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Abstract
This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which

was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos.

Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertiliza-

tion (dpf), however, a robust swimming response can be induced as early as 36 hours post-

fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was

tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zeb-

rafish embryos of the non-touch-responsivemaco strain; this assay successfully discrimi-

nated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was

used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a

screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild

type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). After-

wards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure

regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in

locomotion in both scenarios. These findings suggest that similar locomotor phenotypes

observed in free swimming fish can be detected as early as 48 hpf, when locomotion is

induced with nicotine.

Introduction
In recent years, the zebrafish has emerged as a widely utilized aquatic model organism. The
fecundity of this organism and the rapid development of its embryos enable scientists to per-
form large scale, phenotype-based screens in much shorter time frames than it would take to
reproduce similar experiments in rodents [1]. With this premise in mind, a number of research
groups have placed great interest in developing novel paradigms for behavioral phenotype-
based screening in zebrafish embryos. Many behavioral paradigms have been devised for this
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model organism, among these there are paradigms to test locomotor output in response to
visual [2,3], acoustic [4], tactile [5] and olfactory [6] cues. However, spontaneous locomotion
remains arguably the most fundamental behavioral paradigm among the behavioral repertoire
of zebrafish (Danio rerio) embryos and eleutheroembryos [7].

Historically, the use of behavioral screening in invertebrates and later in zebrafish was first
utilized to detect variable genetic phenotypes that affected normal behavior [8]. However, toxi-
cologists have adopted these methods for toxicity screening due to the broadness and robustness
of the results that can be obtained [9]. Our study is not an exception to the aforementioned his-
torical tendency to adapt screening assays from genetics to toxicology. The nicotine-evoked
locomotor response (NLR) was first documented by Petzhold and collaborators [10] and
although one of the observations of this group was that zebrafish did not respond to nicotine
prior to 4 days of age, another research group had been able to use nicotine to induce spontane-
ous tail flicks in zebrafish embryos younger than 30 hours post-fertilization (hpf) [11]. These
observations opened the question of whether the NLR could, in fact, be elicited in zebrafish
embryos between 30 hours and 4 days of age.

Nicotine acts as an agonist of nicotinic acetylcholine receptors (nAChRs) and the NLR is
triggered when acute doses of nicotine interact with nAChRs in the spinal cord [11,12], causing
a sudden burst of locomotor activity in zebrafish embryos (S1 Fig and S1 File). Here we have
taken advantage of the locomotion-inducing effects of nicotine to test the potential value of the
NLR assay as a toxicological screening paradigm in 36 to 48 hpf zebrafish embryos—long
before embryos develop sustained spontaneous swimming motor behaviors at 4–6 days post-
fertilization (dpf).

Our need to develop an early embryonic locomotor screening paradigm arose from observa-
tions that zebrafish embryos exposed to methylmercury (MeHg) at concentrations significantly
below lethal toxicity exhibited increased locomotor activity when analyzed at 6 dpf [13]. In the
context of these observations, there was an interest to ascertain if increases in locomotor activ-
ity would be apparent at early developmental time points, if it was somehow possible to induce
a locomotor output in fish much younger than 6 dpf.

Apart from the obvious benefit of saving time, an advantage of carrying out behavioral
experiments in zebrafish embryos as early as 36–48 hpf is that, since the central nervous system
(CNS) is not yet fully formed, any observed effects on locomotion would likely be attributable
to more “primitive” anatomical structures such as the spinal neurons associated with the cen-
tral pattern generator for swimming, the muscles, and the developing hindbrain [14], facilitat-
ing the interpretation of behavior-derived data.

To quantify the locomotor output of embryos during the NLR we utilized a cost-efficient
approach comprised of a webcam-based video acquisition system paired with a free and open-
source machine vision algorithm (S2 Fig). Together, the spontaneous swimming assay and
the NLR assay, coupled with low-cost equipment and free and open-source machine vision
software comprise a promising approach to carry out a simple diagnostic toxicity screening,
which can later be supplemented with additional assays addressing more complex behaviors, if
desired.

Materials and Methods

Fish husbandry
Wild type zebrafish breeding stocks were obtained from EkkWill Waterlife Resources (EK
strain; Ruskin, Florida). The “macho” (maco) mutant zebrafish strain was acquired from the
laboratory of Dr. Angeles Ribera, Anschutz Medical Campus at the University of Colorado.
Both strains were maintained at 28°C on a 14h:10h light:dark cycle at the Children’s
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Environmental Health Sciences Core Center, located in the School of Freshwater Sciences of
the University of Wisconsin—Milwaukee. The EK strain has been maintained in the laboratory
for more than 15 generations. All of the animal protocols were approved by the Institutional
Animal Care and Use Committee (IACUC) of the University of Wisconsin—Milwaukee.

EK embryos were obtained by breeding adult zebrafish in a ratio of two males to one female
(10 males and 5 females in each breeding tank). Zebrafish of themaco strain were bred in a
ratio of one male to one female (1 male and 1 female in each breeding tank). The adult fish
would begin spawning at the onset of artificial dawn (9:00am), when the laboratory lights were
automatically turned on. Embryos were raised for up to 6 dpf in Petri dishes (100mm × 15mm)
containing E2 embryo medium (15mMNaCl, 0.5mM KCl, 1mMMgSO4, 150μMKH2PO4,
50μMNa2HPO4, 1mM CaCl2, 0.7mM NaHCO3; pH 7.2) at a density of 200 embryos per dish;
the embryo medium was exchanged daily.

