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Pancreatic-related disorders such as pancreatitis, pancreatic cancer, and type 1 diabetes

mellitus (T1DM) impose a substantial challenge to human health and wellbeing. Even

though our understanding of the initiation and progression of pancreatic diseases has

broadened over time, no effective therapeutics is yet available for these disorders.

Mounting evidence suggests that gut dysbiosis is closely related to human health and

disease, and pancreatic diseases are no exception. Now much effort is under way to

explore the correlation and eventually potential causation between the gut microbiome

and the course of pancreatic diseases, as well as to develop novel preventive and/or

therapeutic strategies of targeted microbiome modulation by probiotics, prebiotics,

synbiotics, postbiotics, and fecal microbiota transplantation (FMT) for these multifactorial

disorders. Attempts to dissect the intestinal microbial landscape and its metabolic profile

might enable deep insight into a holistic picture of these complex conditions. This article

aims to review the subtle yet intimate nexus loop between the gut microbiome and

pancreatic diseases, with a particular focus on current evidence supporting the feasibility

of preventing and controlling pancreatic diseases via microbiome-based therapeutics

and therapies.

Keywords: gut microbiome, pancreatic diseases, probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota

transplantation (FMT)

INTRODUCTION

Pancreatic diseases, including pancreatitis, pancreatic cancer, and type 1 diabetes mellitus (T1DM),
not only exert an outsized adverse effect on human health because of marked morbidity and
mortality, but impose a heavy societal burden worldwide (1). Pancreatitis is one of the most
common gastrointestinal (GI) disorders seen in U.S. hospitals, ranking third after GI hemorrhage
and gallbladder disease (1). Globally, the annual incidence rates of acute pancreatitis (AP) and
chronic pancreatitis (CP) are 34 cases and 10 cases per 100,000 person-years, respectively (2).
Around 80–85% of patients with AP develop interstitial edematous pancreatitis, with a mortality
rate of <2%. Other patients might evolve into necrotizing pancreatitis of varying severity, and, in
severe cases, where patients develop persistent organ failure, the mortality rate rises to 15–20%
(3). In the cases of CP, there is an 8–9-fold increased risk of developing pancreatic cancer (4, 5).
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Pancreatic cancer is a common and fatal malignancy of the
pancreas and is considered to be the third leading cause of death
in the U.S. According to the “Cancer Facts & Figure 2020” issued
by the American Cancer Society, the estimated number of deaths
for pancreatic cancer is 7.8%, which is secondary to that of lung
cancer (22.4%) and colorectal cancer (8.8%) (6). Notably, the
incidence rate for pancreatic cancer increased by 1% per year
from 2007 to 2016 and is projected to be the second biggest cancer
killer in the U.S. by 2030 (6, 7). Another pancreatic disease,
T1DM, does not directly manifest as gastrointestinal symptoms,
but polyuria, polydipsia, and polyphagia (8). As one of the most
common chronic disorders among children and youths (9, 10),
the global incidence of T1DM has an average annual increase of
3–4% over the past three decades (11).

Despite the substantial improvement of our understanding of
the cause, pathogenesis, and treatment of pancreatic diseases over
the past decade (12–15), no curative treatment is yet available
(16, 17). The World Health Organization (WHO) underscored
the fundamental role that prevention plays before an episode of a
disease in the global action plan for the prevention and control of
non-communicable diseases 2013–2020, including GI disorders
and diabetes (18). An aetiology-oriented strategy to disease
prevention appears to be one of the most effective approaches
for preventing and controlling pancreatic diseases (Figure 1).
For example, identifying and eliminating environmental insults,
such as smoking cessation and abstinence from alcohol, help
prevent from pancreatitis and pancreatic cancer. It has been
thought that T1DM is unpreventable (19, 20), but a recent study
suggested that teplizumab, an Fc receptor-non-binding anti-CD3
monoclonal antibody, could delay or even prevent progression
of this disease (21, 22). Therefore, apart from applying a disease
prevention approach inmanaging these refractory diseases, novel
therapeutics and curative treatments are desperately needed.

The human GI tract is home to trillions of microorganisms,
including bacteria, archaea, fungi, viruses, and microeukaryotes,
that are collectively known as the microbiome (23), forming a
complex and unique ecosystem that influences human health and
disease. Initially, our knowledge of the gut microbiome is largely
reliant upon culture-dependent approaches. Breakthroughs
in culture-independent approaches represented by high-
throughput sequencing technologies, however, have further
interrogated the intestinal microbial genomic blueprints
and their functional potential in the past 16 years (24, 25).
Likewise, the advent in mass spectrometry technology has
facilitated the characterization and deciphering of gut microbial
metabolite profiles (26). Accumulating evidence derived from
metagenomics and metabolomics analyses suggests that gut
microbiome composition and their metabolic activity are
implicated in a multitude of conditions, including not only GI
diseases (27, 28), but also extraintestinal disorders such as hepatic
(29, 30), metabolic (31–40), respiratory (41–43), cardiovascular
(44–47), neurologic (48–56), psychiatric (57–60), autoimmune
(61–63), and oncologic components (64–69). There is no doubt
that research into the gut microbiome and its role in human
health and disease accompanied by tremendous technological
advances in the past 16 years has taken center stage in biomedical
science, and that most current microbiome research has revealed

a close association between the gut microbiome and diseases,
yet causative relationship has not been established in many
cases. Given the bidirectionality of gut microbiome-disease
interactions in human health, further research is needed in the
future to dissect potential causality between them. In addition,
gut dysbiosis is known to link to many disorders, and it thus
seems feasible to manipulate the gut microbiome with products
and treatments such as probiotics, prebiotics, synbiotics,
postbiotics, and fecal microbiota transplantation (FMT) in
clinical settings, irrespective of the stability and resilience of the
intestinal microbiota (70–72).

This review summarizes existing evidence supporting the
hypothesis that there is a close relationship between the gut
microbiome and pancreatic diseases, and it further discusses the
feasibility of preventing and controlling pancreatic diseases via
microbiome-based therapeutics and therapies.

THE GUT MICROBIOME AND HEALTHY
PANCREAS

The fact that Helicobacter pylori-related disease (73–75) and
recurrent Clostridium difficile-associated disease (76–78) are
closely related to the gut microbiome has pushed the research
into the functional interplay between the gut microbiome and
human health/disease to a climax. An active role of the gut
microbiome in influencing extraintestinal diseases has been
increasingly recognized. More recently, research focus has
thus shifted to investigate the relationship between the gut
microbiome and extraintestinal manifestations like pancreatic
diseases (79). Anatomically, the pancreas is located behind
the stomach, where it connects the duodenum through the
pancreatic duct and communicates with the liver through the
common bile duct, forming a subtle gut-pancreas-liver axis
for bidirectional communications. Experimental evidence also
supports the existence of direct pancreas-gut microbiome
interactions (Figure 2). For example, the production of
cathelicidin-related antimicrobial peptide (CRAMP) by insulin-
secreting beta-cells was controlled by gut microbiota-originated
short-chain fatty acids (SCFA), highlighting a direct role
of the gut microbiota in shaping the pancreatic immune
microenvironment (80). On the other hand, Ahuja and
colleagues demonstrated that ORAI calcium release-activated
calcium modulator 1 (Orai1) produced by pancreatic acinar cells
mediated secretion of antimicrobials that shaped the intestinal
microbiota and intestinal immunity (81). These two seminal
studies shed light on the existence of a gut-pancreatic axis, which
warrants further preclinical and clinical investigations.

