

alent or 3.0 D of astigmatism, any history or showing evidence of ocular surgery, ocular disease

such as central serous chorioretinopathy, pachychoroid spectrum, uveitis and related macular

degeneration, best corrected visual acuity as poor as 20/40, intraocular pressure (IOP)� 18

mmHg, past history of raised IOP, neuroretinal rim notching, or optic disc hemorrhages.

Similarly, other exclusion criteria included clinically relevant opacities of the optic media and

Fig 1. Positron emission tomography/computed tomography imaging using 11C-labeled Pittsburgh Compound-B

ligand. Positron emission tomography/computed tomography (PET/CT) imaging tracers provide a quantitative in

vivo measure of the insoluble cortical beta amyloid (Aβ) load. 11C-Pittsburgh compound B (11C-PIB) shows a

nanomolar affinity for the extracellular and intravascular fibrillar deposits of Aβ and a low affinity toward the

amorphous amyloid deposits, soluble Aβ, and intracellular NFTs. Negative amyloid-PET (A) and positive amyloid-

PET (B).

https://doi.org/10.1371/journal.pone.0239484.g001
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low-quality images due to unstable fixation, or severe cataract. Patients with mild to moderate

cataract might be enrolled in the study, but only high-quality images were included. All

acquired spectral domain-OCT data sets had a quality score(Q)>25. Subjects with a history of

neurological or psychiatric disorder, any significant systemic illness or other serious chronic

systemic diseases such as diabetes, nephrological diseases and hemodialysis, poor collaboration

due to neurological dementia stage (some patients could not complete the evaluation because

they became fatigued or they were not able to follow the instructions) or unstable medical con-

dition (e.g., active cardiovascular disease), and current use of any medications known to affect

cognition (e.g. sedative narcotics) were also excluded.

Optical coherence tomography assessment

OCT measurements were taken using Spectralis OCT (Heidelberg Engineering, Dossenheim,

Germany). OCT examinations were performed by an ophthalmologist (AC), who was blinded

to neurological status. The examinations included one horizontal and vertical non-isotropic

scans, that measures 8741 μm, resulting in 8741 x 8741 μm2 dimensions. CT measurements

were taken between 5 and 6 p.m. hours in all subjects [39]. Participants were asked not to con-

sume caffeine for at least 12h before examination.

CT was measured by two raters (AL, AC). The border of CT was defined as extending from

the outer portion of the hyperreflective line (corresponding to the RPE) to the inner surface of

the sclera. CT was measured at 14 different locations (Fig 2): at the fovea (with horizontal and

vertical scan: FH and FV, respectively), and at 500, 1000 and 1500 μm from the fovea in the

nasal (N500μm, N1000μm and N1500μm, respectively), temporal (T500μm, T1000μm and T1500μm,

respectively), superior (S500μm, S1000μm and S1500μm, respectively), and inferior (I500μm, I1000μm

and I1500μm, respectively) quadrants, as published previously [37].

Fig 2. Choroidal thickness measurements by EDI-OCT. A representation of choroidal thickness (CT) measurements in the right eye that could be depicted in a

patient with Alzheimer disease (A) and in the sex- and age-paired control eye (B) by optical coherence tomography. (1) CT measurements performed in the horizontal

scan: subfoveal and at 500 μm, 1000 μm and 1500 μm from the fovea to nasal and temporal area. (2) CT assessment in the vertical scan: subfoveal and at 500 μm,

1000 μm and 1500 μm from the fovea to superior and inferior area.

https://doi.org/10.1371/journal.pone.0239484.g002
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Statistical analysis

A 1 –sample Kolmogorov–Smirnov test was used to verify the normality of data distribution. All

tested data were normally distributed, except for sex. Paired Student t-test was used to compare

different sectors of CT. The Demographic and clinical participants´ characteristics differences

were assessed with Wilcoxon test. The correlation between the OCT findings and the severity of

cognitive impairment through MMSE was analyzed by Pearson correlation coefficients.

As both eyes from some patients were included in this study, a univariate generalized esti-

mating equations model (GEE) was used to adjust for these within-patient inter-eye correla-

tions [40, 41]. It was non-viable to include both eyes in some cases due to dementia stage (both

eyes assessment was hampered by severe dementia symptoms). Intraclass correlation coeffi-

cient (ICC) was used to determine the interobserver reproducibility of manually quantified

measurements of CT.