Dose-dependent effects of nicotine on the NLR
Four nominal doses of nicotine (30, 60, 120 or 240μM; Sigma, St. Louis, MO) were used to
assess the NLR in zebrafish embryos in two different stages of early development (36 and 48
hpf). The embryos were manually dechorionated, and then transferred into a recording vessel
(89mm × 89mm × 25mm, white semitransparent rubberized polystyrene weighing boat; Cole-
Parmer, Vernon Hills, IL) containing 10ml of a nicotine solution. The embryos (n = 12 per ves-
sel) were transferred with a fine tip glass pipette, ensuring that the clean medium necessary to
carry the embryos over was kept consistent and to a minimum (~1ml) to avoid altering the
concentration curve of the nicotine solutions. The embryos were video recorded as soon as the
tip of the glass pipette touched the nicotine medium. None of the NLR assays discussed hence-
forth included an acclimation period prior to video recordings due to the rapid onset of this
response (i.e. the NLR occurs within seconds). However, we do not believe that the lack of
acclimation affects the NLR.

Video recording apparatus and behavior quantification
The video recording apparatus consisted of a manifold holding four Logitech C920 web cam-
eras pointing downwards into a Plexiglas tray that holds four weigh boats. Underneath the
apparatus, a flat 22” Acer P221W computer monitor was used as a light source, which provided
58 lux of constant illumination; a sheet of velum paper was used as a diffusing filter. In order to
block extraneous light and visual stimuli, the whole apparatus was surrounded by a custom
made black polyethylene enclosure (S2 Fig). All video recordings were streamed to a remote
computer (Lenovo T410; Intel Core i5 CPU @ 2.53GHz, 4.00 GB RAM) at a resolution of
960×720 pixels and at a frame rate of 30 frames per second using the MATLAB (The Math-
Works, Inc.; Natick, MA) image acquisition toolbox. The NLR of the embryos was tracked
using a free and open-source machine vision algorithm (ctrax [15]) and tracking errors were
manually corrected using the “fixerrors”MATLAB toolbox provided by the ctrax developers.
The raw trajectory data was imported to a custom Microsoft Excel macro (Microsoft; Red-
mond, WA) to calculate the maximum speed (mm s-1) and the “latency of response” (time
required to reach maximum speed; s) of each individual embryo. Twelve embryos were ana-
lyzed for each condition tested.

Modulation of the NLR by chronic low-dose exposure to nicotine
It has been observed that the tail beat frequency of zebrafish embryos during the NLR can be
modulated if the embryos are reared in a low dose of nicotine (1μM) for 12 hours prior to the
NLR assay (Dr. Matthew E. Wolter, Svoboda laboratory, University of Wisconsin—Milwaukee;
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personal communication). Here we investigated if this observation translated into differences
in maximum speed and latency of response. Zebrafish embryos were raised in clean embryo
medium for 36 hours and then transferred into media containing 0, 0.5 or 1μM of nicotine for
an additional 12 hours. The now 48 hpf embryos were submitted to the NLR assay using
120μM of nicotine to trigger the response. Twelve embryos were analyzed for each of the 12
hour low dose nicotine pre-treatment regimes (12 embryos were evaluated per treatment).

Analysis of the NLR inmaco zebrafish mutants
Zebrafish of themaco strain do not exhibit a touch response due to impaired sodium channel
action potentials [16]. The known locomotor impairment in this mutant strain was utilized as
a premise to investigate the potential of the NLR assay to discriminate between the maximum
speed of embryos with and without overt locomotor abnormalities. Embryos of themaco
strain were raised to three different developmental stages (36, 48 and 72 hpf) in clean embryo
medium and then manually dechorionated. Before carrying out the NLR assay, a quick pheno-
typic screening on the embryos was done by performing a touch response test under a stereo-
scopic microscope (Olympus SZ61; Olympus Life Science Solutions; Center Valley, PA).
After separating mutant embryos from their siblings without a phenotype, the two groups of
embryos were tested with the NLR assay using a 120μM nicotine solution to trigger the
response. Three replicates of this experiment were performed for each of the aforementioned
conditions (approximately 10 embryos per replicate).

MeHg exposure
To assess the effects of MeHg exposure on both the free swimming and NLR of zebrafish,�2
hpf embryos were treated with MeHg chloride (MeHg; Sigma-Aldrich Co.; St. Louis, MO)
using ethanol (0.01%) as vehicle at nominal concentrations of 0, 0.01, 0.03 and 0.1μM in E2
embryo medium; a vehicle control solution (0μMMeHg) was prepared diluting 0.01% ethanol
in E2 medium. The morning after the exposures had begun (24 hours of exposure), the
embryos were rinsed three times with clean E2 embryo medium (not supplemented with
MeHg or ethanol) to eliminate residual MeHg in solution. This procedure was performed to
ensure that no significant amounts of MeHg would continue to be absorbed through the chori-
ons after 24 hours of exposure. The embryos were then raised in clean E2 medium until needed
for locomotor assessment.

Free swimming of MeHg exposed zebrafish
Newly spawned embryos were exposed to MeHg as described above, then raised to 6 dpf to
assess the rate of travel (distance traveled in 5 minutes; mm 5min-1) and activity (% of time
active) of the free swimming eleutheroembryos. Prior to video recordings, the fish were allowed
to acclimate for 5 minutes. A total of 120 fish per dose (10 fish per recording vessel; 12 vessels
per dose) were video recorded and their locomotion was analyzed.