In addition, one caveat is that both normal and diseased
individuals harbor a pancreatic microbiome (82), which might
engage in disease initiation and progression (83–85). The
landmark study by Pushalkar and colleagues discovered a
link between pancreatic tumorigenesis and gut-originated
intrapancreatic bacteria (84). It is notable that not only bacteria
were the culprits, but also fungi. Gut-residing fungi that migrated
from the intestine to pancreas might facilitate the progression
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FIGURE 1 | Summary of major aetiological risk factors for acute pancreatitis (AP), chronic pancreatitis (CP), pancreatic cancer, and type 1 diabetes mellitus (T1DM).

Gallstones (42%) and alcohol abuse (21%) are the most frequent etiologies of AP; while tobacco use (60%) and alcohol abuse (40–70%) are the top aetiological

factors of CP. Cigarette smoking (20%) and family history (5–10%) are dominant aetiological risk factors for pancreatic cancer. It is of note that alterations in oral

microbiome predispose patients to pancreatic cancer. Genetics and environmental factors collectively contribute to the onset of T1DM, but other independent risk

factors are unclear.

FIGURE 2 | Bidirectional communication between gut and pancreas under normal conditions. Cathelicidin-related antimicrobial peptide (CRAMP) production by

insulin-secreting beta-cells is controlled by short-chain fatty acids (SCFA) produced by the gut microbiota. ORAI calcium release activated calcium modulator 1 (Orai1)

produced by pancreatic acinar cells mediates the secretion of antimicrobials, which shapes the gut microbiome and regulates gut innate immunity.

of pancreatic ductal adenocarcinoma (PDAC) by driving the C3
cascade through activating mannose-binding lectin (85).

These studies challenged the conventional belief over the
past decades that pancreas is a sterile organ and supported
the presence of a pancreatic microbiome. Moreover, the results
of various studies using traditional culture methods, real-time

quantitative polymerase chain reaction (qPCR), 16S rRNA and
shotgun metagenomics sequencing technologies consistently
showed that the gut microbiota could migrate between the
intestine and pancreas though the route of migration remains
elusive. Three translocation pathways have been proposed:
pancreatic duct reflux route, mesenteric venous drainage, and
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mesenteric lymphatic drainage (79). In-depth knowledge of the
disease-associated microbial signatures, the exact mechanisms
and trajectories of microbial migration, and the specificity of
microbes capable of translocating through these routes may offer
novel therapeutic targets and strategies.

Collectively, these works suggest that a gut-pancreatic axis
may exist, which plays a role in determining the onset and
severity of pancreatic diseases. Untangling this subtle yet
intimate communication loop requires further preclinical and
clinical studies.

THE GUT MICROBIOME AND PANCREATIC
DISEASES

The Gut Microbiome in Pancreatitis
Acute Pancreatitis

A common inflammatory disorder of the pancreas is AP, in
which pancreatic enzymes are activated locally due to a variety of
etiologies, causing autodigestion, edema, hemorrhage, and even
necrosis of pancreatic tissue, as well as dysfunction of remote
organs and systems (86). Although the pathophysiology of AP
has been well-described (87), none of these has pointed to the
attribution to the gut microbiome. However, patients with AP,
especially severe AP (SAP), are often accompanied by intestinal
barrier dysfunction and subsequent bacterial translocation into
the pancreas and/or peripheral blood (88, 89), and since the
intestinal microbiome plays a vital role in maintaining intestinal
epithelial barrier integrity and shaping intestinal mucosal
immune system (90–92), the importance of the gut microbiome
in the aetiology of AP should not be neglected.

It was not until recently that researchers began to apply high-
throughput sequencing technologies in deciphering the role of
gut dysbiosis in AP. For instance, gut dysbiosis and decreases
in the expression of antimicrobial peptides in Paneth cells were
observed in rats suffering from acute necrotizing pancreatitis
induced by hypertriglyceridemia (93). 16S rRNA-based gut
microbiota analysis revealed that patients had fewer commensal
beneficial bacteria (such as Prevotella and Faecalibacterium)
and more pathogenic bacteria (such as Escherichia-Shigella and
Enterococcus) compared with healthy subjects (94). Moreover, a
study found that patients with varying severity of AP had distinct
gut microbiota signatures, characterized by more Bacteroides,
Escherichis-Shigella, and Enterococcus in mild AP (MAP),
moderately SAP (MSAP), and SAP, respectively (95). Similarly,
another study reported that the intestinal microbiome signature
in patients with SAP was distinct from those suffering fromMAP
and MSAP, characterized by a reduction in commensal bacteria
such as Bacteroides, Alloprevotella, and Blautia (94).

Despite the investigators have observed changes in intestinal
microbiome in the setting of AP, few studies exist that have
explored the effect of intestinal microbiome on AP. A few
exceptions do exist, a seminal experimental study showed
that antibiotic-treated mice and germ-free (GF) mice exhibited
attenuated pancreatic injury after AP induction, and subsequent
FMT worsened the severity of AP, demonstrating that the
gut microbiota was a mediator in AP (94). This notion is

underpinned by another recently published study where the
authors reported that the gut microbiota and the NLRP3
inflammasome acted together to exacerbate the severity of AP
(96). Specific intestinal species even appeared to be critical
for the pathogenesis. For example, the gut commensal species,
Escherichia coli, exacerbated acute necrotizing pancreatitis
through targeting intestinal epithelial cells (97). These pioneering
studies strongly support that the gut microbiota and dysbiosis are
associated with the severity of AP.

Chronic Pancreatitis

Another common pancreatic disorder is CP. It is a progressive
fibroinflammatory condition characterized by gradual
replacement of pancreatic secretory parenchyma by fibrous
tissues, resulting in endocrine and exocrine dysfunction (98).
Similar to AP, the pathogenesis in CP might be associated with
the gut microbiome (99–101). A seminal study systematically
investigated the fecal microbiomes of patients with CP by 16S
rRNA gene sequencing (102). The 16S rRNA microbiota in
patients with CP had diminished gut microbial diversity and
richness, and the dysbiosis was accompanied by alterations in the
taxonomic microbiota profiles (102). A similar outcome was also
observed for the first time in mice with CP where authors showed
that CP mice had significantly reduced bacterial species richness
and diversity (103). Specifically, the abundance of Bacteroides
and Alloprevotella genera increased, while the abundance of
Lachnospiraceae_NK4A136, Ruminiclostridium, and Roseburia
decreased (103). A recent study also demonstrated a distinct
difference in gut microbiota between CP mice and control mice
(104). However, to our knowledge, no study to date has yet
examined the role of intestinal microbiome on CP in humans or
animals, which is worthy of future investigation.

Altogether, research on the gut microbiome of individuals
with pancreatitis is still in its infancy, but current evidence
does implicate that the host gut microbiome and pancreatitis
are closely linked. Applications of GF mouse models and
metagenomic sequencing approaches rather than relying on
biomarker sequencing will likely provide a better insight
into the intricate relationship between the gut microbiome
and pancreatitis.