A receiver operating characteristic curve was used to assess the discrimination value of the

OCT analyses. We used the area under the receiver operating characteristic curves (AUCs) to

assess the ability of CT to discriminate AD/MCI from HC [42].

All statistical analyses were performed using IBM SPSS Statistics V.20.0 (International Busi-

ness Machine Corporation, Armonk, NY, USA). The level of statistical significance was set at p

value less than 0.05.

Results

Overall, 51 MCI eyes (80.9%) and 12 dementia (19.0%) eyes from 34 patients (from 28 and 6

patients respectively) and 63 eyes from 32 HC were consecutively evaluated in the final analysis

based on inclusion and exclusion criteria.

Demographic and clinical characteristics of patients and controls are summarized in

Table 1. There were no significant differences among the two groups regarding age, sex, best-

corrected visual acuity, intraocular pressure, and axial length measurements. Mean age was

73.1 ± 6.0 years (age range: 57–85 years). All eyes included were phakic.

Table 2 shows the comparison of CT analysis between PiB+ patients and control eyes.

Firstly, MCI and dementia patients were compared altogether with HC. CT showed significant

reduction across PiB+ compared to HC in vertical scans in foveal thickness (244.9 ± 87.3 μm

in PiB+ and 279.9 ± 113.5 μm in HC, p = 0.040), superior scan at S500μm (230.5 ± 85.9 μm in

PiB+ and 267.8 ± 116.8 μm in HC, p = 0.026) and inferior scan at I1000μm (243.5 ± 77.8 μm in

PiB+ and 281.8 ± 108.9 μm in HC, p = 0.020) and at I1500μm (239.7 ± 76.9 μm in PiB+ and

273.4 ± 109.7 μm in HC, p = 0.045). We found a significant thinning of the CT in horizontal

Table 1. Demographic and clinical participant’s characteristics of Alzheimer disease eyes and control eyes (126 eyes of 66 individuals).

Patientsa (N = 63) Controls (N = 63) P MCI (N = 51) Dementia (N = 12)

Age (years) 73.5 (6.0) 73.28 (6.0) 0.998 73.2 (6.2) 73.6 (5.5)

Male eyes (%) 31 (49.2) 31 (49.2) 1 27 (52.9) 4 (33.3)

Spherical equivalent (Diopters) 0.53 (1.10) 0.58 (1.22) 0.797 0.61 (1.22) 0.41 (0.62)

BCVA 20/29 (0.34) 20/26 (0.17) 0.259 20/28 (0.35) 20/33 (0.32)

Axial length (mm) 23.2 (0.8) 23.2 (0.9) 0.816 23.2 (0.8) 22.9 (0.7)

IOP 13.7 (3.9) 12.8 (2.8) 0.154 14.0 (4.1) 12.5 (3.2)

BCVA, best corrected visual acuity; IOP, intraocular pressure; MCI, mild cognitive impairment; AD, Alzheimer disease.
a Patients means MCI and dementia patients due to AD altogether.

Data for quantitative variables are shown as mean (standard deviation). Sex differences were assessed with Fisher’s test. Rest of analysis was performed using Wilcoxon

test.

https://doi.org/10.1371/journal.pone.0239484.t001
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scans only in temporal section at I1500μm (235.4 ± 18.6 μm in PiB+ and 266.9 ± 100.3 μm in

HC, p = 0.037), while we did not find any significant reduction in nasal locations. Secondly,

we analyzed CT differences between MCI and HC, finding a CT significant reduction just in

I1000μm scan (245.8 ± 74.2 μm in MCI and 283.2 ± 95.8 μm in HC, p = 0.040). No significant

differences in CT measurements were found in foveal, nasal, superior and inferior scans.

GEE was performed to compare MCI and dementia groups individually with all HC

included, shown in Table 3. We found significant thinning of CT between MCI and all HC

included in I1000μm scan (245.8 ± 74.2 μm in MCI and 281.8 ± 108.9 μm in HC, p = 0.046).