NLR of MeHg exposed 48 hpf zebrafish
The NLR assay was performed in MeHg-exposed 48 hpf embryos. 10 embryos were analyzed
per recording vessel; 120μM of nicotine was used to trigger the NLR. The maximum speed,
latency of response and distance traveled (in 2 minutes) was calculated for 50 embryos for each
dose tested.
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Statistical analyses
Statistical analyses were conducted with SigmaPlot software version 11.0 (Systat Software; San
Jose, CA). All data was tested for normality using the Shapiro—Wilks test. If the data was
found to be normally distributed, a one-way ANOVA was performed, subsequently a post hoc
multiple pair-wise comparison between exposure groups was carried out with the Holm—

Sidak method. Non-normal data was analyzed with ANOVA on ranks using the either the
Mann-Whitney or the Kruskal—Wallis H test (H values are reported in all statistics that
required the Kruskal—Wallis H test), post hocmultiple pair-wise comparisons between expo-
sure groups were performed with Tukey’s method.

Results

Dose-dependent effects of nicotine on the NLR
In this whole study, every one of the ~512 embryos tested with the NLR paradigm exhibited
locomotor output in response to acute nicotine exposure (out of these ~512 fish, 90 weremaco
mutants and 150 were exposed to MeHg), which highlights the effectiveness and reliability of
the NLR paradigm. Embryonic developmental stage had an effect on the NLR. 36 hpf embryos
achieved overall lower maximum speeds than 48 hpf embryos in all nicotine concentrations
tested (n = 12 embryos, P<0.001; 30μM, P<0.001; 60μM, P = 0.017; 120μM, P<0.001; 240μM,
P<0.001). The NLR was affected by nicotine dose; 240μM of nicotine triggered a significantly
higher maximum velocity in both 36 hpf (H = 13.4, n = 12 embryos, P = 0.004) and 48 hpf
embryos (H = 38.1, n = 12 embryos, P<0.001), relative to embryos exposed to 30, 60 and
120μM of nicotine, both in 36 and 48 hpf embryos (Fig 1). High nicotine doses also reduced
the latency of the embryos to reach their maximum velocity; 36 hpf embryos exposed to
240μM of nicotine reached their maximum velocities quicker than embryos exposed to 30, 60
and 120μM (H = 29.9, n = 12 embryos, P<0.001). Likewise, 240 and 120μM of nicotine
decreased the latency to reach maximum velocity in 48 hpf embryos, compared to embryos
exposed to 30 and 60μM (H = 38.1, n = 12 embryos, P<0.001; Table 1). From a practical stand-
point, 36 hpf embryos were more difficult to track with the ctrax algorithm due to their lack of
pigmentation and significantly slower NLR; both of these factors can complicate the differenti-
ation between moving embryos and the background. Furthermore, higher doses of nicotine
facilitated the analysis of the NLR, given that this reduces the time that the embryos remain
immotile and aggregated during the first few seconds of the response, hence reducing mis-
matches and ambiguities. In 48 hpf embryos, a dose of 120μM of nicotine delivered a satisfac-
tory NLR that was not significantly different to the NLR evoked by 240μM, for this reason we
concluded that the optimal experimental conditions for the NLR assay as a screening tool
would be to trigger the response with 120μM of nicotine utilizing 48 hpf embryos.

Modulation of the NLR by chronic low-dose exposure to nicotine
Rearing 48 hpf zebrafish embryos in 1μM of nicotine for 12 hours prior to the NLR test resulted
in significantly lower maximum velocities (H = 17.41, n = 12 embryos, P<0.001), coupled with
a higher latency to reach maximum speed (H = 23.56, n = 12 embryos, P<0.001), relative to
embryos reared in 0 and 0.5μM of nicotine. Embryos reared in 0.5μM of nicotine did not
exhibit significant changes in maximum speed or distance traveled throughout 90 seconds of
observation; however, they reached maximum velocities significantly quicker than the embryos
from the 0 and 1μM nicotine exposure groups (H = 23.56, n = 12 embryos, P<0.001) (Table 2).
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Fig 1. Nicotine-evoked locomotion dose response curves in 36 and 48 hpf zebrafish embryos.Nicotine
dose response curves in 36 hpf (A and B) and 48 hpf (C and D) zebrafish embryos during the NLR. The NLR
of 36 hpf embryos triggered by 240μM of nicotine was characterized by a significantly higher maximum speed
than the observed in the rest of the doses tested (E). Similarly, 240μM of nicotine triggered a significantly
higher maximum velocity in 48 hpf embryos (F). The effects of a control solution with no nicotine is not
represented in the graphs due to the fact that 36 and 48 hpf embryos simply do not exhibit any swimming
output in the absence of nicotine. The notation above the bar graphs represent pair-wise comparisons.

doi:10.1371/journal.pone.0154570.g001
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Analysis of the NLR inmaco zebrafish mutants
Zebrafish embryos of themacomutant strain were utilized due to their known locomotor phe-
notype to test the effectiveness of the NLR assay to identify overt locomotor abnormalities. The
NLR assay was successful at discriminating mutant embryos from their non-mutant siblings.
All zebrafish mutants of themaco strain tested with the NLR paradigm had significantly
lower maximum speeds (Mann—Whitney U statistic; 36 hpf, T = 390, nsmall = 23, nlarge = 27,
P<0.001; 48 hpf, T = 300, nsmall = 24, nlarge = 24, P<0.001; 72 hpf, T = 552, nsmall = 30,
nlarge = 30, P<0.001; Fig 2).