The Gut Microbiome in Type 1 Diabetes
Mellitus
T1DM is an autoimmune disorder, characterized by T cell-
mediated destruction of insulin-producing beta cells in the
pancreas, resulting in a reliance on exogenous insulin throughout
life (105). Genetic variation is a well-established risk factor for
T1DM as more than 50 diverse genetic loci have been identified
(106), many of which are located in the human leukocyte antigen
(HLA) region (107). Apart from genetic predisposition to T1DM
pathogenesis, environmental factors also play an integral role
(108). In fact, genetic susceptibility and environmental events,
conspire together to provide fertile ground for the initiation
and progression of T1DM (109), and since both environmental
factors (e.g., dietary habits) (110–113) and genetic risks (114–
116) profoundly affect the human gut microbiome, it would be
of interest to find out the role of the gut microbiome in T1DM.
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In fact, the association between the gut microbiome and
T1DM has been implicated in previous studies (117–122). 16S
rRNA pyrosequencing analysis of fecal microbiota of children
with and without beta-cell autoimmunity showed that children
with autoimmunity had fewer lactate-producers, butyrate-
producers, Bifidobacterium adolescentis, and Bifidobacterium
pseudocatenulatum but more Bacteroides (123). Another study
compared the gut microbiota of children with T1DM, maturity-
onset diabetes of the young 2 (MODY2), and in healthy state
in a case-control study by 16S rRNA pyrosequencing, and the
results showed that children with T1DM had a significantly
lower gut microbiota diversity; significantly more Bacteroides,
Ruminococcus, Veillonella, Blautia, and Streptococcus genera; and
significantly fewer Bifidobacterium, Roseburia, Faecalibacterium,
and Lachnospira (124). Gut dysbiosis was observed in children
aged 1–5 years with new-onset T1DM (125). Whole metagenome
sequencing uncovered an increase in lipopolysaccharides-
producing bacteria and a decrease in SCFA-producing bacteria
in women with T1DM across pregnancy compared with
healthy individuals as controls (126). Remarkably, the gut
mycobiome signature is beginning to intrigue humans, as
recently demonstrated in a pilot study assessing the gut
mycobiome in adult patients with T1DM (127).

Indeed, the gut microbiome appears to be a principal driving
force of the onset of T1DM, particularly in subjects genetically
disposed to the disease. The hallmark study of Wen and
colleagues first reported that GF but not specific pathogen-
free non-obese diabetic (NOD) mice devoid of MyD88, a key
intracellular component of multiple Toll-like receptor-mediated
signaling pathways, did develop robust diabetes, and colonization
of a defined microbial consortium could mitigate diabetes (128).
A longitudinal study followed the serum conversion pattern of
autoantibody of 33 HLA-matched infants from birth to 3 years of
age (129). Four of the 11 seroconverted infants developed T1DM,
accompanied by drastic reduction in intestinal microbiome
diversity though no obvious change was observed in their major
gut metabolites (129). On the other hand, The Environmental
Determinants of Diabetes in the Young (TEDDY) study analyzed
stool samples of 783 children collected monthly during their first
3 months of age until the clinical endpoint (130). The study
found that early infant microbiome was dynamic and highly
individualized both at the taxonomic and functional levels, and
the colonic SCFA might influence early-onset T1DM (130). The
gut microbiome not only drives T1DM development, but also
has an impact on cognitive functions. For examples, depletion
of acetate producing bacteria, caused by vancomycin exposure,
resulted in cognitive impairment in T1DMmice (131). Moreover,
gender bias in autoimmunity including T1DM was found to be
influenced by the host gut microbiota, and the sex differences in
the gut microbiome could drive hormone-dependent regulation
of autoimmunity (132, 133). Thus, experimental and clinical
evidence implicated that alterations in the gut microbiome
and/or metabolome occurred prior to or even played an active
role in driving the onset of T1DM in genetically susceptible
infants, though the exact mechanisms are largely unclear. Yet,
a previous study found that lipopolysaccharide from Bacteroides
dorei might increase the risk of autoimmunity (134). Moreover,

only very few studies applied metaproteomics in investigating the
functional interactions between the host microbiota and T1DM
disease risk (135).

Thus, it will be necessary to conduct more mechanistic
studies to confirm the causal role of gut microbiome in the
onset of T1DM not only by 16S rRNA gene sequencing, but
also in combination with metagenomics, metabolomics, and
metaproteomics approaches to decipher the functionality of the
gut microbiome in T1DM.

The Gut Microbiome in Pancreatic Cancer
Pancreatic cancer refers to tumors that start in the cells
of the pancreas, including exocrine tumors. Generally, it is
classified into PDAC (about 95% of pancreatic cancers) and
endocrine tumors (about 5% of pancreatic cancers) (136).
In PDAC, alterations in gut microbiota were observed both
in humans and animals. For example, genetically engineered
PDAC mice exhibited gut dysbiosis characterized with the
predominance of Proteobacterial and Firmicutes as well as
elevated serum polyamine metabolism (137). A previous
study found that the 16S rRNA fecal microbiota of patients
with pancreatic carcinoma (n = 85) exhibited significantly
diminished alpha-diversity compared with matched healthy
controls (n= 57), accompanied by increases in certain pathogens
and lipopolysaccharides-producing bacteria, and decreases in
probiotics and butyrate-producing bacteria (138). Patients with
PDAC had an increased phylum Proteobacteria (such as
Gammaproteobacteria) and a decreased phylum Firmicutes
(such as butyrate-producing bacteria, including Eubacterium
rectale, Faecalibacterium prausnitzii, and Roseburia intestinalis)
when compared with healthy controls (139). Additionally, several
recent review articles have underscored the importance of the gut
microbiome in the development and progression of PDAC (140–
142).

Evidence is also beginning to show that the gut microbiome
is involved in pancreatic oncogenesis or tumor suppression
(143). Thomas and colleagues demonstrated that the intestinal
microbiome could accelerate pancreatic carcinogenesis through a
long-distancemechanism in preclinical models (144). Ablation of
the gut microbiome by oral antibiotics could diminish pancreatic
malignancies burden through increasing infiltration of interferon
gamma-producing T cells and reducing interleukin 17A and
interleukin 10-producing T cells, further supporting the notion
that the gut microbiome might promote the pathogenesis in
pancreatic cancer (67).

Recent studies found that the pancreatic tissue harbors
microorganisms under both normal and pathological conditions
(82). A unique microbial signature has also been observed
in patients with pancreatic cyst fluid, characterized by an
enrichment of Bacteroides spp., Escherichia/Shigella spp., and
Acidaminococcus spp. (145). The fact that the pancreas harbors
microorganisms raises the question of whether the pancreatic
microbiome, in addition to the gut microbiome, is tied to
the disease process. Geller and colleagues showed by qPCR,
16S rRNA fluorescence in situ hybridization analysis, and
immunohistochemistry that intratumor samples of pancreatic
cancer patients contained more bacteria than matched tissues
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FIGURE 3 | Some of the reported intestinal microbial genic features in pancreatic diseases, including pancreatitis, type 1 diabetes mellitus (T1DM) and pancreatic

cancer. An overview of selected key gut microbiome features related to pancreatic diseases. ↓, lower abundance in pancreatic diseases when compared with control;

↑, higher levels in pancreatic diseases when compared with control.

in control subjects (83). The intratumor microbiota of these
human PDAC samples was dominated by Gammaproteobacteria,
which conferred gemcitabine resistance in 14 of 15 of the
human PDAC tumors (83). Collectively, these data showed
that pancreatic tumor tissues contained bacteria that rendered
resistance to gemcitabine and thereby affected the efficacy of
cancer therapies (83). The study convincingly confirmed the role
of intratumor bacteria in promoting gemcitabine resistance in
pancreatic cancer.