Comparing dementia patients with all HC, we found significant thinning in CT T1000μm

(218.9 ± 93.0 in dementia and 272.7 ± 109.1 in HC, p = 0.046), S1000μm (205.3 ± 100.5 in

dementia and 252.7 ± 112.9 in HC, p = 0.034), S500μm (215.5 ± 97.2 in dementia and

267.8 ± 116.8 in HC, p = 0.034), FV (222.1 ± 92.7 in dementia and 279.9 ± 113.5 in HC,

p = 0.037), I1000μm (233.8 ± 93.9 in dementia and 281.8 ± 108.9 in HC p = 0.015) and I1500μm

(223.8 ± 84.7 in dementia and 273.4 ± 109.7 in HC, p = 0.045). GEE test was also used to com-

pare CT measurements between dementia and MCI patients, also in Table 3; no significant

thickness reduction was achieved. However, the lack of significant differences among demen-

tia and MCI did not avoid to appreciate that CT results at each location may tend to be thinner

in MCI than in HC subjects, and these differences increased in dementia stage.

The AUC analysis was calculated for two different CT measurements, CT I1500μm and CT

I1000μm, which were statistically significant, with 95% confidence limits for sensitivity and

specificity, as shown in Fig 3. The highest AUC value to discriminate MCI and dementia from

HC was CT I1000μm (area 0.597, p = 0.062), whereas for I1500μm the area was 0.580, p = 0.122.

Fig 4 shows the values of I1000μm CT in HC, MCI and AD; there is significant difference in CT

between HC and MCI or dementia, whose CT values are similar. A trend in CT thinning from

HC to MCI and dementia is appreciated in Fig 4.

Table 2. Comparison of choroidal thickness analysis between Alzheimer PiB+ patients altogether and control eyes, mild cognitive impairment patients and control

eyes and Alzheimer disease patients and controls.

Patientsa (n = 63) HCs (n = 63) P MCI (n = 51) HCs (n = 51) P Dementia (n = 12) HCs (n = 12) P�

CT T 15000μm 235.4 (18.6) 266.9 (100.3) 0.037� 240.5 (75.0) 263.6 (85.6) 0.151 213.5 (92.5) 280.6 (152.0) 0.104

CT T 1000μm 242.8 (83.9) 272.7 (109.1) 0.056 248.4 (81.6) 270.7 (93.2) 0.178 218.9 (93.0) 281.5 (165.8) 0.164

CT T 500μm 250.5 (88.1) 287.4 (140.2) 0.058 253.8 (85.8) 285.6 (130.9) 0.145 236.5 (99.7) 295.1 (181.3) 0.195

F H 253.7 (88.7) 279.7 (115.0) 0.121 256.8 (87.6) 277.7 (95.1) 0.233 241.2 (97.4) 288.2 (182.8) 0.333

CT N 500μm 241.1 (88.6) 267.7 (117.9) 0.124 244.0 (87.9) 265.0 (98.4) 0.254 228.5 (94.2) 279.1 (184.8) 0.301

CT N 1000μm 225.9 (90.8) 256.3 (116.9) 0.088 231.3 (91.6) 254.0 (96.9) 0.227 202.8 (87.1) 265.8 (185.0) 0.218

CT N 1500μm 200.9 (88.6) 229.23 (113.7) 0.105 206.5 (90.9) 227.8 (98.4) 0.253 176.9 (77.3) 235.3 (169.6) 0.232.

CT S 1500μm 217.0 (84.4) 240.1 (102.4) 0.132 221.6 (80.5) 239.6 (90.4) 0.292 197.9 (100.7) 242.3 (146.5) 0.237

CT S 1000μm 226.9 (87.1) 252.7 (112.9) 0.123 232.2 (83.9) 251.4 (97.4) 0.294 205.3 (100.5) 257.8 (167.8) 0.215

CT S 500μm 230.5 (85.9) 267.8 (116.8) 0.026� 234.2 (83.7) 268.41 (101.9) 0.058 215.5 (97.1) 265.5 (170.8) 0.271

F V 244.9 (87.3) 279.9 (113.5) 0.040� 250.5 (86.0) 279.4 (98.8) 0.116 222.1 (92.7) 282.3 (163.3) 0.193

CT I 500μm 249.2 (84.6) 278.4 (111.9) 0.083 252.1 (82.6) 278.5 (99.7) 0.156 237.7 (95.2) 278.1 (157.6) 0.331