Free swimming and NLR of MeHg exposed eleutheroembryos and
embryos
Zebrafish eleutheroembryos (6 dpf) exposed to 0.01 and 0.03μM of MeHg exhibited a signifi-
cantly increased rate of travel during the five minutes of activity tracking (H = 26.49, n = 120
embryos, P<0.001, Fig 3A). Additionally, eleutheroembryos exposed to 0.01μM of MeHg were
more active than the embryos of the rest of the exposure groups (H = 26.71, n = 120 embryos,
P<0.001, Fig 3B). Similar to the results observed in 6 dpf eleutheroembryos, 48 hpf zebrafish
embryos exposed to 0.01 and 0.03μM of MeHg had an increased rate of travel (F3,196 = 12.82,
n = 50 embryos, P<0.001) and maximum speeds (F3,196 = 11.9, n = 50 embryos, P<0.001)
compared to the 0 and 0.1μM exposure groups (Fig 3C–3F; Table 3).

Discussion
Our approach is an adaptation of the methods published by Schneider and collaborators [17],
where the NLR was utilized as a behavioral paradigm for drug development or screening in 5

Table 1. NLR dose response in 36 and 48 hpf zebrafish embryos. Values are presented as the mean ± SE. Means sharing the same superscript are not
significantly different from each other P < 0.05.

36 hpf zebrafish embryos 48 hpf zebrafish embryos

Nicotine dose (μM) Maximum speed (mm s-1) Latency of response(s) Maximum speed (mm s-1) Latency of response (s)

30 5.29±0.37a 43.08±13.62a 12.55±1.24a 83.50±4.76a

60 5.25±0.28a 48.92±11.72a 11.42±1.99a 69.58±2.54a

120 6.21±0.24ab 38.17±7.33a 18.43±1.27ab 29.50±4.13b

240 6.64±0.26b 6.92±4.50b 21.72±1.08b 17.92±1.95b

ANOVA on ranks (Kruskal–Wallis test)

H 13.4 29.9 22.5 38.1

P 0.004 <0.001 <0.001 <0.001

doi:10.1371/journal.pone.0154570.t001

Table 2. Modulation of the NLR in 48 hpf zebrafish embryos by chronic, low-dose exposure to nicotine during development. Values are presented
as the mean ± SE. Means sharing the same superscript are not significantly different from each other P < 0.05.

Embryonic nicotine exposure dose (μM) Maximum speed (mm s-1) Latency of response (s) Distance traveled (mm 90s-1)

0 21.72±1.08a 17.92±1.95a 299.63±16.08a

0.5 25.69±1.53a 6.17±0.89b 257.31±18.30a

1.0 16.58±1.10b 37.25±6.18a 310.66±26.19a

ANOVA on ranks (Kruskal–Wallis test)

H 17.41 23.56 3.36

P <0.001 <0.001 0.187

doi:10.1371/journal.pone.0154570.t002
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Fig 2. Validation of the NLR assay: analysis of the non-touch-responsivemacomutant zebrafish strain. The
NLR assay was successful at discriminating mutant embryos from their non-mutant siblings. The locomotor activity
of 36 hpf embryos triggered by 120μM of nicotine was significantly different between mutants and non-mutant
embryos (A) as demonstrated by the comparison of the average maximum speed of mutant and non-mutant
embryos (B). The difference between mutants and non-mutants became progressively more apparent in 48 hpf (C
and D) and 72 hpf (E and F) embryos. The three dots above the graphs in panels B, D and F represent P <0.001.

doi:10.1371/journal.pone.0154570.g002
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Fig 3. Spontaneous swimming of 6 dpf MeHg-exposed zebrafish eleutheroembryos and the NLR of
MeHg-exposed 48 hpf embryos. The spontaneous-swimming assay elucidated subtle yet significant
(P<0.001) increases in the total distance travelled (mm in 5 minutes) of free swimming 6 dpf zebrafish
exposed to 0.01 and 0.03μM of MeHg (A). Eleutheroembryos exposed to 0.01μMMeHg as embryos also had
an increased activity (% of time active) relative to all other doses (B). The NLR assay was conducted on 48
hpf embryos exposed to 0, 0.01, 0.03 and 0.1μM; the activity curves of all MeHg-exposed embryos were
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and 6 dpf zebrafish. That work built upon the previous work of Petzhold and collaborators
[10], who initially used nicotine-evoked locomotion to identify genes in the zebrafish that were
potentially involved with nicotine addiction.

Here, we adopted this paradigm for use in toxicology; our protocol integrated a custom
behavior observation apparatus, a free and open-source machine vision algorithm and most
importantly, the assessment of the NLR in zebrafish embryos as young as 36 hpf. The possibil-
ity to assess the NLR in such early stages of development makes the NLR assay a promising
tool to investigate the early ontogeny of locomotor development in zebrafish.

In order to validate the value of the NLR assay for early toxicological screening in zebrafish
embryos, our experimental design addressed three main areas of interest. First we tested the
effect of triggering the NLR with varying acute doses of nicotine, as well as the effect of chronic
low dose nicotine exposure on the NLR. Secondly, we evaluated the NLR assay in a simple
genetic phenotype-based screening, using the non-touch-responsivemaco zebrafish mutants.
Third and lastly, we evaluated the effect of MeHg—a well acknowledged neurotoxicant—on
the NLR and free swimming of zebrafish embryos and eleutheroembryos.

