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Analgesic effect of central relaxin receptor
activation on persistent inflammatory pain in mice:
behavioral and neurochemical data
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Abstract
Introduction: The relaxin peptide signaling system is involved in diverse physiological processes, but its possible roles in the brain,
including nociception, are largely unexplored.
Objective: In light of abundant expression of relaxin receptor (RXFP1)mRNA/protein in brain regions involved in pain processing, we
investigated the effects of central RXFP1 activation on nociceptive behavior in a mouse model of inflammatory pain and examined
the neurochemical phenotype and connectivity of relaxin and RXFP1 mRNA-positive neurons.
Methods:Mice were injected with Complete Freund Adjuvant (CFA) into a hind paw. After 4 days, the RXFP1 agonist peptides, H2-
relaxin or B7-33, 6 the RXFP1 antagonist, B-R13/17K-H2, were injected into the lateral cerebral ventricle, and mechanical and
thermal sensitivity were assessed at 30 to 120 minutes. Relaxin and RXFP1 mRNA in excitatory and inhibitory neurons were
examined usingmultiplex, fluorescent in situ hybridization. Relaxin-containing neurons were detected using immunohistochemistry
and their projections assessed using fluorogold retrograde tract-tracing.
Results: Both H2-relaxin and B7-33 produced a strong, but transient, reduction in mechanical and thermal sensitivity of the CFA-
injected hind paw alone, at 30 minutes postinjection. Notably, coinjection of B-R13/17K-H2 blocked mechanical, but not thermal,
analgesia. In the claustrum, cingulate cortex, and subiculum, RXFP1 mRNA was expressed in excitatory neurons. Relaxin
immunoreactivity was detected in neurons in forebrain and midbrain areas involved in pain processing and sending projections to
the RXFP1-rich, claustrum and cingulate cortex. No changes were detected in CFA mice.
Conclusion: Our study identified a previously unexplored peptidergic system that can control pain processing in the brain and
produce analgesia.
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1. Introduction

Twenty percent of the world population suffers from chronic pain,
which is often associated with emotional comorbidities, such as
anxiety and depression.3,40,67 Unfortunately, chronic pain and its
comorbidities are poorly managed clinically, with 40% of patients

not receiving adequate treatment.7,8,70,71 In the brain, changes in
the excitation–inhibition balance alter how neurons and micro-
circuits integrate and respond to chronic nociceptive in-
formation.39 This maladaptive plasticity is controlled by synaptic
mechanisms42 and intrinsic properties of neurons.24 Neuronal
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plasticity is also shaped by regulatory molecules, among which
neuropeptides act by binding to G-protein-coupled receptors.
Various neuropeptide and receptor systems are highly versatile in
function and play key roles in pathophysiological conditions,21,32

especially chronic pain.22,75

How neuropeptides control pain largely depends on their site
of release and target cells. In the spinal cord, for instance,
neuropeptide Y16 and substance P75 modulate pain at primary
afferent fiber terminals. Neuropeptides and their receptors are
widely distributed in the brain, where they modulate the sensory
discriminative and emotional components of pain (eg, in the
primary somatosensory cortex and amygdala, respectively).68,74

Neuropeptides are also involved in the control of descending pain
pathways (eg, periaqueductal gray matter).41,59 We recently
demonstrated the ability of the cholecystokinin (CCK)-CCK2
receptor system within the amygdala to inhibit spinal neuron
excitability and produce analgesia in an inflammatory pain
condition.56 The role of neuropeptides as pain modulators has
attracted increasing interest because their actions can be quite
specific and with fewer side effects than targeting classical
transmitter systems.32–34

Human relaxin-2 (H2-relaxin) is a 6 kDa heterodimeric peptide
of 53 amino acids consisting of 2 chains (A and B) linked by 2
disulphide bonds.4 RXFP1 is the cognate G-protein-coupled
receptor for relaxin.28,37 RXFP1 is characterized by a leucine-rich
repeat domain and a low-density lipoprotein A module,28,37

which are required for activation. Relaxin/RXFP1 signaling is
involved in collagen metabolism5 and in antifibrotic and vaso-
dilatory actions in various animal models of disease.57 The
therapeutic potential of relaxin has expanded in recent years to
include regulation of cardiovascular and renal function51 and the
treatment of heart failure.5

The role of the relaxin-RXFP1 system in the brain has been the
subject of very few studies, although it has been implicated in the
regulation of thirst and osmotic homeostasis50,60 and in emotional
memory.44 Anatomical mapping studies43–45,54 have revealed that
RXFP1 is expressed in brain regions involved in pain processing,
such as claustrum (CLA), anterior cingulate cortex (ACC), and
subiculum (SUB), but to the best of our knowledge, the role of
relaxin-RXFP1 signaling has not been investigated in a pain context.