More intriguingly, the observations of several recent studies
suggested that the gut microbiome was in tight partnership
with the intratumoral microbiome collectively contributing to
carcinogenesis in the tumor microenvironment, implicating
that there was gut-tumor microbial crosstalk and that such
interactions could affect tumor outcome (84, 85). The tumor
microbiome in PDAC patients also varied with tumor tempo;
the 16S rRNA-tumor microbiome of patients of long-term
survival (LTS) exhibited a higher alpha-diversity and more
Pseudoxanthomonas, Saccharopolyspora, Streptomyces, and
Bacillus clausii than patients of short-term survival (STS) (146).
Mechanistically, the tumor microbiome shaped the antitumor
immune responses through CD8+ T cell recruitment and

activation (146). Furthermore, human gut microbiome was
absent from normal tissues adjacent to tumor tissues, but it
represented 25% of human tumor microbiome in matched
tumor samples (146). The FMT of fecal samples of LTS but not
STS or healthy donors significantly reduced tumor growth in
antibiotics-fed mice with orthotopic syngeneic tumors, and the
antitumor effect was attenuated by antibiotic treatment (146).
These results suggested that the gut microbiota of pancreatic
cancer patients had the capacity to migrate and colonize
pancreatic tumor tissues and that the gut and/or tumor bacteria
from LTS patients could confer a protective effect against tumor
growth. It would thus be of interest to further elucidate the
significance of gut-tumor microbial crosstalk in progression of
pancreatic cancer. Moreover, since the oral microbiome is closely
related to the gut microbiome, it is also worthy investigating
if the oral microbiome is another driver for the progression of
pancreatic cancer (147–149).

In summary, a subtle yet intimate nexus loop exists
between the gut microbiome and pancreatic diseases, including
pancreatitis, pancreatic cancer, and T1DM (Figure 3). Gut
dysbiosis has been consistently reported in patients of
pancreatic diseases; however, causal relationships between
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FIGURE 4 | Microbiome-based therapeutics and therapies for pancreatic

diseases. Strategies to alleviate pancreatic diseases by modulating the gut

microbiome include application of products and treatments like probiotics,

prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT).

the gut microbiome and pancreatic disorders, as well as the
mechanism of gut microbiome in contributing to the onset,
progression, and pathogenesis of this spectrum of diseases, merit
further elucidation. The expansion of our knowledge in the field
will help identify novel treatment targets and deepen our insights
into the development of personalized therapies.

GUT MICROBIOME-TARGET THERAPIES

Given the close link between the gut microbiome and pancreatic
disorders, it may be feasible to ameliorate pancreatic diseases
by modulating the gut microbiome via application of products
and treatments like probiotics (150), prebiotics (151), synbiotics
(152), postbiotics (153), and FMT (154) (Figure 4). A better
understanding of the causal relationship in gut microbiome-
pancreatic disease interactions will improve the precision of
novel target therapies.

Probiotics
Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit on
the host,” according to the International Scientific Association
for Probiotics and Prebiotics (ISAPP) consensus in 2013 (150).
The role of probiotics in human health and disease has
received increasing attention, especially in the prevention and
treatment of acute gastroenteritis (155), Clostridium difficile-
associated diarrhea (156–158), irritable bowel syndrome (159,
160), neonatal sepsis (161), and acute respiratory infection
(162), which have shown beneficial clinical efficacy. Although
less studied, clinical evidence also shows beneficial effects of
administering probiotics in pancreatic-related disorders.

Pancreatitis and Probiotics

A number of preclinical studies have reported beneficial
effects of probiotic application in mitigating AP (Table 1). For
instance, ingesting Lactobacillus plantarum for 4 days before
and after induction of AP could reduce microbial translocation
in experimental pancreatitis (163). Consuming a microbial
consortium comprising Streptococcus thermophilus, Lactobacillus
acidophillus, Bifidobacterium lactis was capable of reducing
the severity of experimental AP (164). A similar outcome
was observed in rats that received Ecologic 641 probiotic
formulations 5 days prior to the induction of AP (165).
Modification of gut microbiota via administration of Ecologic
641 probiotic formulations reduced bacterial translocation,
morbidity, and mortality in the course of experimental AP
(166). In two independent studies, the authors observed that
Saccharomyces boulardii could diminish bacterial infections and
ameliorate pancreatitis (167, 168). A systematic review andmeta-
analysis strengthened the findings of the aforementioned studies
by showing that probiotics did exhibit efficacy in animal models
of AP (169). Although the probiotic product, Ecologic 641
probiotic formulations, has been widely promoted as beneficial
for AP, a rat experimental model aiming to investigate the
association between probiotic prophylaxis (by feeding Ecologic
641 probiotic formulations) and enteral nutrition with AP
mortality did not find significant differences between groups
in terms of histological severity of pancreatitis, degree of
discomfort, weight loss, histological examination of small bowel
and bacterial translocation, suggesting probiotic application was
ineffectual nor harmful to AP-induced rats (170). Another study
found that Clostridium butyricum and its major metabolite,
butyrate, could reduce intestinal injury possibly by altering the
functions of the intestinal mucosal barrier (171).

It was not until 2002 that probiotics began to be used in
clinical trials (Table 2). In Oláh et al. (172), 45 patients with
AP were randomly assigned to receive either live or inactivated
Lactobacillus plantarum (that is, postbiotics) with oat fiber for 7
days by nasojejunal tube. Significant differences were observed
in the severity of infective pancreatic necrosis and abscesses
between the two groups, but not the mean length of hospital
stay (172). Similarly, Lactobacillus plantarum supplementation
in patients with AP attenuated the severity of disease, improved
intestinal permeability and clinical outcomes (173). Although
beneficial effects of ingesting probiotics have been observed
in some clinical studies in AP, other studies yielded neutral
or even negative outcomes. For example, in a multicenter
randomized, double-blind, placebo-controlled trial, 298 patients
with SAP were randomly assigned to receive either Ecologic
641 probiotic formulations (n = 153) or placebo (n = 145),
infectious complications occurred in 46 (30%) probiotic-
receivers and 41 (28%) placebo-receivers, and the mortality rate
of patients was higher in the probiotic group (24 patients; 16%)
compared with (9 patients; 6%) the placebo group, suggesting
that probiotic consumption did not reduce the risk of infectious
complications but was associated with an increased risk of
mortality (174). Probiotic supplementation did not affect gut
integrity, infectious complications, mortality, and hospital stay
in another double-blind randomized controlled trial published
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TABLE 1 | Summary of preclinical studies investigating the effects of probiotic application in acute pancreatitis (AP).

Probiotic

species/product

Probiotic dose Time of probiotic application Main observations Reference(s)

Lactobacillus plantarum 2.5–5 × 109 CFU/d 4 d before and after induction of AP Reduced microbial translocation in

experimental pancreatitis

(163)

Streptococcus

thermophilus, Lactobacillus

acidophillus, and

Bifidobacterium lactis

2.4 × 109 CFU/d 5 d after induction of AP Reduced the severity of AP (164)

Ecologic 641 5 × 109 CFU/d 5 d before induction of AP Ameliorated the severity of AP via

reducing oxidative stress-induced

injury

(165)

Ecologic 641 5–10 × 109 CFU/d 5 d before and 7 d after induction of

AP

Reduced bacterial translocation,

morbidity, and mortality

(166)

Saccharomyces boulardii 50 mg/kg/d 6 h and 30 h after induction of AP Diminished bacterial infections and

offer health benefits

(167)

Saccharomyces boulardii 50 mg/kg/d 6 h and 24 h after induction of AP Reduced bacterial translocation (168)

Ecologic 641 5 × 109 CFU/d 4 d before and 6 d after induction of

AP

No differences in histological severity

of pancreatitis and bacterial

translocation between groups

(170)