The first set of experiments demonstrated important qualities of the pharmacology of nico-
tine exposure; analogous to the observations of Thomas and collaborators [11] where acute
exposure to nicotine resulted in a dose-dependent increase in locomotor output of zebrafish
embryos. The majority of those experiments carried were performed in embryos<30 hpf and
the frequency of embryonic tail bends per minute were manually quantified. It is relevant to
emphasize that at this age, zebrafish embryos did not exhibit any forward propulsion, only
spontaneous tail bends. In the case of our study, the analysis of the NLR was performed in 36
to 72 hpf embryos, and at these developmental stages, the embryos exhibited a strong swim-
ming burst in response to acute nicotine exposure, which were quantified by means of a
machine vision algorithm.

Thomas and collaborators also observed an apparent “desensitization” of the NLR in
embryos subjected to a chronic exposure to nicotine. Similar to these reports, our study identi-
fied a reduction in the locomotor output during the NLR of embryos exposed to 1μM of nico-
tine for 12 hours, however embryos treated with 0.5μM of nicotine for 12 hours exhibited
higher maximum velocities and reached these maximum velocities quicker compared to
embryos reared in clean embryo medium. It has been proposed that reductions in the NLR in
embryos exposed chronically to nicotine (1–30μM) could be attributed to nicotine binding to

compared to the control (C through E). As observed in 6 dpf eleutheroembryos, 48 hpf zebrafish embryos
exposed to 0.01 and 0.03μM of MeHg exhibited an increase in distance traveled during the analysis period
(F).

doi:10.1371/journal.pone.0154570.g003

Table 3. Effect of MeHg on the NLR of 48 hpf zebrafish embryos. Values are presented as the mean ± SE. Means sharing the same superscript are not
significantly different from each other P < 0.05.

Embryonic MeHg exposure dose (μM) Maximum speed (mm s-1) Latency of response (s) Distance traveled (mm 2min-1)

0 33.06±1.47a 19.26±1.70a 439.01±16.77a

0.01 41.06±1.48b 18.92±1.65a 569.29±25.84b

0.03 43.27±1.90b 17.94±1.74a 526.67±24.57b

0.10 31.64±1.80a 14.50±1.45a 394.46±20.90a

ANOVA

F3,196 11.92 1.76 12.82

P <0.001 0.156 <0.001

doi:10.1371/journal.pone.0154570.t003

The Nicotine-Evoked Locomotor Response for Toxicity Screening in MeHg-Exposed Zebrafish Embryos

PLOS ONE | DOI:10.1371/journal.pone.0154570 April 28, 2016 10 / 15



nAChRs and acting as an antagonist of these receptors during this first exposure, or by nAChR
desensitization. In either scenario, the behavioral effect of a subsequent acute nicotine exposure
would be greatly diminished [11]. In contrast to this, nicotine exposure causes calcium and or
sodium entry into the neuron causing it to become “excited” closer to threshold for firing
action potentials. If the receptors do not desensitize, and if some nAChRs were still available to
participate in the NLR, a second exposure to nicotine would then cause those neurons to fire
action potentials quicker. This likely explains why NLRs of embryos pre-exposed to 0.5μM nic-
otine exhibited quicker onsets compared to NLRs in control embryos.

As originally postulated by Petzhold and collaborators [10], the NLR assay proved to be an
excellent genetic screening tool. This was illustrated by our success at differentiating between
mutant and non-mutantmaco zebrafish siblings. One important reason for utilizing themaco
strain in our experiments is that fish from this strain are capable of moving in contrast to fish
from a fully paralytic strain, such as “sofa potato”. However,maco zebrafish do not exhibit a
touch response after 27 hpf. This lack of a touch response is attributed to abnormalities in the
failure of Rohon—Beard (RB) cells to fire action potentials [16]. Our results showed decreased
locomotor responses inmaco fish assayed in the NLR even at 72 hours of age, a point of devel-
opment where dorsal root ganglion (DRG) neurons are thought to functionally replace the
transient RB neuron [18].

In order to understand why the oldermacomutants do not exhibit a robust response to nic-
otine, an appreciation of how nicotine activates locomotion is needed. When developing
embryos are exposed to nicotine, they exhibit alternating bends of the musculature reminiscent
of swimming [11]; this is an “embryonic swim-like behavior”. When the concentration of nico-
tine is low, the embryos barely move. When the concentration is increased, the onset of activity
is quicker, and the bend rate is faster. In these young embryos, the nicotine has to penetrate the
skin and musculature to get to the neurons within the central nervous system to activate the
motor output. If embryos are manipulated in a way to reduce expression of specific nAChRs in
spinal cord, nicotine exposure does not activate a motor output [12]. If the hindbrain is sepa-
rated from the spinal cord, (i.e. if the head is cut and separated from the tail) the severed tails
still swim when exposed to nicotine. Collectively, these data indicate that spinal nAChRs acti-
vated by nicotine can initiate a motor output that resembles swimming. Consistent with these
observations, it is known that RB neurons express nAChRs [12,19,20]. Importantly, nAChRs
in zebrafish are also expressed by DRG neurons (Svoboda laboratory, unpublished observa-
tions) and spinal interneurons [21].

In 36 hpfmacomutants, nicotine was able to evoke a fairly robust motor output, but this
was reduced compared to stage matched siblings. Based on the physiology of RB neurons in
macomutants, nicotine most likely initiated locomotion by activating spinal interneurons.
However, in older mutants, nicotine-evoked locomotion was greatly reduced. This could occur
if the number of nAChRs in the maturing spinal circuitry associated with activating locomo-
tion has been downregulated, or possibly never upregulated in the first place.