Therefore, this study aimed to characterize the possible effects
of the relaxin-RXFP1 signaling system on pain processing in the
brain. We used a mouse model of inflammatory persistent pain1

to investigate any analgesic action of centrally administered
relaxin peptides that selectively activate RXFP1. We also
conducted a neuroanatomical characterization of the relaxin-
RXFP1 system in brain areas involved in pain processing.

2. Materials and methods

Detailed materials and methods are available as supplementary
material (available at http://links.lww.com/PR9/A109).

2.1. Mice and surgery

Male C57BL/6J mice (Charles Rivers, France), 8 to 10 weeks old,
were used, in agreement with the ethical guidelines of the
International Association for the Study of Pain and were approved
by the French Ministry of Agriculture (Agreement #21890). Mice
were anesthetized with isoflurane and placed in a stereotaxic
frame (RWD Desktop Digital Stereotaxic Instruments, San Diego,
CA). Guide cannulae were implanted for the injection of relaxin
analogs into the lateral ventricle.

At 4 days postsurgery recovery, Complete Freund Adjuvant
(CFA) (Sigma-Aldrich, St Louis, MO) or NaCl was injected into the
hind paw of inflamed “CFA” or “sham” mice, respectively.

Four days after CFA or NaCl injections,micewere anesthetized
with isoflurane and received intracerebroventricular (icv) infusions
of relaxin analogs—RXFP1 agonists (H2-relaxin44 and B7-3335)
and antagonist (B-R13/17K-H2,36 referred to as B-R/K in the
figures). Ten groups of mice were used (refer to Table S1,
supplementary material, available at http://links.lww.com/PR9/
A109). RXFP1 activation was tested with a single injection of
either H2-relaxin-2 (H2) or B7-33. Control mice received a single
injection of artificial cerebrospinal fluid (aCSF). The specificity of
RXFP1 activation was assessed with a single injection of H2 1
RXFP1 antagonist, B-R13/17K-H2 (or B7-331 B-R13/17K-H2).

2.2. Pain assessment

Mechanical response thresholdsweremonitored using von Frey hairs
(Bioseb, Vitrolles, France) in “CFA” and “sham” mice, one day before
their hind paw injections (D–1; reference value for each mouse).
Changes in mechanical sensitivity were evaluated on day 4 after CFA
or NaCl (D4) after relaxin analog(s) infusion. Thermal sensitivity was
evaluated using the Hargreaves test at the same time points.

2.3Multiplex in situ hybridization histochemistry (RNAscope)

Multiplex in situ hybridization (Advanced Cell Diagnostics, Hayward,
CA) was conducted according to the manufacturer’s instructions
with slight modifications (see supplementary material, available at
http://links.lww.com/PR9/A109). Sections were incubated with
probe mix 1 [complementary to RXFP1 (Catalog#: 458001-C1),
calmodulin-dependent kinase II (CaMKII) (Catalog#: 445231-C3),
and GAD65 (Catalog#: 415071-C2) mRNA] or probe mix 2
[complementary to relaxin (Catalog#: 539521-C2), CaMKII (Cata-
log#: 445231-C3), and GAD65 (Catalog#: 439371-C1) mRNA] for 2
hours at 40˚C. Sections were washed, and signal amplification was
performed. Sections were then incubated in DAPI and coverslipped
in fluorescent mounting medium.

2.4. Neuronal tract-tracing

In studies tomap some of the projections of brain relaxin neurons,
3 mice were injected with fluorogold into the basolateral
amygdala (BLA) or the ACC. Mice were kept single-housed for
2 weeks before brain fixation by intracardiac perfusion with 4%
paraformaldehyde [PFA] in 0.1 M phosphate buffer.11

2.5. Immunohistochemistry

Perfusion-fixed mouse brains were cut on a cryostat, and sections
were incubated with rabbit anti-rat relaxin primary antibody (1:200)
(Biovision, Milpitas, CA) for 24 hours at 4˚C. After washing, sections
were incubatedwith Alexa Fluor 568, anti-rabbit secondary antibody
(1:500 in 1x phosphate-buffered saline11% bovine serum albumin)
(Thermo Fisher Scientific, Illkirch, France). The specificity of the anti-
relaxin antibody has been validated by western blot (refer to supplier
website at https://www.biovision.com). Control studies were
performed by preadsorption of the primary antibodywith the antigen
and omission of the primary antibody. The distribution of relaxin
immunoreactivity observed in mouse brain matched that reported
for rat relaxin peptide and mRNA.27,43–45 Quantification of the
abundance of relaxin-immunopositive cells is provided in the
supplementary material (Tables S2 and S3, available at http://links.
lww.com/PR9/A109).

