
Vesicular Stomatitis Virus Infection Promotes Immune
Evasion by Preventing NKG2D-Ligand Surface Expression
Helle Jensen1, Lars Andresen1, Jens Nielsen2, Jan Pravsgaard Christensen3, Søren Skov1*

1 Laboratory of Immunology, Section of Biomedicine, LIFE, University of Copenhagen, Copenhagen, Denmark, 2 National Veterinary Institute, Technical University of

Denmark, Lindholm, Denmark, 3 Institute of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark

Abstract

Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we
hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune
stimulatory NKG2D-ligands. Here we show that VSV infection leads to a robust induction of MICA mRNA expression,
however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV)
and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV
infection caused an active suppression of NKG2D-ligand surface expression, affecting both endogenous and histone
deacetylase (HDAC)-inhibitor induced MICA, MICB and ULBP-2 expression. The classical immune escape mechanism of VSV
(i.e., the M protein blockade of nucleocytoplasmic mRNA transport) was not involved, as the VSV mutant strain, VSVDM51,
which possess a defective M protein, prevented MICA surface expression similarly to wild-type VSV. The VSV mediated down
modulation of NKG2D-ligand expression did not involve apoptosis. Constitutive expression of MICA bypassed the escape
mechanism, suggesting that VSV affect NKG2D-ligand expression at an early post-transcriptional level. Our results show that
VSV possess an escape mechanism, which could affect the immune recognition of VSV infected cancer cells. This may also
have implications for immune recognition of cancer cells after combined treatment with VSV and chemotherapeutic drugs.
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Introduction

Vesicular stomatitis virus (VSV) is an oncolytic virus that can

replicate rapidly in a large number of tumor cell lines and

selectively kill them. In addition, VSV exhibits a tumor repression

effect in vivo in both human tumor xenografts in nude mice and

syngenic tumors in immune competent mice [1,2].

The RNA genome of VSV encodes five viral proteins (i.e.

nucleoprotein, phosphoprotein, matrix (M) protein, glycoprotein

and a large polymerase protein) [3]. The M protein is involved in

transcriptional regulation [4] and in packaging and budding of

virions [5,6]. A primary function of the M protein is however to

obstruct cellular antiviral programs. It can shut off host cell

expression of antiviral gene products, such as type 1 interferons, by

blocking the nucleocytoplasmic transport of host cell RNA [7],

and this leads to an inhibition of host innate immune mechanisms

[8]. The inhibition of mRNA export has been found to involve an

interaction between the M protein and nuclear pore (i.e. Nup98)

and export (i.e. Rae1) proteins [9,10]. The mutant VSV strain,

VSVDM51, harbor a defect M protein that is no longer able to

inhibit the nucleocytoplasmic transport of RNA, nevertheless this

virus retain its full oncolytic effect [8,11].

The immune system needs to recognize and subsequently

eliminate infected or transformed cells. A major surveillance mode

is governed by the NKG2D/NKG2D-ligand system. Healthy

human cells express low levels of NKG2D-ligands, whereas

expression is up-regulated on bacterial/viral infected cells and

on many tumors and otherwise stressed cells. Several different

forms of NKG2D-ligands exist, primarily belonging to the MIC or

RAET1 (ULBP) gene families [12,13]. The existence of different

ligands for the same NKG2D receptor is puzzling and may reflect

an evolutionary protection against pathogen mediated down

modulation of particular NKG2D-ligands. The activating recep-

tor, NKG2D, is expressed by several cells of the immune system,

including human NK cells, CD8 T cells, some CD4 T cells, NK-T

cells and cd T cells, and ligation of the receptor leads to immune

activation and an elimination of the NKG2D-ligand expressing

cells [12,14–16].

A number of viruses, including human cytomegalovirus

(HCMV) and adenovirus, induce NKG2D-ligand expression

[13,17]. However, in order to escape immune recognition HCMV

and adenovirus can hinder cell surface expression of some

NKG2D-ligands. The HCMV UL16/UL142 protein can retain

ULBP-1, ULBP-2, MICB and some alleles of MICA (i.e. it can

only bind the full-length MICA alleles and not the truncated allele,

MICA*008) in the endoplasmic reticulum (ER)/Golgi apparatus

[18–22]. Likewise, MICA and MICB can be retained in the ER by

the adenovirus E3/19K protein following infection [23].