An alteration in spinal circuit development may also manifest as an inability to swim upon
nicotine exposure. For example, RB neurons make excitatory connections with interneurons in
spinal cord associated with the generation of locomotion [22]. Inmacomutants, RB neurons
do not fire action potentials and thus cannot efficiently communicate with their interneuronal
partners. If cellular communication of this type is required for the spinal interneurons to
develop properly, they may not form synaptic connections correctly with their downstream
partners. Over time, this could lead to the abnormal development of spinal circuits that simply
cannot function well.

Normal RB activity may also influence the expression of proteins, including nAChRs in spi-
nal interneurons. If interneurons do not receive the proper excitatory drive from RB neurons,
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they may not upregulate nAChR expression. Thus, the cellular and receptor substrates neces-
sary for mediating nicotine-evoked locomotion inmacomutants may be altered as a result of
having physiologically compromised RB neurons during the time when spinal circuits are
developing. On the other hand, we cannot rule against the possibility that the DRG neurons,
which express nAChRs, are also altered in themacomutants.

Some characteristics of the onset of the NLR bear a noteworthy resemblance to the well-
known touch-evoked response in zebrafish embryos, such as the swimming speed and tail beat
frequency of these responses (Dr. Matthew E. Wolter, Svoboda laboratory, University of Wis-
consin—Milwaukee; personal communication). Both responses can be elicited early enough in
development (roughly 36 hpf) that presumably both responses utilize the same rudimentary
anatomical structures of the developing embryo to elicit locomotor output. Moreover, the tail
beat frequency of embryos in the NLR was very similar to the tail beat frequency of muscula-
ture bends in touch-evoked escapes (data not shown). It is important to note that in contrast to
the younger embryos analyzed by Thomas and collaborators, 36 hpf and 48 hpf zebrafish only
exhibited a modest motor output when exposed to 30μM nicotine. But when the concentration
of nicotine was increased, the locomotor output was robust and happened very quickly. In
these older fish, the ineffectiveness of 30μM nicotine to initiate locomotion is likely related to
nicotine having to pass through the skin and penetrating more muscle and connective tissue
than in the younger embryos. Increasing the concentration of nicotine ensures that nicotine
will get to the neurons in spinal cord in a quick fashion.

The hyperlocomotor response observed in both free swimming 6 dpf zebrafish eleutheroem-
bryos and 48 hpf embryos exposed to MeHg suggests that there is a common mechanism of
MeHg-induced hyperactivity in both developmental stages. Furthermore, the effects observed
at 6 dpf are likely the sequel of neurotoxic effects that occur at least as early in development as
48 hpf. Hyperactivity after embryonic MeHg insult has also been observed in rainbow trout
(Oncorhynchus mykiss), largemouth bass (Micropterus salmoides) [23] and in rodents [24].
More recently, a link has been suggested between prenatal MeHg exposure and the onset of
attention deficit hyperactivity disorder (ADHD) in humans [25]. It is worth noting that the
lack of significant behavioral effects of MeHg in the highest dose utilized in our study (0.1μM)
corresponds with the hormetic effects observed in the behavior of zebrafish embryos spawned
by parents fed with MeHg-supplemented diets throughout their whole life span [13], in said
study, embryos with the highest MeHg body burdens (0.6ppm) did not exhibit hyperactivity,
while embryos with lower body burdens (�0.2ppm) did.

The mechanisms by which MeHg causes the observed hyperactivity is unclear; in fact, even
the more fundamental question of how exactly MeHg acts as a neurotoxicant remains unan-
swered [26]. However, our NLR assays in 48 hpf MeHg-exposed zebrafish embryos suggest
that MeHg-induced hyperactivity is not associated with input from higher centers of the brain,
but more likely to alterations in the spinal cord and the developing hindbrain. To the author’s
knowledge, no previous studies have addressed the putative link between MeHg-mediated
effects in the spinal cord and locomotor abnormalities. However, a link between oxidative
stress in the cerebellum and hyperactivity has been observed in rodents [27]. It could be argued
that locomotor effects in MeHg-exposed embryos during the NLR assay could be associated
with effects of MeHg directly on nAChRs, as it has been reported that MeHg can bind to these
receptors [28]; nevertheless, this is an unlikely scenario in our study, since the doses of MeHg
utilized were not high enough to cause direct binding to nAChRs, furthermore, high through-
put genomics in MeHg-exposed zebrafish embryos have not demonstrated effects of MeHg on
the expression of the genes required to synthesize the proteins that comprise nAChRs (Mora-
Zamorano, unpublished data).
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Our approach also proved effective at quantifying brief episodes of locomotor bursts utiliz-
ing low-cost equipment. Other groups have developed excellent methodologies to quantify
locomotor activity in multiple zebrafish [29]; however they rely on the usage of a high-speed
camera, which can be a costly piece of equipment for a low budget laboratory. Regardless of the
cellular and anatomical mechanisms of MeHg-induced behavioral alteration, the spontaneous-
swimming and the NLR assay show promise as useful tools in behavioral toxicology screening.