2 C. Abboud et al.·6 (2021) e937 PAIN Reports®

http://links.lww.com/PR9/A109
http://links.lww.com/PR9/A109
http://links.lww.com/PR9/A109
http://links.lww.com/PR9/A109
https://www.biovision.com/
http://links.lww.com/PR9/A109
http://links.lww.com/PR9/A109


Sections processed for immunohistochemistry or multiplex in
situ hybridization were examined in a NanoZoomer 2.0-HT
(Hamamatsu, Hamamatsu City, Japan) and under a SPE
confocal microscope (Leica, Wetzlar, Germany).

2.6. Statistical analysis

All statistical analyses were performed using GraphPad Prism.
Behavioral analysis was conducted using a 2-way analysis of
variance, followed by a Tukey test. In situ hybridization
(RNAscope) data analysis was conducted using a 2-way analysis
of variance, followed by a Sidak test. Data are presented asmean
6 SEM, and differences were considered significant when P

, 0.05.

3. Results

3.1. Analgesic effects of RXFP1 activation

We analysed nociceptive behavioral responses to mechanical
and heat stimuli using the von Frey test and Hargreaves test in
mice (Fig. 1). We studied the effects of RXFP1 activation in control
mice (NaCl injection in the hind paw) and in mice with persistent
inflammatory pain produced by CFA injection in the hind paw.

Injection of CFA produced a subsequent significant decrease
in paw withdrawal threshold (PWT) in mice (Fig. 1A-a; F(1,12) 5
270.63; P , 0.0001). Mechanical sensitization was obtained in
the CFA-injected paw on day 4 postinjection (PWT 5 1.467 6
0.067 g at D–1 vs 0.426 0.02 g at D4, P, 0.0001). No changes
in PWTwere detected in NaCl-injectedmice (Fig. 1A-a;P. 0.05)
or in the uninjected paw of CFA mice (Fig. S1A-a; F(1,12) 5 1.503;
P . 0.05). Intracerebroventricular injection of B7-33 induced a
significant PWT increase 30minutes after the injection (Fig. 1A-a;
PWT 5 1.467 6 0.067 g at 30 minutes, P , 0.0001 vs D4, P .
0.05 vs D–1) that was absent 1 hour after injection. Similar results
were obtained after the injection of H2-relaxin (H2) (Fig. 1B-a;
F(1,10) 5 164.3; P , 0.0001), which also increased PWT at 30
minutes after icv injection (Fig. 1B-a; PWT5 1.2006 0.089 g at
30 minutes, P , 0.0001 vs D4, P . 0.05 vs D-1). The PWT
increase was prevented by coinjection of the RXFP1 antagonist
(B-R13/17K-H2) with the respective RXFP1 agonists (B7-33 or
H2; Fig. 1A-b; PWT 5 0.40 g 6 0.00 at 30 minutes, Fig. 1B-b;
PWT5 0.446 0.04 g at 30minutes, P. 0.05 vs D4, P, 0.0001
vs D–1). No effect of the agonists or the antagonist was detected
in sham, NaCl-injected mice (Figs. 1A-a, b and 1B-a, b), or after
von Frey stimulation of the uninjected paw in CFA mice (Figs.
S1A-a, b and S1B-a, b). Intracerebroventricular injection of aCSF
did not significantly alter PWT under control or inflammatory pain
conditions (Figs. 1A-c, B-c and S1A, B-c).