CT I 1000μm 243.5 (77.8) 281.8 (108.9) 0.020� 245.8 (74.2) 283.2 (95.8) 0.040� 233.8 (93.9) 276.0 (155.0) 0.304

CT I 1500μm 239.7 (76.9) 273.4 (109.7) 0.045� 243.6 (75.3) 275.1 (96.9) 0.083 223.8 (84.7) 266.6 (156.9) 0.348

CT, choroidal thickness; MCI, mild cognitive impairment; AD, Alzheimer disease; HCs, healthy controls; T, temporal; N, nasal; S, superior; I, inferior; FH, subfoveal CT

in horizontal scan; FV, subfoveal CT in vertical scan.
a Patients means MCI and dementia patients due to AD altogether.

Data for quantitative variables are shown as mean (standard deviation). Analysis was performed using paired Student’s t-test for dependent samples.

� p value < 0.05.

https://doi.org/10.1371/journal.pone.0239484.t002
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As CT is a subjective measurement, we calculated the intraclass correlation coefficient

(ICC), used to determine the interobserver reproducibility of manually quantified measure-

ments in Table 4, showing an excellent reliability [43].

Table 5 shows the correlation between MMSE score and CT at each location. Despite a non-

significant and very weak correlation between the parameters (p>0.141), a tendency of CT

thinning in association with MMSE decreased was observed in all measurements and we con-

sidered it a consistent positive correlation coefficient.

Table 3. Comparison of choroidal thickness analysis between mild cognitive impairment and dementia patients due to Alzheimer disease using a univariate gener-

alized estimating equations model.

MCI (n = 51) AD (n = 12) P MCI (n = 51) HCs (n = 63) P Dementia (n = 12) HCs (n = 63) P�

CT T 1500μm 240.5 (75.0) 213.5 (92.5) 0.362 240.5 (75.0) 266.9 (100.3) 0.125 213.5 (92.5) 266.9 (100.3) 0.104

CT T 1000μm 248.4 (81.6) 218.9 (93.0) 0.327 248.4 (81.6) 272.7 (109.1) 0.165 218.9 (93.0) 272.7 (109.1) 0.046�

CT T 500μm 253.8 (85.8) 236.5 (100.0) 0.587 253.8 (85.8) 287.4 (140.2) 0.134 236.5 (99.7) 287.4 (140.2) 0.103

F H 256.7 (87.3) 241.2 (97.4) 0.619 256.7 (87.3) 279.7 (115.0) 0.215 241.2 (97.4) 279.7 (115.0) 0.125

CT N 500μm 244.0 (87.9) 228.5 (94.2) 0.610 244.0 (87.9) 267.7 (117.9) 0.234 228.5 (94.2) 267.7 (117.9) 0.056

CT N 1000μm 231.3 (91.6) 202.9 (87.1) 0.327 231.3 (91.6) 256.3 (116.9) 0.210 202.8 (87.1) 256.3 (116.9) 0.171

CT N 1500μm 206.5 (90.0) 176.9 (77.3) 0.264 206.5 (90.0) 229.23 (113.7) 0.218 176.9 (77.3) 229.23 (113.7) 0.125

CT S 1500μm 221.6 (80.5) 197.9 (101.0) 0.460 221.6 (80.5) 240.1 (102.4) 0.271 197.9 (100.7) 240.1 (102.4) 0.105

CT S 1000μm 232.2 (83.9) 205.3 (100.5) 0.406 232.2 (83.9) 252.7 (112.9) 0.278 205.3 (100.5) 252.7 (112.9) 0.034�

CT S 500μm 234.2 (83.7) 215.5 (97.2) 0.548 234.2 (83.7) 267.8 (116.8) 0.105 215.5 (97.1) 267.8 (116.8) 0.034�

F V 250.5 (86.0) 222.1 (92.7) 0.348 250.5 (86.0) 279.9 (113.5) 0.098 222.1 (92.7) 279.9 (113.5) 0.037�

CT I 500μm 252.1 (82.6) 237.7 (95.2) 0.637 252.1 (82.6) 278.4 (111.9) 0.123 237.7 (95.2) 278.4 (111.9) 0.121