Histone deacetylase (HDAC)-inhibitors is a new class of

chemotherapeutic agents, which are able to increase surface

expression of NKG2D-ligands in stressed and tumorigenic cells

[24–26]. HDAC-inhibitors do not affect VSV infection in normal
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tissue, but potently enhance oncolytic VSV killing of cancer cells

both in vitro and in vivo [27]. It is therefore possible that HDAC-

inhibitors act as cancer specific VSV sensitizers.

This study shows that even though VSV infection leads to gene

activation of the NKG2D-ligand, MICA, there is an inhibition of

NKG2D-ligand surface expression early after transcription.

Interestingly, this is not caused by a M protein mediated block

of nucleocytoplasmic transport. Our results provide evidence that

VSV possess an as yet unknown escape mechanism targeting the

NKG2D/NKG2D-ligand surveillance system. Our results further

suggest that care should be taken when VSV is used for cancer

therapy, especially when the NKG2D/NKG2D-ligand surveil-

lance system is involved.

Materials and Methods

Cell lines
Two Jurkat T cell lines were used in this study: JE6-1, from

American Type Culture Collection, and JTag-9, kindly provided

by Dr. Carsten Geisler (Department of International Health,

Immunology and Microbiology, University of Copenhagen, Den-

mark). JTag-9 cells are stably transfected with the large T antigen

from SV40 and they were only used for transient transfection

studies. The melanoma cell lines, FM-86 and FM-78, were kindly

provided by Dr. Per thor Straten (CCIT, Department of

Hematology, Herlev University Hospital, Denmark). All the cells

were grown in RPMI-1640 medium (Sigma-Aldrich) supplement-

ed with 10% FBS, 2 mM glutamine, 2 mM penicillin and

streptomycin.

Reagents, plasmids and antibodies
FR901228 was obtained from the National Cancer Institute

(Bethesda, MD). ZVAD-Fmk, propidium iodide (PI) and cyclo-

heximide (CHX) was purchased from Sigma-Aldrich. IFN-a was

kindly provided by Dr. Niels Ødum (Department of International

Health, Immunology and Microbiology, University of Copenha-

gen, Denmark). The MICA*008-GFP vector construct was kindly

provided by Dr. Mark R. Wills (Department of Medicine,

University of Cambridge, U.K.) [18]. The Flag-Triad3A vector

construct was kindly provided by Dr. John Hiscott (Department of

Medicine, McGill University, Canada) [28]. To generate the

MICA*009-GFP vector construct, RNA was isolated from Jurkat

T-cells using TRIzol reagent (Invitrogen) and reverse-transcribed

using oligo(dT)20 primers and the SuperScript III reverse

transcriptase enzyme (Invitrogen). PCR was performed under

standard conditions using a PfuUltra II DNA polymerase (Strata-

gene). MICA primer sequences were: MICA_cDNA_fwd: 59-

CACCATGGGGCTGGGCCCGGTCTTCCT-39; and MICA_

cDNA_nostop_rev: 59-CGGCGCCCTCAGTGGAGCCAGTG-

GA-39. The PCR product was cloned into pcDNA3.1/CT-GFP-

TOPO (Invitrogen) using TOPO technology. The following

antibodies were used for flow cytometry analysis: PE-conjugated

MICA/B Ab (558352; BD Biosciences); APC-conjugated Annexin

V (550474; BD Biosciences); PE-conjugated ICAM-1 Ab (C170;

Leinco Technologies); PE-conjugated ULBP-2 Ab (FAB1298P;

R&D Systems); APC-conjugated ULBP-2 Ab (FAB1298A; R&D

Systems); PE-conjugated IgG Ab (555787; BD Biosciences) and

APC-conjugated IgG Ab (555576; BD Biosciences).

Viruses
VSV10 is a wild-type strain of the Indiana serotype. VSVDM51

was kindly provided by Dr. Chantal G. Lemay (University of

Ottawa, Center for Cancer Therapeutics, Canada). VSVDM51 is a

mutated strain of the Indiana serotype. It has a single amino acid

deletion of methionine at position 51 of the matrix (M) protein and

contains an extra cistron that encodes GFP, inserted between the

sequences encoding the glycoprotein and large polymerase protein

[8].

Transient transfections
JTag-9 cells were transiently transfected with the Nucleofector

kit V (Amaxa, Inc) according to the manufacturer’s protocol.