Paw withdrawal latency (PWL) was decreased after thermal
stimulation of the CFA-injected paw (Fig. 1A-d; F(1,8) 5 136.9; P
, 0.0001; PWL5 3.346 0.152 seconds at D–1 vs 1.376 0.089
seconds at D4, P , 0.0001), but not in NaCl-injected mice (Fig.
1A-d; F(1,8) 5 136.9; P . 0.05) or after stimulation of the
uninjected paw (Fig. S1A-d; F(1,8) 5 1.062; P . 0.05). Intra-
cerebroventricular injection of B7-33 (Fig. 1A-d) and H2-relaxin
(Fig. 1B-d) increased PWL 30minutes after the injection (Fig. 1A-
d; PWL 5 2.614 6 0.074 seconds at 30 minutes, P , 0.001 vs
D4, P. 0.05 vs D–1) (Fig. 1B-d; PWL5 3.8386 0.398 seconds
at 30 minutes, P, 0.01 vs D4, P. 0.05 vs D–1). This effect was
absent 1 hour after injection of B7-33 and 2 hours after H2-relaxin
injection (Fig. 1B-d; PWL 5 2.214 6 0.120 seconds at 60
minutes, P , 0.0001 vs D4, P . 0.05 vs D–1). Notably, the B7-
33-induced effect was not prevented by coinjection of the RXFP1

antagonist, B-R13/17K-H2 (Fig. 1A-e; PWL 5 2.428 6 0.253
seconds at 30 minutes, P , 0.0001 vs D4, P . 0.05 vs D–1).
Similarly, the H2-induced PWL increase was not affected by the
coinjection of the RXFP1 antagonist (Fig. 1B-e; PWL5 3.3426
0.189 seconds at 30 minutes, P , 0.0001 vs D4, P . 0.05 vs
D–1). Intracerebroventricular injection of RXFP1 agonists or
antagonists did not modify PWL in sham, NaCl-injected mice
(Figs. 1A-d, e and B-d, e), or after thermal stimulation of the
uninjected paw in CFA mice (Figs. S1A-d/e and S1B-d/e). The
CFA-induced PWL decrease was not altered by icv aCSF
injection under control or inflammatory pain conditions (Figs.
1A-f, B-f, and S1A/B-f).

These data indicate that RXFP1 activation produced both
mechanical and thermal analgesia under inflammatory
conditions.

3.2. Distribution of RXFP1 mRNA in mouse brain

The mouse ACC, CLA, and SUB, regions strongly implicated in
processing pain and emotions,26,48,49,58,66 contain a high density
of RXFP1 mRNA (see Ref 54; Allen Brain Atlas (http://mouse.
brain-map.org/experiment/show/70562124). Thus, multiplex
fluorescence in situ hybridization (ISH) identified intense labeling
in these areas, particularly in the ACCandCLA (Fig. 2A), while the
labeling intensity was much weaker in the surrounding areas.
Multiplex fluorescent ISH also identified key aspects of the
neurochemical phenotype of RXFP1 mRNA-expressing neurons.
Presumed excitatory and inhibitory neurons were identified by
their expression of CaMKII or GAD65 mRNA, respectively.
CaMKII mRNA-positive and GAD65 mRNA-positive neurons
were identified as clearly separate populations, with only a very
small number of neurons exhibiting colocalization of CaMKII and
GAD65 mRNA (Fig. 2B). In the brain areas investigated, virtually
all RXFP1mRNA-positive neurons contained CaMKII mRNA (Fig.
2C), indicating the receptor is almost exclusively expressed by
excitatory neurons. No significant differences in the relative
colocalization or the levels of RXFP1 mRNA in these areas were
observed between sham and CFA mice (Figs. 2B, C).

3.3. Distribution of relaxin immunoreactivity in mouse brain

In studies aimed at identifying the possible sources of endogenous
relaxin that would activate RXFP1 in these receptor-rich areas, we
first performed immunohistochemical staining for relaxin peptide
immunoreactivity throughout the normal mouse brain (Fig. 3).
Experiments to examine the specificity of the immunoreaction,
including preadsorptionwith the antigen peptide, resulted in a loss of
specific staining (Fig. S2). We identified relaxin-containing areas
widely distributed throughout the forebrain (Figs. 3Aa-e, Ba-h) and
to a lesser extent in the hindbrain (Fig. 3Af, Bi-l). Notably, the
midbrain did not contain prominent populations of relaxin-
immunoreactive neurons. The highest density of relaxin-positive
cells was found in the cortex (eg, cingulate, claustrum, piriform, and
somatosensory) and the hypothalamus (medial preoptic area, basal,
and lateral hypothalamus). In the hindbrain, all cerebellar Purkinje
cells exhibited clear and homogenous labeling. All positive cells were
characterized by diffuse cytosolic labelling, restricted to the cell body
or proximal processes, with little immunoreactivity in distal elements,
consistent with earlier reports on the rat brain from our laboratory.44