Clostridium butyricum 109 CFU/d 11 d before induction of AP Reduced intestinal injury (171)

1. “Ecologic 641” was a probiotic mix comprised six strains of freeze-dried, viable bacteria: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus salivarius, Lactococcus lactis,

Bifidobacterium bifidum, and Bifidobacterium lactis (previously classified as Bifidobacterium infantis), plus cornstarch and maltodextrins.

in 2011 (175). Furthermore, two meta-analyses reported that
probiotics intake was neither beneficial nor harmful to patients
with SAP (176, 177). A recent Cochrane review that included
84 randomized controlled trials found that, probiotics intake
was not associated with the overall mortality in AP (178).
Intriguingly, probiotic preparations consisting of Bifdobacterium
longum, Lactobacillus acidophilus, and Enterococcus faecalis
showed a curative effect in patients with SAP by lowering
the levels of pro-inflammatory cytokines, restoring the
gastrointestinal function sooner, decreasing complications
such as infection, and shortening of hospital stay in patients with
SAP (179). The consumption of a mixed probiotic preparation
containing Bacillus subtilis and Enterococcus faecium reduced
the percentage of pancreatic sepsis, multiple organ dysfunction
syndrome, and mortality (180). Furthermore, the intake of
the same probiotic mix reduced the length of hospital stay of
patients with MAP, although no statistical difference was seen
in recurrent abdominal pain between the probiotic and placebo
group (181).

Overall, there are discrepant results regarding the effects
of probiotics on AP. Larger scale studies would be necessary
to clarify whether probiotics intake could improve AP and if
there are strain-specific effects in alleviation of AP-associated
symptoms. It is noteworthy that there is scarce data on the effect
of probiotics on CP in preclinical and clinical trials; thus, whether
probiotic treatment has any clinical efficacy in CP remains to
be confirmed.

Probiotic Mechanisms of Action
The available literature reveals that the mechanisms of probiotic
effects in AP are exerted via improving the intestinal barrier

function, inducting inflammatory responses, and modulating the
gut microbiome (Figure 5).

Intestinal barrier dysfunction is closely linked to the course
of AP (89). Bacterial translocation is triggered by an imbalance
in intestinal barrier function, especially bacterial migration
from the small intestine into the pancreatic tissue and/or in
peripheral blood is a major cause of infection in the pancreas or
peripancreatic tissue (88, 182). Probiotics may act by improving
intestinal barrier function that in turn prevents bacterial
translocation. Oral gavage of Ecologic 641 probiotic formulations
once daily for 2 days to mice prior to induction of AP by
intraperitoneal injections with cerulein could prevent intestinal
barrier dysfunction in the late phase of AP; however, such effect
was not seen if probiotics were administered after induction of
AP, indicating that the efficacy of probiotics was related with the
timing of probiotic application (183). In a randomized, placebo-
controlled, multicenter trial, probiotic application showed a
capacity for preventing bacterial translocation (184). Another
study found that the probiotic mechanism of improvement
of intestinal barrier function was via increasing tight-junction
proteins (including claudin-1, occludin, and ZO-1) while
reducing claudin-2 and MMP9 (171). It is worth noting that
the metabolites of probiotics, also known as postbiotics similarly
have the effect of improving intestinal barrier function and thus
preventing bacterial translocation (185–187).

As discussed earlier, bacteria and fungi are able to migrate
from the gut into the pancreatic tissue, where they are responsible
for the course of disease (84, 85). Translocation of a gut
pathobiont, Enterococcus gallinarum, to the liver and other
systemic tissues triggered autoimmune responses in genetically
predisposed hosts provides a prime example (188). Moreover,
the dissemination of Escherichia coli from primary colorectal
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TABLE 2 | Summary of clinical trials investigating the efficacy of probiotic application in pancreatitis.

Probiotic group Control group Treatment frequency;

time

Clinical trial design Main observations Reference(s)

109 CFU/d Lactobacillus

plantarum+ oat fiber

Inactivated Lactobacill-us

plantarum+ oat fiber

Twice daily; 7 d Randomized, double-blind Reduced pancreatic sepsis

and the number of surgical

interventions

(172)

1010 CFU/d Lactobacillus

plantarum

Normal saline Once daily; 7 d Randomized, single-blind Attenuated disease severity,

improved intestinal

permeability and clinical

outcomes

(173)

1010 CFU/d

Ecologic 641

Placebo Twice daily; 28 d Multicenter, randomized,

double-blind,

placebo-controlled

Did not reduce risk of

infectious complications,

increased risk of death

(174)

1010 CFU/d

Probiotic sachet

Placebo Once daily; 7 d Randomized, double-blind,

placebo-controlled

No effect on intestinal

permeability or endotoxemia

(175)

2.1 × 1010 CFU/d

Bifidobacterium triple

viable capsules

Water Twice daily; 14 d Randomized Reduced the level of

proinflammatory cytokines,

restored gastrointestinal

function earlier, reduced the

occurrence of complications

(179)

3 × 109 CFU/d

Live combined Bacillus

subtilis and Enterococcus

faecium

enteric-coated capsules

Water Third daily; 14 d Randomized, double-blind Reduced pancreatic sepsis,

multiple organ dysfunction

syndrome, and mortality

(180)

–

Live combined Bacillus

subtilis and Enterococcus

faecium

enteric-coated capsules

Placebo –; 30 d Randomized, double-blind,

placebo-controlled

Shortened the length of

hospital stay; no statistical

difference in recurrent

abdominal pain

(181)

1. “Ecologic 641” was a probiotic mix comprised six strains of freeze-dried, viable bacteria: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus salivarius, Lactococcus lactis,

Bifidobacterium bifidum, and Bifidobacterium lactis (previously classified as Bifidobacterium infantis), plus cornstarch and maltodextrins.

2. The “Probiotic sachet” contained Lactobacillus acidophilus, Bifidobacterium longus, Bifidobacterium bifidum, and Bifidobacterium infantalis in addition to 25mg

of fructooligosaccharide.

3. “Bifidobacterium triple viable capsules” contained Bifdobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis.

4. –, not available.

cancer (CRC) via the gut vascular barrier allowed the bacteria
to migrate to the liver to form a premetastatic niche, paving a
way for CRC to metastasize to the liver in advance (189). Despite
the aforementioned two studies are beyond the scope of this
review, they have provided compelling evidence of dissemination
of gut-originated bacteria in relation to onset and development
of diseases. In our laboratory, we found that Lactobacillus
rhamnosus Probio-M9 could transmit from the gut to mammary
tissue to alleviate symptoms of Staphylococcus aureus-induced
mastitis in rats. Here, we hypothesize that the mechanism of
action of probiotics resembles that seen in several examples
mentioned above, albeit we do not know whether probiotics will
promote or alleviate the development of disease (Figure 5).

Another probiotic mechanism is via reducing inflammatory
responses in pancreatitis. Ingesting probiotics could lower
proinflammatory cytokines, such as interleukin (IL)-8,
tumor necrosis factor (TNF)-α, and C-reactive protein (179).
Meanwhile, the species Clostridium butyricum has been shown
to suppress IL-6, IL-12, IL-1β, and TNF-α production (171),
while another study found that probiotics intake could reduce
TNF-α and IL-6 expression and enhanced IL-10 expression in
SAP (180).

Finally, probiotics might serve as a gut microbiota modifier,
regulating the gut function and homeostasis (190), particularly
in the presence of pancreas-gut microbiota cross-talk and
interactions (143). Notably, few studies have investigated the
effects and mechanisms of action of probiotics on the gut
microbiome in AP. Large-scale animal models and high-quality
clinical trials are therefore needed to determine the interactions
between probiotics, host gut microbiome, and AP development
and pathogenesis.