Briefly, 26106 cells were spun down, resuspended in 100 ml Cell

Line Nucleofector Solution V, mixed with 5 mg vector construct

and pulsed using the Nucleofector Program G10. For infection

with VSV, the cells were rested for 2 hr before infected with 0.001

or 0.01 MOI VSV10 or VSVDM51 for 19 hr. For treatment with

CHX, the cells were rested for 4 hr before treated with 10 mg/ml

CHX for 15 hr or the cells were rested for 12 hr before treated

with 20 mg/ml CHX for 7 hr.

Flow cytometry analysis
Antibody surface staining of cells was done as previously

described [25]. For surface staining with Annexin V, cells were

washed and stained in buffer containing 10 mM Hepes (pH 7.4),

0.14 M NaCl, and 2.5 mM CaCl2. Intracellular staining with

MICA/B Ab was done using the BD Cytofix/Cytoperm kit (BD

Biosciences) according to the manufacturer’s protocol. For

staining with PI, cells were incubated for at least 5 min at RT

with 1 mg/ml PI. Flow cytometry analysis and data acquisition

were performed on a BD FACSCanto II or FACSCalibur. All

results show forward-scatter on a linear scale and fluorescence on

a log10 scale.

Real-time RT-PCR analysis
For measurement of MICA mRNA level following VSV10 or

VSVDM51 titration, 26106 JE6-1 cells were mock infected (with

media) or infected with 0.001, 0.01 or 0.1 MOI of VSV10 or

VSVDM51 for 19 hr and RNA was isolated using a MagNa Pure

LC System (Roche Diagnostics) or TRIzol reagent (Invitrogen).

For measurement of MICA mRNA level following time titration of

FR901228 treatment or VSV10 infection, 36106 JE6-1 cells were

treated with 20 ng/ml FR901228 or infected with 0.1 MOI

VSV10 for 0, 4, 8, 12, 15 or 18 hr and RNA was isolated using

TRIzol reagent. Real-time RT-PCR analysis of MICA mRNA

expression was done as previously described [25]. The house-

keeping gene Ribosomal Protein, Large, P0 was used as a loading

control. The quantitative real-time PCR analysis was performed

using the Brilliant SYBR Green QPCR Master Mix kit

(Stratagene) and run on a Stratagene Mx3000P thermocycler.

Sequencing of M protein in VSVDM51

JE6-1 cells were infected with 0.1 MOI VSVDM51 for 19 hr and

RNA was extracted in a MagNa Pure LC System (Roche

Diagnostics). The RNA was reverse-transcribed using random

hexamer primers and the SuperScript III reverse transcriptase

enzyme (Invitrogen). PCR was performed under standard

conditions using a Taq DNA polymerase (New England BioLabs).

Specific primers (VSV_M_fwd: 59-ACGAATTCAAATTAGG-

GATCGCACCACC-39 and VSV_M_rev: 59-ACGGATCCCG-

TGATACTCGGGTTGACCT-39) were used to amplify a 377-bp

fragment spanning bases 61–438 of the VSV M gene. The PCR

product was cloned into a pCR4-TOPO vector using the TOPO

TA Cloning Kit for Sequencing (Invitrogen), which was

subsequently used to transform One Shot chemically competent

TOP10 cells (Invitrogen). From the selective plate several colonies

were chosen for analysis and subcultured overnight at 37uC.

Obstruction of NKG2D-Ligand Expression by VSV
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Plasmid DNA was extracted from the cultures using a QIAprep

Spin Miniprep Kit (QIAGEN GmbH), according to the

manufacturer’s protocol. The plasmid DNA was sequenced at

MWG-Biotech (Germany).

Statistics
When applicable, data are presented as mean6SD. For

comparison of groups (treated versus non-treated samples)

statistical analysis was performed using one-way ANOVA followed

by Dunnett’s test. Significance was defined as p,0.05.

Results

Surface expression of NKG2D ligands is down modulated
upon VSV infection

Jurkat T-cells were infected with VSV10 and examined for

NKG2D-ligand expression. Interestingly, VSV10 infection leads

to a robust induction of MICA mRNA expression (Fig. 1A), to a

level resembling the induction by HDAC-inhibitor, FR901228,

which is a well-known inducer of NKG2D-ligand expression

[24,25]. Combined VSV10 infection and FR901228 treatment led

to a further increase in MICA mRNA expression (data not shown).