We then used fluorogold retrograde tracing to identify the relaxin
neuron populations that send projections to theRXFP1-rich ACCand
CLA.We focused on these pain processing brain areas because they
exhibited the highest density of RXFP1 transcripts, but other areas
warrant future investigation. Fluorogold was detected in neurons in
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various areas of the forebrain and midbrain areas that contained

relaxin immunoreactivity. A fluorogold injection into the ACC (Fig. 4,

left panel) resulted in fluorogold accumulation in relaxin-positive

neurons in the CLA, BLA, primary somatosensory cortex, and the

ACC itself. Fluorogold injection into the CLA (Fig. 4, right panel)

resulted in colocalization of fluorogold and relaxin immunoreactivity in

theBLA, ACC, and theCLA itself, in addition to the posterior complex

of the thalamus. These data indicate that the ACC, CLA, and BLA

contain relaxin neurons that project to both ACC and CLA.

3.4. Neurochemical phenotype of relaxin mRNA-containing
neurons in mouse brain

In studies aimed at identifying the neurochemical phenotype of
relaxin-expressing neurons in the ACC, CLA, and BLA that
project to these RXFP1-expressing brain nuclei involved in pain
processing, we first attempted double immunohistochemical
labeling experiments to colocalize relaxin and phenotypical
markers of excitatory and inhibitory neurons. However, un-
fortunately these experiments were unsuccessful because

Figure 1. Assessment of mechanical sensitivity (paw withdrawal threshold, von Frey test, VF) and thermal sensitivity (paw withdrawal latency, Hargreaves test) of
the CFA-injected hind paw after icv injection of the RXFP1 agonists, (A) B7-33 or (B) H2-relaxin (left panels); coinjection of B7-33 or H2-relaxin with the RXFP1
antagonist, B-R13/17K-H2 (B-R/K), (central panels); or control aCSF injection (right panels). (A) n 5 9 von Frey for CFA conditions, n 5 5 Hargreaves for CFA
conditions, n5 3 von Frey, B7-33 injection for NaCl conditions, n5 5 von Frey and Hargreaves for NaCl conditions. (B) n5 6 von Frey for CFA conditions, n5 5
Hargreaves for CFA conditions, n 5 5 von Frey and Hargreaves for NaCl conditions. aCSF, artificial cerebrospinal fluid; CFA, Complete Freund Adjuvant; icv,
intracerebroventricular.
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Figure 2. Multiplex fluorescent ISH detection of RXFP1, GAD65, and CaMKII mRNA in the forebrain of sham mice. (A) Low-magnification images of RNAscope
experiments for GAD65 mRNA illustrating the areas observed in (B) and quantified in (C, D). (B) Detection of RXFP1 mRNA (green; a, e, and i), GAD65mRNA (red;
b, f, and j), CaMKII mRNA (white; e, g, and k), and DAPI staining (blue; d, h, and l) in the ACC (a–d), CLA (e–h), and SUB (i–l). RXFP1 mRNA was frequently
colocalized with CaMKII mRNA (arrows), whereas colocalization with GAD65 mRNA was scarce (arrowheads). Rare cells display colocalization of all 3 transcripts
(double arrowheads). Bar (a-l)5 20mm. (C) Quantification of neurons displaying colocalization of RXFP1mRNAwith GAD65mRNAor CaMKII mRNA (5 sections in
each area, n 5 4 mice under sham [blue] and CFA [red] conditions). ****P , 0.0001 vs sham RXFP1/GAD65; ####P , 0.0001 vs CFA RXFP1/GAD65. (D)
Quantification of areas labeled usingmultiplex fluorescent ISH for RXFP1mRNA inCLA, ACC, and SUBof sham (blue) andCFA (red) mice (4 sections through each
area, n5 4mice under sham [blue] andCFA [red] conditions). In total, for the colocalization study, 561 (ACC), 366 (CLA), and 385 (SUB) cells were counted. For the
assessment of relaxin mRNA-labeled areas, 286 (ACC), 191 (CLA), and 123 (SUB) cells were counted. ACC, anterior cingulate cortex; CFA, Complete Freund
Adjuvant; CLA, claustrum; SUB, subiculum.
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relaxin labeling could not be effectively visualized when antisera
were used in combination or sequentially.