CT I 1000μm 245.9 (74.2) 233.8 (93.9) 0.684 245.8 (74.2) 281.8 (108.9) 0.046� 233.8 (93.9) 281.8 (108.9) 0.015�

CT I 1500μm 243.6 (75.3) 223.8 (84.7) 0.470 243.6 (75.3) 273.4 (109.7) 0.062 223.8 (84.7) 273.4 (109.7) 0.045�

CT, choroidal thickness; MCI, mild cognitive impairment; AD, Alzheimer disease; HCs, healthy controls; T, temporal; N, nasal; S, superior; I, inferior; FH, subfoveal CT

in horizontal scan; FV, subfoveal CT in vertical scan.

Data for quantitative variables are shown as mean (standard deviation).

�p value < 0.05.

https://doi.org/10.1371/journal.pone.0239484.t003

Fig 3. AUC of CT I1500μm and CT I1000μm. The area under the curve (AUC) of choroidal thickness (CT) at 1000 μm

in inferior (I) (blue line) and at 1500 μm in inferior (green line) had the highest values under the curve and represented

the most sensibility and specificity measurements.

https://doi.org/10.1371/journal.pone.0239484.g003
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Discussion

Nowadays, the gold standard for diagnosing AD is based on laboratory biomarkers (such as

Aβ-42, P-tau, T-tau) and imaging techniques (MRI and PET using amyloid tracers) [6–13].

Fig 4. AUC of CT I1000μm in MCI patients, dementia patients and HCs. Choroidal thickness (CT) at 1000 μm in

inferior (I) sector in healthy controls (HCs), mild cognitive impairment (MCI) and dementia due Alzheimer’s disease

(AD) eyes (error bars represent 95% confidence intervals), described on a bar chart.

https://doi.org/10.1371/journal.pone.0239484.g004

Table 4. Intraclass correlation coefficient used to determine interobserver reproducibility of manually quantified

measurements and the confidence intervals associated.

ICC 95% CI

CT T 1500μm 0.997 0.996–0.999

CT T 1000μm 0.976 0.952–0.985

CT T 500μm 0.988 0.981–0.994

FH 0.980 0.973–0.991

CT N 500μm 0.979 0.966–0.989

CT N 1000μm 0.944 0.915–0.972

CT N 1500μm 0.951 0.914–0.972

CT S 1500μm 0.957 0.930–0.978

CT S 1000μm 0.965 0.940–0.981

CT S 500μm 0.966 0.938–0.980

FV 0.944 0.908–0.971

CT I 500μm 0.964 0.944–0.982

CT I 1000μm 0.916 0.857–0.954

CT I 1500μm 0.905 0.831–0.942

ICC, intraclass correlation coefficient; CT, choroidal thickness; T, temporal; N, nasal; S, superior; I, inferior. FH,

subfoveal choroidal thickness in horizontal scan; FV, subfoveal choroidal thickness in vertical scan; CI, confidence

intervals.

https://doi.org/10.1371/journal.pone.0239484.t004
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These widely investigated biomarkers for the molecular and degenerative process of AD can

be supportive of AD diagnosis but they are not recommended for routine diagnostic purposes

just in clinical trials and research studies [4]. Recently, increasing efforts have been made to

discover new biomarkers with the aim to improve AD diagnosis in early stages. In an attempt

to investigate CT in AD patients, we conducted a study which involved deeply characterized

prodromal AD patients with detailed neurocognitive testing and PET imaging with 11C-PiB.

The present work is a logical extension of our previous publication about AD biomarkers, in

which we suggested RNFL and RGCL as potential AD biomarkers in a near future [25]. Our

main outcomes herein were CT thinning in different localizations comparing PiB+ patients

(MCI stage and dementia stage) versus HC and a general trend toward CT thinning in MCI

patients compared with HC, which became more pronounced in dementia. The choroid is a

highly vascularized layer that supplies the outer retina with oxygen, nutrients and growth fac-

tors. It also serves as a heat diffuser, protecting the photoreceptors [31]. Growing evidence

about the choroidal involvement in AD [26–30] and the development of EDI-OCT technology

has provided a chance to identify new visual non-invasive biomarkers [34]. Likely related to

cerebral vascular impairment in early AD [44, 45], choroidal thinning may represent a novel

biomarker of AD.