T1DM and Probiotics

The NOD mouse model is one of the most important animal
models in T1DM research (191). A myriad of evidence regarding
the role of probiotics in T1DM stems from NOD mouse models
and human studies (Table 3). Female NOD mice receiving
the probiotic mix, VSL#3, orally could prevent spontaneous
autoimmune diabetes via an IL-10-dependent mechanism and
gut microbiota modulation (192, 193). A previous study in NOD
mice showed that Lactococcus lactis could serve as a potential
immunotherapeutics for autoimmune T1DM (194). As one of
the examples, oral administration of Lactococcus lactis secreting
the beta-cell antigen glutamic acid decarboxylase (GAD)-65
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FIGURE 5 | Potential mechanisms by which probiotics alleviate acute pancreatitis. The putative mechanisms by which probiotics alleviate acute pancreatitis include

improving the intestinal barrier function, inducting inflammatory responses, modulating the gut microbiome, and targeting pancreatic tissue. ↑, indicates an increase;

↓, indicates a decrease.

along with anti-inflammatory cytokine IL-10 to newly diabetic
NOD mice led to a significant diabetes reversal, which was
fortified up to 67% when in combination with low-dose anti-
CD3 antibody (195). Importantly, this effect that persisted after
treatment discontinuation (195). Clostridium butyricum has been
reported to protect against T1DM by modulating intestinal
immune homeostasis and inducing pancreatic regulatory T cells
(196). The development of autoimmune diabetes in NOD mice
could be alleviated by taking a probiotic combination comprising
five bacterial strains that acted by reducing gut permeability,
inducing gut-homing Treg cells, and reducing Th1 polarization
(197). Akkermansia muciniphila, a candidate of next-generation
probiotics, appeared to slow the progression of T1DM in NOD
mice (198, 199).

A prospective cohort study of 7,473 children showed that
early probiotic supplementation could reduce the risk of islet
autoimmunity in children at the highest genetic risk of T1DM
(200). Another study of 61 young T1DM patients given
either Lactobacillus rhamnosus GG or placebo daily for 12
weeks showed that intake of probiotics significantly increased
circulating levels of tryptophan and decreased inflammatory
cytokine production (201). The results of a recent randomized,
double-blind, and placebo-controlled pilot study assessing
treatment with a multispecies probiotic preparation, in 90
children with new-onset T1DM showed that better glycemic

control and a decrease in insulin requirements (202). Notably,
a double-blind, randomized controlled trial found that the intake
of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12
had no effect on beta-cell function in children newly diagnosed
with T1DM (203).

Similar to AP, contradicting results have been obtained
regarding the clinical efficacy of probiotics in management of
T1DM. The discrepancies should be taken into account in future
studies and in design of novel treatment strategies.

Pancreatic Cancer and Probiotics

Studies of the beneficial effects of probiotic consumption
on pancreatic cancer seem to be just beginning, and most
published works were conducted in animal models. Probiotic
Lactobacillus could enhance gemcitabine-mediated antitumor
efficacy in mice with pancreatic cancer (204). This finding is
strengthened by another recently published study where authors
further observed that probiotics could reduce gemcitabine-
induced side effects by restoring a favorable microbiota (205).
In addition, probiotic-treated super-charged NK cells could
prevent the growth of pancreatic tumors through lysis and
differentiation in humanized-BLT mice (206). The MAPK-p38
and transforming growth factor-β (TGF-β) signaling pathways
have been hypothesized to be the mechanisms by which
probiotics exert their anti-tumor effects (207, 208). Whether
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TABLE 3 | Studies investigating the efficacy of probiotics in preventing and alleviating murine and human type 1 diabetes mellitus (T1DM).

Subjects Probiotic

species/products

Probiotic dose Probiotic

supplementation time

Main observations Reference(s)

NOD mice VSL#3 9 × 108 CFU/d 3 times per week from 4 to

32 weeks of age

Reduced incidence of

T1DM; reduced insulitis and

a decreased rate of beta cell

destruction; increased

production of IL-10

(192)

NOD mice VSL#3 14 mg/kg/d 3 times per week from 4 to

20 weeks of age

Protected from T1DM;

altered microbiota

composition; dampened

intestinal inflammation;

restored gut immune

homeostasis; balanced the

protective Teff/Treg cell in

the gut mucosa

(193)

NOD mice Lactococcus lactis 2 × 109 CFU/d 5 times per week for 6

weeks

Reverted diabetes in NOD

mice; increased frequencies

of local Tregs

(194)

NOD mice Clostridium butyricum 2.5 × 108 CFU/kg/d Once daily from 3 to 45

weeks of age

Prevented the onset of

diabetes; induced

pancreatic Treg cells

(196)

NOD mice Immune regulation and

tolerance 5 (IRT5)

109 CFU/d 6 times a week for 36 weeks Reduced incidence of

T1DM; reduced gut

permeability, increased

gut-homing Treg cells;

reduced Th1 polarization

(197)

Children – – 0–27 d of age Decreased risk of islet

autoimmunity

(200)

Children Lactobacillus rhamnosus 109 CFU/d Once daily for 12 weeks Increased circulating levels

of tryptophan; decreased

inflammatory cytokine

production

(201)

Children VISBIOME 1.1 × 1011 CFU/d Once daily for 12 weeks Reduced glycated

hemoglobin; reduced total

and bolus insulin

requirements

(202)

Children Lactobacillus rhamnosus

and Bifidobacter-ium lactis

109 CFU/d Once daily for 24 weeks No significant effect on

pancreatic beta-cell function

(203)

1. VSL#3 contained Bifidobacterium (Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium breve), Lactobacillus (Lactobacillus acidophilus, Lactobacillus casei,

Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus plantarum), and Streptococcus salivarius subsp. thermophilus.

2. Immune Regulation and Tolerance 5 (IRT5) was a probiotic combination comprising Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium bifidium, and

Streptococcus thermophilus.

3. VISBIOME contained Lactobacillus paracasei DSM24733, Lactobacillus plantarumDSM24730, Lactobacillus acidophilus DSM24735, and Lactobacillus delbrueckii subsp. bulgaricus

DSM 24734, Bifidobacterium longum DSM 24736, Bifidobacterium infantis DSM 24737, Bifidobacterium breve DSM 24732, and Streptococcus thermophilus DSM 24731.

4. –, not available.

probiotics have a role in slowing or inhibiting the progression of
pancreatic cancer needs to be further investigated and warrants
future preclinical and clinical studies.

Prebiotics
The ISAPP consensus statement (2016) defined the
term prebiotics as “a substrate that is selectively utilized
by host microorganisms conferring a health benefit,”
including conjugated linoleic acids, polyunsaturated fatty
acids, oligosaccharides such as fructooligosaccharides,
inulin, galactooligosaccharides, mannanoligosaccharides,
xylooligosaccharides, human milk oligosaccharides, phenolics,
and phytochemicals (151). Administration of chitosan

oligosaccharides to mice for 4 weeks prior to induction of
SAP significantly reduced the severity of pancreatic injury by
reducing oxidative stress and modulating the gut microbiota
(209). Correlations between prebiotic fiber supplementation and
hospital stay, duration nutrition therapy, acute phase response
and overall complications were identified in patients with SAP
in a randomized prospective double-blind controlled clinical
trial (210). Inulin-type fructans were thought to play a role
in preventing the development of AP and T1DM (211, 212).
Supplementation of low-methoxyl pectin in NODmice alleviated
T1DMby increasing colonic SCFA production (213, 214). Similar
results have been reported in a separate study investigating the
effect of human milk oligosaccharides on T1DM in NOD mice
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(215). A randomized, placebo-controlled trial showed that the
administration of prebiotics (oligofructose-enriched inulin)
could improve glycemic control in children with T1DM (216).
A series of investigations have also shown that a diet rich in
resistant starch was significantly associated with decreased risk
of experimental pancreatic malignancies (217, 218).