Therefore, we used multiplex fluorescent ISH, as described
above, to detect the possible coexpression of relaxin mRNA
with GAD65 and CaMKII mRNA. Although some differences

were observed in the areas examined, most relaxin mRNA-
positive neurons were identified as GAD65 mRNA-containing
neurons (Fig. 5A). Thus, the proportion of relaxin mRNA-
positive cells was 76.66 4.96% in the CLA, 70.86 11.37% in
the ACC, and 78.46 4.82% in the BLA (Fig. 5B). By contrast,

Figure 3. Relaxin immunoreactivity in the forebrain of shammice. (A) Low-magnification images were acquired using a NanoZoomer. Bars5 1 mm. (B) Confocal
micrographs illustrating relaxin immunoreactivity (arrowheads) in the anterior olfactory nucleus (AON), piriform cortex (PIR), anterior cingulate cortex (ACC),
claustrum (CLA), lateral hypothalamus (LH), arcuate nucleus (ARC), medial habenula (MH), medial amygdala nucleus (MEA), periaqueductal gray (PAG), Purkinje
cells (Pc), pontine reticular nucleus (PRN), and facial nucleus (FN). Bars 5 20 mm.
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a minority of relaxin mRNA-positive cells were identified as
excitatory neurons (ie, the proportion of relaxin mRNA-
positive cells was 9.20 6 1.07% in the CLA, 29.00 6 6.82%
in the ACC, and 8.20 6 1.77% in the BLA). No significant

differences in relaxin mRNA expression were observed
between sham and CFA mice in either the level of colocaliza-
tion (Fig. 5B) or the levels of relaxin mRNA in various brain
areas (Fig. 5C).

Figure 4. Fluorogold retrograde tracing (blue) of relaxin-immunoreactive neurons (red) in various forebrain areas that project to the ACC (left panel) or CLA (right
panel) of sham mice. Examples of injection sites, visualized one day after fluorogold injection, are shown in a and b. Results of retrograde labeling were observed
after 2 weeks (c–r). Arrows indicate neurons retrogradely labeled with fluorogold and immunopositive for relaxin. Arrowheads indicate neurons that are single
labeled for one marker alone. Bars 5 20 mm. ACC, anterior cingulate cortex; CLA, claustrum; BLA, basolateral amygdala; MPO, medial preoptic area; PH,
posterior hypothalamus; PO, posterior complex of the thalamus; SSp, primary somatosensory cortex..
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Figure 5. Multiplex fluorescent ISH detection of relaxin (Rln) mRNA, GAD65 mRNA, and CaMKII mRNA in the forebrain of sham mice. (A) Low-magnification
images of RNAscope experiments for GAD65mRNA illustrating the areas observed in B and quantified in C. (B) Multiple detection of Rln mRNA (green; a, e, and i),
GAD65 mRNA (red; b, f, and j), CaMKII mRNA (white; e, g, and k), and DAPI staining (blue; d, h, and l) in the ACC (a–d), CLA (e–h), and BLA (i–l). Rln mRNA was
frequently colocalized with GAD65 mRNA (arrowheads), whereas colocalization with CaMKII mRNA was scarce (arrows). Bar (a–l)5 20 mm. (C) Quantification of
neurons displaying colocalization of Rln mRNA with GAD65 mRNA or CaMKII mRNA (5 sections in each area, n 5 4 mice under sham [blue] and CFA [red]
conditions). ****P, 0.0001 vs sham Rln/CaMKII; ####P, 0.0001 vs CFA Rln/CaMKII). (D) Quantification of areas labeled using multiplex fluorescent ISH for Rln
mRNA in various forebrain regions of sham (blue) and CFA (red) mice (4 sections through each area, n5 4 mice under sham [blue] and CFA [red] conditions). In
total, for the colocalization study, 476 (ACC), 306 (CLA), and 263 (BLA) cells were counted. For the assessment of relaxin mRNA-labeled areas, 258 (PIR), 169
(ACC), 101 (CLA), 154 (MPO), 109 (LHA), 88 (BLA), and 74 (SUB) cells were counted. ACC, anterior cingulate cortex; BLA, basolateral amygdala; CFA, Complete
Freund Adjuvant; CLA, claustrum; SUB, subiculum.
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4. Discussion