An up-regulation of MICA mRNA expression in Jurkat T-cells

could be observed 4 hr post treatment with FR901228, whereas an

up-regulation of MICA mRNA following VSV10 infection was

observed after 12 hr (Fig. 1B). Strikingly no surface expression of

MICA was observed on the VSV10 infected cells (Fig. 1A).

Moreover, the FR901228-mediated (Fig. 1C) or the endogenous

(data not shown) MICA/B expression on Jurkat T-cells was

significantly hampered by VSV10 infection. The down modula-

tion of FR901228-induced MICA/B cell surface expression was

detectable 12 hr post infection (data not shown). We also observed

a significant down modulation of the structural different NKG2D-

ligand, ULBP-2, following FR901228 treatment and VSV

infection (Fig. 1D). In addition, VSV10 infection significantly

down modulated the constitutive surface expression of MICA/B

on the two melanoma cell lines, FM-86 and FM-78 (Fig. 1E). No

inhibition of the surface protein ICAM-1 was observed on the

Jurkat T-cells following VSV10 infection (data not shown).

These results show that VSV10 infection induce transcriptional

activation of the stress induced NKG2D-ligand MICA, without

subsequent MICA surface expression. This is most likely due to a

post transcriptional down modulation of NKG2D-ligands, as

Figure 1. Surface expression of NKG2D ligands is down
modulated upon VSV infection. A, JE6-1 cells were either mock
infected+non-treated with FR901228 (-), mock infected+treated with
20 ng/ml FR901228 for 18 hr (FR) or infected with the indicated MOI of
VSV10 for 19 hr. The MICA mRNA level was examined by real-time RT-
PCR and surface expression of MICA/B by flow cytometry. The MICA
mRNA level is displayed as fold expression relative to the mock infected
sample. The bar graphs show mean6SD from four experiments. B, JE6-1
cells were either treated with 20 ng/ml FR901228 or infected with 0.1
MOI VSV10 for 0, 4, 8, 12, 15 or 18 hr. The MICA mRNA level was
examined by real-time RT-PCR. The MICA mRNA level is displayed as
fold expression relative to the mock treated/infected sample. The bar
graphs show mean6SD from two experiments. C and D, JE6-1 cells
were mock infected (-) or infected with the indicated MOI of VSV10 one
hr prior to treatment with 20 ng/mL FR901228. 19 hr post infection, the
cells were analyzed for MICA/B or ULBP-2 surface expression or
intracellular MICA/B expression by flow cytometry. The bar graphs show
mean6SD from three experiments. E, The melanoma cell lines, FM-86
and FM-78, were mock infected (-) or infected with 0.1 MOI VSV10 for
19 hr and analysed for MICA/B surface expression by flow cytometry.
The bar graphs show mean6SD from two experiments. For all the bar
graphs, ** p,0.05 and *** p,0.0001.
doi:10.1371/journal.pone.0023023.g001

Obstruction of NKG2D-Ligand Expression by VSV
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VSV10 decreases the HDAC-inhibitor mediated and endogenous

MICA surface expression, without affecting the mRNA level.

Interferon-a restores FR901228-induced MICA/B surface
expression after VSV infection

VSV is known to inhibit the nucleocytoplasmic transport of

several host cell RNAs through its matrix (M) protein [9–11],

which could be a likely explanation for the reduced NKG2D-

ligand expression observed after VSV10 infection.

Treatment of cells with IFN-a increases Nup98 expression,

which subsequently reduces the ability of the M protein to inhibit

nucleocytoplasmic transport of RNA [29]. Additionally, IFN-a
alleviates several virus inflicted obstructions of cellular functions.

We did not detect any MICA/B surface expression on VSV10

infected cells after pretreatment with IFN-a (Fig. 2). However,

FR901228-mediated surface MICA/B expression was rescued by

pretreatment with IFN-a (Fig. 2), suggesting that VSV and

FR901228 induce MICA/B surface expression through different

pathways. IFN-a is known to inhibit the infectious potential of

VSV [8], which may also add to the results.

Infection with the M protein mutated virus strain,
VSVDM51, blocks NKG2D-ligand surface expression

The amino acid, methionine, at position 51 of the VSV M

protein is essential for inhibition of the nucleocytoplasmic

transport of host cell RNAs [8,11]. Thus, it was interesting if the

VSVDM51 strain, which has the methionine deleted from the M

protein, was able to induce surface expression of NKG2D-ligands.