To the best of our knowledge, the present work constitutes the first study investigating the

thickness of choroidal tissue in MCI subjects positive to 11 C-PiB PET/CT. Our findings

showed significant differences between CT across PiB+ patients in selected locations (CT

T1000μm, CT I1000μm and 1500μm, CT S1500μm and foveal thickness in vertical scan) but few statis-

tically significant CT reduction data in MCI or dementia groups individually versus HC.

Although our primary finding was the lack of association between CT thinning and MCI or

dementia versus age–and sex- matched HC, an interesting observation emerged from a more

powerful statistical analysis performed. GEE was performed to compare MCI and dementia

patients individually with all HC included, shown in Table 3 and we demonstrated a signifi-

cant reduction of one choroid measurements in dementia patients. Even more, a general trend

Table 5. Correlation of mini-mental state examination with each measurement of choroidal thickness.

r value p value�

CT T 1500μm 0.063 0.647

CT T 1000μm 0.055 0.687

CT T 500μm 0.055 0.690

F H 0.055 0.691

CT N 500μm 0.092 0.505

CT N 1000μm 0.079 0.567

CT N 1500μm 0.103 0.453

CT S 1500μm 0.214 0.124

CT S 1000μm 0.205 0.141

CT S 500μm 0.158 0.258

F V 0.159 0.256

CT I 500μm 0.119 0.397

CT I 1000μm 0.108 0.441

CT I 1500μm 0.140 0.317

CT, choroidal thickness; T, temporal; N, nasal; S, superior; I, inferior; FH, subfoveal CT in horizontal scan; FV,

subfoveal CT in vertical scan.

Analysis was performed using Pearson´s correlation coefficient.

No significant results were achieved regarding CT and Mini-Mental State Examination correlation (�p>0.05)

https://doi.org/10.1371/journal.pone.0239484.t005
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toward the CT thinning in MCI patients, which became more pronounced in dementia, is

shown in Table 3. This tendency is slightly appreciated in Fig 3. The inclusion of one eye per

subject, randomly selected, is widely spread for statistical purposes, reducing possible bias of

side preference. Actually, most studies proceed this way [29]. Nevertheless, there are complex

statistical analysis which allow the use of both eyes without bias increasing the sample size [46].

Previous data determined that cerebral vascular damage, due to accumulation of Aβ [12],

plays an important role in early AD progression [44, 45, 47]. In accordance to this, it has been

hypothesized that as Aβ deposition causes angiopathy in the brain, it might cause angiopathy

in the choroid; and, subsequently, atrophy of choroidal tissue reflected in a reduction in CT

[48, 49]. Supporting this idea, both Aβ plaques and Tau neurofibrillary tangles (NFTs) have

been detected in some parts of the visual system in AD patients, including the retina [50, 51].

Interestingly, in a mouse model of AD, Aβ deposits were specifically located in the RGCL [48].

Accordingly, Koronyo et al demonstrated histopathologically that RGCL thinning due to AD

might be related with intracellular NFTs of Tau and extracellular Aβ protein deposits through-

out the retina and not related with other etiologies of dementia [52]. Similarly, Aβ accumula-

tion has been detected in choroidal tissue in normal aging mice, in several mouse models of

AD and in human post-mortem retina samples from AD donors [47–49]. We assumed choroi-

dal thinning might be related to a series of pathologic events triggered by Aβ accumulation.

Several OCT studies showed choroidal thinning using EDI technology in mild and moder-

ate dementia-AD [26–29] and one study showed CT thinning in MCI [30]. Every single study,

except one [26], performed EDI-OCT examination and measured the perpendicular CT from

the outer edge of the hyperreflective retinal pigment epithelium to the inner sclera, getting

similar average thickness of the choroid, in agreement with the work hereby presented. How-

ever, a different number of CT locations were measured in each study, within 7 [30], 9 [26–28]

and 13 [29] measurements. In order to solve this discrepancy, we analyzed CT at 14 locations,

2 of subfoveal thickness in 2 different scans and 12 more separated 1500, 1000 and 500 μm

from these subfoveal locations [37].