Supporting Information
S1 Fig. Characteristic kinematics of the NLR in zebrafish embryos. The NLR is a characteris-
tic locomotor response triggered by an exposure to a high concentration of nicotine (e.g. 30–
240μM). This behavioral response is characterized by four phases: A) zebrafish embryos youn-
ger than 4 dpf do not exhibit free swimming, thus when exposed to a high nicotine concentra-
tion the embryos first remain immotile for a few seconds, while the nicotine penetrates the skin
and muscle; B) once the nicotine is absorbed, the embryos abruptly initiate a vigorous and con-
tinuous locomotor burst that lasts several seconds, many times advancing in a spiraling trajec-
tory; C) the locomotor response attenuates and many fish begin to erratically twitch without
any forward propulsion; D) all embryos come to a complete halt.
(TIFF)

S2 Fig. Custom-made behavior observation chamber. A) The behavior observation chamber
consists of a manifold of Logitech c920 webcams that point downwards onto a tray with weigh
boats that serve as arenas for the swimming embryos. The webcams are connected to a remote
computer and the video footage is streamed using the MATLAB image acquisition toolbox. B)
The ctrax tracking algorithm can quantify the locomotor activity of multiple fish embryos in
the same arena simultaneously.
(TIFF)

S1 File. Sample tracking video. This video is a representative example of an NLR assay trial
after being analyzed with the ctrax machine vision algorithm.
(AVI)

Acknowledgments
We acknowledge the valuable zebrafish husbandry support that we obtained from the Chil-
dren’s Environmental Health Sciences Core Center of the University of Wisconsin—Milwau-
kee. The experimental design and preparation of free swimming assays, as well as MeHg
exposures in zebrafish embryos were performed with the aid of Dr. Rebekah Klingler and Mat-
thew Pickens. We also thank Gregory Barske and Randolf Metzger for their support in the con-
struction of the enclosure for our behavior observation chamber.

Author Contributions
Conceived and designed the experiments: MJC FXM KRS. Performed the experiments: FXM
KRS. Analyzed the data: FXM. Contributed reagents/materials/analysis tools: KRS MJC. Wrote
the paper: MJC FXM KRS.

References
1. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nature reviews Drug discovery 4:

35–44. PMID: 15688071

2. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adapta-
tion. J Exp Biol 210: 2526–2539. PMID: 17601957

The Nicotine-Evoked Locomotor Response for Toxicity Screening in MeHg-Exposed Zebrafish Embryos

PLOS ONE | DOI:10.1371/journal.pone.0154570 April 28, 2016 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154570.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154570.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154570.s003
http://www.ncbi.nlm.nih.gov/pubmed/15688071
http://www.ncbi.nlm.nih.gov/pubmed/17601957


3. Ali S, Champagne DL, Spaink HP, Richardson MK (2011) Zebrafish embryos and larvae: a new gener-
ation of disease models and drug screens. Birth Defects Res C Embryo Today Rev 93: 115–133.

4. Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, et al. (2008) Non-associative
learning in larval zebrafish. Neuropsychopharmacology 33: 1206–1215. PMID: 17581529

5. Carvan MJ, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neu-
robehavior and skeletal morphogenesis. Neurotoxicol Teratol 26: 757–768. PMID: 15451040

6. Whitlock KE (2006) The sense of scents: olfactory behaviors in the zebrafish. Zebrafish 3: 203–213.
doi: 10.1089/zeb.2006.3.203 PMID: 18248261

7. Budick SA, O'Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and
prey capture. J Exp Biol 203: 2565–2579. PMID: 10934000

8. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish: emergence of a newmodel vertebrate. Nat
Rev Genet 3: 717–724. PMID: 12209146

9. Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxi-
col Chem 9: 13–19.

10. Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE, et al. (2009) Nicotine
response genetics in the zebrafish. Proceedings of the National Academy of Sciences 106: 18662–
18667.

11. Thomas LT, Welsh L, Galvez F, Svoboda KR (2009) Acute nicotine exposure and modulation of a spi-
nal motor circuit in embryonic zebrafish. Toxicol Appl Pharmacol 239: 1–12. doi: 10.1016/j.taap.2008.
08.023 PMID: 19121331

12. Menelaou E, Udvadia AJ, Tanguay RL, Svoboda KR (2014) Activation of α2A‐containing nicotinic ace-
tylcholine receptors mediates nicotine‐induced motor output in embryonic zebrafish. Eur J Neurosci
40: 2225–2240. doi: 10.1111/ejn.12591 PMID: 24738729

13. Mora-Zamorano FX, Klingler R, Murphy C, Basu N, Head JH, Carvan MJ III (2016) Parental whole life
cycle exposure to dietary methylmercury in zebrafish (Danio rerio) affects the behavior of offspring.
Environ Sci Technol.

14. Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish
embryo. J Neurobiol 37: 622–632. PMID: 9858263

15. Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large
groups of Drosophila. Nat Meth 6: 451–457.

16. Ribera AB, Nüsslein-Volhard C (1998) Zebrafish Touch-Insensitive Mutants Reveal an Essential Role
for the Developmental Regulation of Sodium Current. The Journal of Neuroscience 18: 9181–9191.
PMID: 9801358

17. Schneider H, Klee EW, Clark KJ, Petzold AM, Mock VL, Abarr JM, et al. (2012) Zebrafish and Drug
Development: A Behavioral Assay System for Probing Nicotine Function in Larval Zebrafish. Zebrafish
Protocols for Neurobehavioral Research: Springer. pp. 53–70.