This study represents the first to demonstrate the function of the
relaxin-RXFP1 system in pain processing in the brain. Relaxinwas
originally identified as a hormone of reproduction and preg-
nancy31 but was subsequently found not to be mandatory for
pregnancy in humans.28 Relaxin is now well recognized for its
vasodilatory action on blood vessels,14,28 its positive chrono-
tropic and ionotropic effects on the heart,38,72 and its powerful
antifibrotic actions,57 among others.5 Despite these pleiotropic
effects described with various organs4 and some early anatom-
ical studies,43–45 very few studies have been performed in recent
years to explore the role of the relaxin-RXFP1 system within the
central nervous system. Circulating relaxin is known to activate
RXFP1 present in the subfornical organ and the organum
vasculosum of the lamina terminalis, outside the blood–brain
barrier, to cause a reduction in plasma osmolality.61 Circulating
and centrally administered relaxin also increases water con-
sumption in rats, through actions at these sites.60 In addition to
the circumventricular organs and hypothalamic nuclei accessible
to circulating peptides such as relaxin, relaxin was also shown to
alter the activity of the BLA after local administration in the rat,
which impaired fear memory consolidation.44

Thus, in light of the presence of RXFP1 mRNA and relaxin-
binding sites in areas involved in pain processing,9,45,54 in the
current study we tested the effect of intracerebroventricular
administration of relaxin peptide analogs on nociceptive behav-
iors in mice. Although this strategy lacked anatomical specificity,
it allowed testing for a global effect of RXFP1 activation in the
brain. Our results demonstrated an analgesic effect of centrally
injected RXFP1 agonist peptides on 2 sensory modalities,
mechanical and thermal sensitivity. The results obtained after
icv injection of H2-relaxin and B7-33 were similar, indicating the
analgesic effect is mediated by RXFP1. Indeed, in cell-based
systems, H2-relaxin can act as a biased ligand at the relaxin-3
receptor, RXFP3,4,69 and therefore its effects in vivo cannot be
unequivocally attributed to RXFP1 activation.

By contrast, however, B7-33 is a single-chain analog of the
H2-relaxin B-chain, which retains binding to RXFP1.35,55 B7-33
has lower binding affinity than H2-relaxin at RXFP1 but has similar
potency to H2-relaxin in the activation of the phosphorylated
extracellular signal-regulated kinase pathway in RXFP1-
expressing human embryonic kidney cells and rodent myofibro-
blasts.35 Functionally, the small B7-33 peptide agonist efficiently
prevented or reversed organ fibrosis and dysfunction in rodent
models of heart or lung disease.35,46,55 B7-33 also conferred
cardioprotection and attenuated cardiomyocyte death after
cardiac infarction.15,25 In the current study, the concentration of
H2-relaxin used was based on that reported as effective in
previous reports.44 The concentration of B7-33 was twice that of
H2-relaxin to take into account the lower receptor affinity of the
single-chain agonist.35

Relaxin-induced analgesic effects are transitory after a rapid
onset but are not likely to be due to RXFP1 desensitization
because prolonged exposure of RXFP1 to H2-relaxin does not
triggerb-arrestin coupling and receptor internalization and results
in sustained signaling (up to 6 hours) in vitro.4,10,30 The short
duration of the analgesic effects observed (between 30 and 60
minutes) more likely indicates that the ligand is degraded quite
rapidly or possibly that the intracellular signaling cascade is
rapidly terminated in vivo.

In previous studies, the peptide, B-R13/17K-H2, was charac-
terized as an RXFP1 antagonist in cells that endogenously
express RXFP1—rat renal myofibroblasts and MCF-7 cancer

cells.36 Notably, in the current study, the thermal analgesia
produced by H2-relaxin and B7-33 was not reversed by the
antagonist. One interpretation is that any action that is not
reversed by a higher molar amount of RXFP1 antagonist is
caused by the relaxin agonist analogs interacting with other
transducing systems independent of RXFP1.29 The glucocorti-
coid receptor is a potential target of H2-relaxin,17,18 but its
involvement in activation of gene expression is not consistent with
the rapid effect of H2-relaxin and B7-33 on thermal sensitivity.
Ligand-directed signaling bias at the relaxin-3 receptor, RXFP3, is
a further possibility because H2-relaxin can activate RXFP3 and
has potency and efficacy at the MAP kinase and AP-1 trans-
duction pathways in cell lines.69 However, such biased signaling
has not been observed for B7-33, which is a more selective
RXFP1 agonist.5,55

Alternatively, it is possible that B-R13/17K-H2 preferentially
inhibits RXFP1 transduction in a specific population of those
neurons activated by the RXFP1 agonists or at selective signaling
pathways, as observed with RXFP3. This hypothesis implies that
different cell populations or different signaling pathwaysmodulate
mechanical and thermal pain in the brain. In this regard, different
circuits convey noxious mechanical19,47,53 and thermal6,23 in-
formation. However, although the existence of specific thermal
and mechanical transduction systems and circuits are well
described in the periphery and spinal cord,20,52 such a distinction
remains elusive in the brain. Therefore, further studies are
warranted to investigate the complex mechanisms associated
with brain RXFP1 signaling and modulation of mechanical and
thermal pain.