Despite the disparity of the analyzed data, all investigations described a significantly thin-

ning of CT measurements at each location, among AD and HC. Bulut et al added significant

differences in MCI and Cunha et al showed a significant choroidal thinning in AD versus age

matched controls and even when compared with elderly subjects [29, 30]. In addition, Ghara-

biya´s group took measurements at baseline and 12 months later, reporting CT decreased sig-

nificantly after this time in the AD group whereas no significant reduction was observed in

controls [27].

In our study, we did not find a significant correlation between the CT values at all localiza-

tions and the MMSE scores. In agreement with our results, Bayhan et al and Gharbiya et al

reported no significant correlation between CT and each of the tested psychometric parame-

ters [26, 27]. Trebastoni et al conducted a prospective study which measured CT at baseline

and after one year, describing cognitive functions deterioration assessed by MMSE, Alzhei-

mer’s Disease Assessment Scale-Cognitive (ADAS-Cog 11), and Clinical Dementia Rating

Scale (CDR) at the end of these 12 months (p<0.0001), but no correlations were found

between psychometric scores’ changes and neither baseline CT nor CT changes [28]. In con-

trast, Bulut et al observed a significantly positive correlation between MMSE score and CT

value [30]. Although current diagnosis of AD is based on cognitive clinical evaluation, such an

approach might be insufficient in individuals with much cognitive reserve and we hypothesize

that the lack of correlation in our study could reflect MMSE may not be a suitable test to detect

subtle and initials changes at early disease stages like MCI or mild dementia.

As far as we are concerned, the aforementioned studies have three main limitations. Firstly,

none of them supported their findings with CSF biomarkers or PET exams to diagnose AD
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patients. This implies a variable degree of case misclassification affecting statistical power and

the interpretation of the outcome. Hence, the use of AD biomarkers cannot be ignored in the

design of OCT studies. We emphasize the importance of enrolling patients based AD biomark-

ers status instead of MMSE-based criteria. Secondly, those OCT studies faced another impor-

tant limitation concerning their section. Patients´ eyes assessment underwent a complete

ophthalmologic evaluation, including dilated fundus examination. Nevertheless, they did not

mention if OCT analysis was performed before or after pupil dilatation nor did specify which

kind of drop was used. This may be of crucial importance, as we have proved that phenyleph-

rine 2.5%, a common drop for pupil dilatation, might cause a significant choroidal thinning

thirty minutes after its instillation [37]. Thus, mentioning the use of dilatation drops should be

important to reach a conclusion in CT changes, because if they used phenylephrine differently

in AD patients and controls, this might be a source of bias. Finally, these studies assessed CT

using exclusively 7 to 13 locations. As choroidal analysis was based on subjective and non-

automated measurements, we analyzed it in 14 locations in order to reduce bias as we previ-

ously reported [37].

The main limitations of the present study are the relatively small sample size and the cross-

sectional design. Specifically, our study included few patients with dementia due to AD in

order to depict if there was trend of CT to be thinner in worse stages of dementia. However,

our sample was characterized by a marked homogeneity in ocular biometric parameters that

strengthens the power of our results. Even so, future research should include a higher number

of subjects with both early and late stage AD and longitudinal measurements. Another com-

mon limitation is the measurement of CT manually using EDI-OCT, providing us a choroidal

analysis based on subjective, non-automated measurements. To help overcome this hurdle, the

study was designed taking this into account, and a well-trained ophthalmologist (AC) unaware

of patients’ diagnoses performed the CT measurements. Besides, this manual technique had

already been used in previous reports [34] and proved to have high intra-observer and inter-

observer reproducibility [53].

One of the major advantages of the present work is that the research protocol was under-

taken in a real clinical setting in well characterized MCI patients. Hence, our results represent

very likely day-to-day in clinical practice.

In conclusion, our study described CT thinning in selected localizations, but not a statistical

significant and general choroidal thinning comparing dementia and MCI versus HC. For this

reason, CT might be a promising target to find a biomarker in prodromal stages of AD because

there is a general choroidal reduction trend from HC to MCI patients, which become slightly

more pronounced in AD. It would be interesting to conduct larger and prospective OCT stud-

ies in AD population characterized with available biomarkers to describe whether choroidal

vascular damage occurs specifically in prodromal stages of AD.
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