18. Kanungo J, Zheng Y-L, Mishra B, Pant HC (2009) Zebrafish Rohon-Beard neuron development: cdk5
in the midst. Neurochem Res 34: 1129–1137. doi: 10.1007/s11064-008-9885-4 PMID: 19067160

19. Ackerman KM, Nakkula R, Zirger JM, Beattie CE, Boyd RT (2009) Cloning and spatiotemporal expres-
sion of zebrafish neuronal nicotinic acetylcholine receptor alpha 6 and alpha 4 subunit RNAs. Dev Dyn
238: 980–992. doi: 10.1002/dvdy.21912 PMID: 19301390

20. Welsh L, Tanguay RL, Svoboda KR (2009) Uncoupling nicotine mediated motoneuron axonal pathfind-
ing errors and muscle degeneration in zebrafish. Toxicol Appl Pharmacol 237: 29–40. doi: 10.1016/j.
taap.2008.06.025 PMID: 18694773

21. Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nico-
tinic acetylcholine receptors. Gene Expression Patterns 3: 747–754. PMID: 14643683

22. Downes GB, Granato M (2006) Supraspinal input is dispensable to generate glycine‐mediated locomo-
tive behaviors in the zebrafish embryo. J Neurobiol 66: 437–451. PMID: 16470684

23. Sandheinrich MB, Miller KM (2006) Effects of dietary methylmercury on reproductive behavior of fat-
head minnows (Pimephales promelas). Environ Toxicol Chem 25: 3053–3057. PMID: 17089731

24. Gimenez-Llort L, Ahlbom E, Dare E, Vahter M, Ögren S-O, Ceccatelli S (2001) Prenatal exposure to
methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-
dependent effects. Environ Toxicol Pharmacol 9: 61–70. PMID: 11167150

25. Boucher O, Jacobson SW, Plusquellec P, Dewailly É, Ayotte P, Forget-Dubois N, et al. (2012) Prenatal
methylmercury, postnatal lead exposure, and evidence of attention deficit/hyperactivity disorder among
Inuit children in Arctic Québec. Environ Health Perspect 120: 1456–1461. doi: 10.1289/ehp.1204976
PMID: 23008274

The Nicotine-Evoked Locomotor Response for Toxicity Screening in MeHg-Exposed Zebrafish Embryos

PLOS ONE | DOI:10.1371/journal.pone.0154570 April 28, 2016 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/17581529
http://www.ncbi.nlm.nih.gov/pubmed/15451040
http://dx.doi.org/10.1089/zeb.2006.3.203
http://www.ncbi.nlm.nih.gov/pubmed/18248261
http://www.ncbi.nlm.nih.gov/pubmed/10934000
http://www.ncbi.nlm.nih.gov/pubmed/12209146
http://dx.doi.org/10.1016/j.taap.2008.08.023
http://dx.doi.org/10.1016/j.taap.2008.08.023
http://www.ncbi.nlm.nih.gov/pubmed/19121331
http://dx.doi.org/10.1111/ejn.12591
http://www.ncbi.nlm.nih.gov/pubmed/24738729
http://www.ncbi.nlm.nih.gov/pubmed/9858263
http://www.ncbi.nlm.nih.gov/pubmed/9801358
http://dx.doi.org/10.1007/s11064-008-9885-4
http://www.ncbi.nlm.nih.gov/pubmed/19067160
http://dx.doi.org/10.1002/dvdy.21912
http://www.ncbi.nlm.nih.gov/pubmed/19301390
http://dx.doi.org/10.1016/j.taap.2008.06.025
http://dx.doi.org/10.1016/j.taap.2008.06.025
http://www.ncbi.nlm.nih.gov/pubmed/18694773
http://www.ncbi.nlm.nih.gov/pubmed/14643683
http://www.ncbi.nlm.nih.gov/pubmed/16470684
http://www.ncbi.nlm.nih.gov/pubmed/17089731
http://www.ncbi.nlm.nih.gov/pubmed/11167150
http://dx.doi.org/10.1289/ehp.1204976
http://www.ncbi.nlm.nih.gov/pubmed/23008274


26. Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, et al. (2013) Gene Responses in the
Central Nervous System of Zebrafish Embryos Exposed to the Neurotoxicant Methyl Mercury. Environ
Sci Technol 47: 3316–3325. doi: 10.1021/es3050967 PMID: 23458150

27. Stringari J, Meotti FC, Souza DO, Santos AR, Farina M (2006) Postnatal methylmercury exposure
induces hyperlocomotor activity and cerebellar oxidative stress in mice: dependence on the neurodeve-
lopmental period. Neurochem Res 31: 563–569. PMID: 16758366

28. Eldefrawi M, Mansour N, Eldefrawi A (1977) Interactions of acetylcholine receptors with organic mer-
cury compounds. Membrane Toxicity: Springer. pp. 449–463.

29. Burgess HA, Schoch H, Granato M (2010) Distinct retinal pathways drive spatial orientation behaviors
in zebrafish navigation. Curr Biol 20: 381–386. doi: 10.1016/j.cub.2010.01.022 PMID: 20153194

The Nicotine-Evoked Locomotor Response for Toxicity Screening in MeHg-Exposed Zebrafish Embryos

PLOS ONE | DOI:10.1371/journal.pone.0154570 April 28, 2016 15 / 15

http://dx.doi.org/10.1021/es3050967
http://www.ncbi.nlm.nih.gov/pubmed/23458150
http://www.ncbi.nlm.nih.gov/pubmed/16758366
http://dx.doi.org/10.1016/j.cub.2010.01.022
http://www.ncbi.nlm.nih.gov/pubmed/20153194