Because the injection of relaxin analogs into the lateral cerebral
ventricle does not provide information on their precise sites of
action, in initial efforts to identify these loci, we studied the
distribution of RXFP1 mRNA expression in a limited number of
brain areas known to play a role in pain transmission. The pain
responses tested in our study rely on spinal reflexes, and
therefore, we focused on brain areas potentially involved in
descending pain pathways whose modulatory effects on spinal
circuits could be altered by RXFP1 activation.

RXFP1 mRNA expression has been demonstrated in the
brain of several species.43 It has been well characterized in rat
brain44,45 and some data are available in the mouse (see Ref 46;
Allen Brain Atlas). A comparison of previous studies suggests
RXFP1mRNA expression is more restricted in mouse brain than
in rat brain. For example, the BLA displays a much higher
density of RXFP1 mRNA in the rat than in the mouse. Thus, we
chose to investigate 3 forebrain regions involved in pain
processing, namely the ACC, CLA, and SUB.2,66 The relative
abundance of RXFP1 mRNA in the ACC and CLA and the ability
of RXFP1 activation to produce analgesia are consistent with the
prominent role of these areas in modulating descending pain
pathways. Indeed, the ACC exerts a facilitating action on pain
transmission.12,58,64 The broad and unique cortical connections
of the CLA suggest it serves as a central network hub,
coordinating activity within cortical circuitry.76 The CLA displays
a strong connectivity with sensory modalities and a significant
preference for peripheral sensory information.26 In all the brain
areas examined, RXFP1 mRNA was almost exclusively
expressed in CaMKII mRNA-positive, excitatory neurons and
thus identifies a novel signaling system to control modulatory
pain outputs from these regions.

The detailed cellular and regional distribution of relaxin, the
preferred, cognate ligand for RXFP1, remains largely un-
explored in the brain. Therefore, we conducted a broad
mapping of relaxin immunoreactivity throughout the mouse
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brain using immunohistochemistry. Although not exhaustive,
our data are in agreement with published reports43,44 and
identify relaxin-immunoreactive neurons in several brain areas of
importance for pain processing. We identified many cortical and
subcortical regions, hypothalamic nuclei, and midbrain struc-
tures that contain a moderate to high number of relaxin-
immunoreactive cells. The presence of relaxin immunoreactivity
in the cell body, with only rare positive neural processes,
indicates that relaxin may serve as a paracrine neuromodulator.
However, RXFP1 mRNA and relaxin-binding sites also exist in
rat brain areas devoid of relaxin immunoreactivity.43 Moreover,
our study has determined that several neuronal populations
immunoreactive for relaxin project to distant RXFP1-containing
brain areas. Thus, relaxin might be transported along the axon
and released in the target sites, as proposed earlier.44 In-
terestingly, the ACC and CLA have strong ipsilateral reciprocal
connections73 that potentially contain relaxin. The mouse BLA
also sends relaxin-immunoreactive neural outputs to the ACC
and CLA. In these different regions connected to the ACC and
CLA, relaxin neurons are mostly inhibitory, based on their
expression of GAD65 mRNA, consistent with a recent analysis
of the transcriptome of neurons in the mouse visual cortex.65

The effects of RXFP1 activation on PWTs were observed
when the mice tested were experiencing persistent pain, but
not under control conditions. Our study demonstrated that this
restriction of RXFP1 action to CFA-induced persistent pain-
like states does not depend on changes in the relative
expression of relaxin or RXFP1 transcripts. Instead, it could
be due to alterations in RXFP1 signaling under persistent pain
conditions, including possible RXFP1 oligomerization62,63 or
heterodimerization.13 Another possibility is that specific
neuronal systems must be physiologically challenged to
become sensitive to RXFP1 activation, as observed for other
neuropeptides that play a particular role in pathophysiological
conditions.32

In the current study, we centrally administered exogenous relaxin
analogs to demonstrate the analgesic action of RXFP1 activation in
adult mice. These data do not preclude a possible role for
endogenous relaxin signaling in nociception that warrants further
assessment in future studies. Additional studies will be also required
to identify the brain areas involved in the analgesic effects and the
underlying signalingmechanisms associatedwith the relaxin-RXFP1
system control of mechanical and thermal pain.
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