Synbiotics
The definition of symbiotic is “a mixture comprising live
microorganisms and substrate(s) selectively utilized by host
microorganisms that confers a health benefit on the host,”
according to the ISAPP consensus statement issued in 2019
(152). Enteral feeding with Synbiotic 2000 not only reduced
organ dysfunctions in patients with SAP, but also improved
intestinal barrier function (219, 220). Administration of
synbiotics composed of Lactobacillus casei, Lactobacillus
rhamnosus, Lactobacillus acidophilus, Bifidobacterium bifidum,
and fructooligosaccharides in patients with CP increased the
serum concentrations of hemoglobin, hematocrit, erythrocytes,
total count of lymphocytes, magnesium, and albumin, and
meanwhile reduced the total cholesterol values, without
altering the nutritional status of the patients (221). In
another single-blind prospective randomized control trial,
synbiotics containing Streptococcus faecalis, Clostridium
butyricum, Bacillus mesentericus, Lactobacillus sporogenes,
and fructooligosaccharides significantly reduced septic
complications, hospital stay, and antibiotic requirement
in patients undergoing pancreatic surgery for CP (222). A
randomized, double-blind, placebo-controlled trial showed that
synbiotic supplementation in patients with T1DM might be
effective in improving fasting blood glucose, hemoglobin A1c,
insulin, hypersensitive C-reactive protein, and total antioxidant
capacity (223).

Postbiotics
The nomenclature of postbiotics was not clear until 2021 when
the ISAPP defined a postbiotic as a “preparation of inanimate
microorganisms and/or their components that confers a health
benefit on the host” (153). Evidence is emerging that postbiotics
have multiple health benefits and are considered to be the
next horizon in microbial therapeutics and functional foods
(224). In a cerulein-induced AP mouse, oral administration of
probiotic Lactobacillus brevis SBL88-derived polyphosphate for
24 days prior to induction of AP mitigated the severity of AP,
which was not only associated with modulation of the intestinal
microbiome but also enhancement of the gut barrier integrity
(225). A postbiotic, heat-killed Lactococcus chungangensis CAU
1447, could facilitate wound healing in type I diabetic mice;
however, the authors did not investigate its effect on T1DM (226).
Ferrichrome, derived from Lactobacillus casei ATCC334, has
been shown to inhibit the growth of pancreatic cancer cells (227).

Fecal Microbiota Transplantation
Fecal microbiota transplantation is a procedure in which stool
from a healthy donor is placed into another patient’s intestine
(228). FMT to both antibiotic-treated mice and GF mice resulted
in an aggravated AP (94). Heparanase-transgenic mice had more

severe AP than wild-type mice; however, transfer of feces from
the former to the latter worsened the disease (229). Parallels
have also been observed in Western-type diet in combination
with acute necrotizing pancreatitis (ANP) mice (230). However,
a case report showed that FMT could be an effective therapeutic
strategy in MSAP patients (231). The exact implication of
FMT in the onset of pancreatitis remains to be proven in
animal and human studies. In specific pathogen-free NOD mice,
females have 1.3–4.4 times higher incidence of T1DM. Gavage
transfer of gut microbiota from adult males to immature females
altered the recipient’s microbiota, elevated the testosterone,
caused metabolomic changes, reduced islet inflammation and
autoantibody production, and protected against T1DM (133).
Transplanting fecal samples from diabetes-protected MyD88-
deficient NOD mice to wild type female NOD/LtJ mice led
to a delayed onset of diabetes and a reduced insulitis (119).
Early-life antibiotic exposure not only perturbed the intestinal
microbiota, but also accelerated the development of T1DM in the
NODmouse model; however, maternal cecal microbiota transfer
to antibiotic-induced NOD mice restored the enhanced disease
risk to baseline levels (232, 233). A randomized controlled trial
published in 2021 found that FMT halted the onset of T1DM
in human (234). Some other human FMT trials are ongoing for
T1DM (NCT04124211; NCT04749030). A paucity of studies have
investigated the application of FMT in pancreatic cancer, except
those mentioned earlier.

In summary, research on the application of probiotics in
pancreatic diseases has spawned a great deal of data; however,
the data from prebiotics, synbiotics, postbiotics, and FMT is
rather limited. Although heterogeneity exists in some studies, the
application of probiotics, prebiotics, synbiotics, postbiotics, and
FMT for improving pancreatic diseases remains promising.

FUTURE STRATEGIES

Recent metagenomics and metabolomics studies have
highlighted the complex interplay between the gut microbiome
and pancreatic-related disorders. However, these approaches
have several limitations. Firstly, they are association studies
rather than causal research, which is needed to show whether
alterations in the gut microbiome and its metabolites are a
cause or a consequence of the disease. Secondly, although it
is possible to describe the full spectrum of microorganisms
through metagenomics studies, targeting strains like traditional
culture approaches is difficult. Thirdly, metabolomics has almost
become a golden standard used to depict metabolic profiles
of the gut microbiome, but it is not easy to identify sources of
specific metabolites on the species or strain level. To address
these constraints, GF animal model and culturomics have
become essential tools for exploring potential causality between
host-microbial interactions (235, 236). The GF animal model
is an attractive model, which is devoid of microorganisms per
se. Excluding interference introduced by the host indigenous
microbiome makes GF animal an indispensable key model
for causality research. Culturomics has enabled laboratory
cultivation and characterization of the vast majority of intestinal
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BOX 1 | Strategies and considerations in design of microbiome and probiotics studies in the future.

• Determining potential causality between host-microbial interactions by combining GF animal model, culturomics, andmulti-omic technologies, e.g., metagenomics,

metabolomics, metatranscriptomics, and metaproteomics.

• Assessing the consistency of the baseline microbiota prior to the start of preclinical and clinical trials.

• Constructing standardized protocols for trial conduction, e.g., probiotic strains, doses, duration and frequency of administration, to ensure comparability between

studies and results generated by different laboratories.

• Constructing a standardized probiotic effect evaluation protocol to improve comparability of clinical outcomes between studies.

microbes, which is integral to research into microbiome (237).
Additionally, application of other complementary technologies,
such as metatranscriptomics and metaproteomics, will expand
our understanding of the gut microbiome and its function.

Modulation of the gut microbiome by probiotics, prebiotics,
synbiotics, postbiotics, and FMT has reinforced the potential for
improving pancreatic diseases. However, animal and human data
with respect to probiotics are equivocal in some cases, which
could be due to several reasons. Firstly, discrepancies in probiotic
strains, dosage, duration and frequency of administration in
studies investigating effects of probiotic application are likely
responsible for the inconsistent findings. Secondly, probiotics
are supposed to act on the gut microbiome; however, the large
variation in the indigenous gut microbial landscape between
individuals is another major confounder. Consistency of the
baseline microbiota should be taken into account given that
environmental factors [such as diet (238–240), age (241),
geography (241), and birth mode (242, 243)] that determine the
gut microbiome differ between individuals. Finally, heterogeneity
in the host per se exists. Collectively, these limitations should be
taken into account in future study design (Box 1).

CONCLUSIONS

There is growing appreciation of the fact that the gut microbiome
imprints pancreatic diseases including pancreatitis, pancreatic
cancer, and T1DM based on a multitude of preclinical and
clinical studies. Evidence of the intestinal microbiome in
driving pancreatic diseases further supports the significance
of the extensive gut-pancreas crosstalk, leading to intense
interest in microbiome characterization and engineering via
application of probiotics, prebiotics, synbiotics, postbiotics,

or FMT. Researches over the last decades have advanced our
understanding of the relationship between the gut microbiome
and pancreatic diseases. Such advent would also bring about
novel strategies in improving pancreatic diseases viamodulating
the gut microbiome. Despite this breakthrough, potential
causality between the gut microbiome and pancreatic diseases
remains obscure. Efforts to untie the causality and microbiota-
mediated mechanisms of pancreatic diseases have critical
clinical implications, enabling us to better constitute a new
and targeted approach to modulate the gut microbiome.
Moreover, a body of preclinical research and high-quality
clinical trials are needed to further elucidate mechanisms
by which the gut microbiome influences pancreatic diseases,
as well as mechanisms of probiotics, prebiotics, synbiotics,
postbiotics, and FMT in improving disease outcomes.
Ultimately, future development in the field will aim to
harness microbiome engineering in clinical practice on a
personalized level.
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al. European consensus conference on faecal microbiota transplantation in
clinical practice. Gut. (2017) 66:569–80. doi: 10.1136/gutjnl-2016-313017

155. Allen SJ, Martinez EG, Gregorio GV, Dans LF. Probiotics for treating
acute infectious diarrhoea. Cochrane Database Syst Rev. (2010)
2010:CD003048. doi: 10.1002/14651858.CD003048.pub3

156. Hempel S, Newberry SJ, Maher AR, Wang Z, Miles JN, Shanman R, et
al. Probiotics for the prevention and treatment of antibiotic-associated
diarrhea: a systematic review and meta-analysis. JAMA. (2012) 307:1959–
69. doi: 10.1001/jama.2012.3507

157. Johnston BC, Ma SS, Goldenberg JZ, Thorlund K, Vandvik PO, Loeb M, et
al. Probiotics for the prevention of Clostridium difficile-associated diarrhea:
a systematic review and meta-analysis. Ann Intern Med. (2012) 157:878–
88. doi: 10.7326/0003-4819-157-12-201212180-00563

158. Shen NT, Maw A, Tmanova LL, Pino A, Ancy K, Crawford
CV, et al. Timely use of probiotics in hospitalized adults
prevents Clostridium difficile infection: a systematic review with
meta-regression analysis. Gastroenterology. (2017) 152:1889–
900.e1889. doi: 10.1053/j.gastro.2017.02.003

159. Moayyedi P, Ford AC, Talley NJ, Cremonini F, Foxx-Orenstein AE, Brandt LJ,
et al. The efficacy of probiotics in the treatment of irritable bowel syndrome:
a systematic review. Gut. (2010) 59:325–32. doi: 10.1136/gut.2008.167270

160. Andresen V, Gschossmann J, Layer P. Heat-inactivated Bifidobacterium

bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable
bowel syndrome: a multicentre, randomised, double-blind, placebo-
controlled clinical trial. Lancet Gastroenterol Hepatol. (2020)
5:658–66. doi: 10.1016/S2468-1253(20)30056-X

161. Singer JR, Blosser EG, Zindl CL, Silberger DJ, Conlan S, Laufer
VA, et al. Preventing dysbiosis of the neonatal mouse intestinal
microbiome protects against late-onset sepsis. Nat Med. (2019)
25:1772–82. doi: 10.1038/s41591-019-0640-y

162. Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper
respiratory tract infections. Cochrane Database Syst Rev. (2015)
CD006895. doi: 10.1002/14651858.CD006895.pub3

163. Mangiante G, Colucci G, Canepari P, Bassi C, Nicoli N, Casaril
A, et al. Lactobacillus plantarum reduces infection of pancreatic
necrosis in experimental acute pancreatitis. Dig Surg. (2001)
18:47–50. doi: 10.1159/000050096

164. Muftuoglu MA, Isikgor S, Tosun S, Saglam A. Effects of probiotics on
the severity of experimental acute pancreatitis. Eur J Clin Nutr. (2006)
60:464–8. doi: 10.1038/sj.ejcn.1602338

165. Lutgendorff F, Trulsson LM, van Minnen LP, Rijkers GT, Timmerman
HM, Franzen LE, et al. Probiotics enhance pancreatic glutathione
biosynthesis and reduce oxidative stress in experimental acute

Frontiers in Nutrition | www.frontiersin.org 17 February 2022 | Volume 9 | Article 814269

https://doi.org/10.1016/j.chom.2015.01.001
https://doi.org/10.1038/s41586-018-0620-2
https://doi.org/10.1186/s40168-021-01088-9
https://doi.org/10.1016/j.immuni.2013.08.013
https://doi.org/10.1126/science.1233521
https://doi.org/10.1016/j.cell.2016.04.007
https://doi.org/10.2337/dc18-0777
https://columbiasurgery.org/conditions-and-treatments/pancreatic-cancer
https://columbiasurgery.org/conditions-and-treatments/pancreatic-cancer
https://doi.org/10.1093/carcin/bgz116
https://doi.org/10.18632/oncotarget.18820
https://doi.org/10.1186/s12967-021-02882-7
https://doi.org/10.3390/ijms222312978
https://doi.org/10.3390/cancers13153779
https://doi.org/10.1016/j.cgh.2018.08.045
https://doi.org/10.1093/carcin/bgy073
https://doi.org/10.1186/s40168-017-0363-6
https://doi.org/10.1016/j.cell.2019.07.008
https://doi.org/10.1136/gutjnl-2011-300784
https://doi.org/10.1136/gutjnl-2016-312580
https://doi.org/10.1136/gutjnl-2018-317458
https://doi.org/10.1038/nrgastro.2014.66
https://doi.org/10.1038/nrgastro.2017.75
https://doi.org/10.1038/s41575-020-0344-2
https://doi.org/10.1038/s41575-021-00440-6
https://doi.org/10.1136/gutjnl-2016-313017
https://doi.org/10.1002/14651858.CD003048.pub3
https://doi.org/10.1001/jama.2012.3507
https://doi.org/10.7326/0003-4819-157-12-201212180-00563
https://doi.org/10.1053/j.gastro.2017.02.003
https://doi.org/10.1136/gut.2008.167270
https://doi.org/10.1016/S2468-1253(20)30056-X
https://doi.org/10.1038/s41591-019-0640-y
https://doi.org/10.1002/14651858.CD006895.pub3
https://doi.org/10.1159/000050096
https://doi.org/10.1038/sj.ejcn.1602338
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Zhang et al. Strategies to Modulate Gut Microbiome

pancreatitis. Am J Physiol Gastrointest Liver Physiol. (2008)
295:G1111–21. doi: 10.1152/ajpgi.00603.2007

166. van Minnen LP, Timmerman HM, Lutgendorff F, Verheem A, Harmsen
W, Konstantinov SR, et al. Modification of intestinal flora with
multispecies probiotics reduces bacterial translocation and improves
clinical course in a rat model of acute pancreatitis. Surgery. (2007)
141:470–80. doi: 10.1016/j.surg.2006.10.007

167. Sahin T, Aydin S, Yüksel O, Bostanci H, Akyürek N, Memiş L, et al.
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