A strong increase in the MICA mRNA level was observed after

VSVDM51 infection (Fig. 3A) and as expected combined VSVDM51

infection and FR901228 treatment led to a further increase in

MICA mRNA expression (data not shown). Unexpectedly,

VSVDM51 infection did only result in a minor level of MICA/B

surface expression (Fig. 3A). To substantiate this finding, we

treated the cells with HDAC-inhibitors and found the same level

of inhibition of ULBP-2 and MICA/B expression (Fig. 3B & C), as

observed with the wild-type VSV10 strain. Additionally, VSVDM51

infection inhibited endogenous MICA/B and ULBP-2 surface

expression on Jurkat T-cells (data not shown) and constitutive

MICA/B surface expression on the two melanoma cell lines, FM-

86 and FM-78 (Fig. 3D). ICAM-1 surface expression remained

unchanged on Jurkat T-cells infected with VSVDM51 (data not

shown).

It is interesting that VSVDM51, which is engineered not to

inhibit nucleocytoplasmic transport of RNA, could still inhibit

HDAC-inhibitor mediated and endogenous surface expression of

NKG2D-ligands. To exclude the possibility that VSVDM51 had

reverted to wild-type VSV (i.e. lost its mutation of the M protein),

we sequenced the M protein of virus collected from infected Jurkat

T-cells and confirmed the mutation (Fig. 3E).

These results indicate that VSV infection down modulates

NKG2D-ligand surface expression by a novel mechanism, not

dependent on M protein-mediated nucleocytoplasmic transport.

VSV-mediated down modulation of MICA/B surface
expression is not caused by apoptosis

HDAC-inhibitors are known to augment VSV-induced apop-

tosis [27], so to exclude the possibility that the down modulation of

FR901228-induced MICA/B expression was due to an increase in

apoptosis by VSV, Jurkat T-cells were treated with the caspase

inhibitor, ZVAD-Fmk. Treatment with ZVAD-Fmk abrogated the

induction of apoptosis by VSV and VSV plus FR901228 (data not

shown), which is consistent with previous findings [27]. The

inhibition of apoptosis led to a minor increase in FR901228-

induced MICA/B surface expression after VSV10 and VSVDM51

infection (Fig. 4), which indicates that apoptosis could be involved

in the VSV blockade of HDAC-inhibitor mediated MICA/B

expression. However, we did not observe any MICA/B surface

expression on VSV infected cells, which were not treated with

FR901228, after inhibition of apoptosis (Fig. 4). These data suggest

that VSV must possess an additional ability to abrogate the surface

expression of NKG2D-ligands. VSV infection caused a minor

decrease in cell viability (,10%) after 19 hr as measured by PI

exclusion (data not shown), suggesting that the down modulation

of MICA/B is not caused by gross toxicity.

VSV-mediated inhibition of MICA surface expression
occurs at an early post transcriptional level

HCMV can escape immune recognition by hindering surface

expression of full-length MICA alleles, but not the truncated allele,

MICA*008 [22]. To test whether VSV distinguish between

different alleles of MICA during the down modulation, we

transiently transfected Jurkat T-cells with vector constructs

encoding the full-length MICA*009 allele and the truncated

MICA*008 allele. As shown in Fig. 5A and B, neither VSV10 nor

VSVDM51 abrogated the cmv-controlled surface expression of

MICA*008 or MICA*009. VSV infection of the transfected cells

caused cell death (VSV10) and GFP expression (VSVDM51),

indicating that the transfection did not affect viral infection (data

not shown).

The results suggest that VSV do not discriminate between the

different alleles of MICA. Furthermore, the lack of inhibition of

MICA after transient transfection indicates that VSV infection

inhibits the cell surface expression of MICA at an early post

transcriptional level. In agreement with this, we found that both

VSV10 and VSVDM51 infection decrease the intracellular protein

level of MICA/B after FR901228 treatment (Fig. 1C & 3B).

VSV is known to cause a global inhibition of translation during

infection [30–32], however VSV infection did not affect MICA

surface expression after transient over expression (Fig. 5A and 5B).

cycloheximide (CHX), a potent inhibitor of translation, was used

to verify that effective inhibition of translation could affect

Figure 2. Interferon-a restores FR901228-induced MICA/B
surface expression after VSV infection. JE6-1 cells were treated
twice with 1000 U IFN-a with a 24 hr interval. One hr after the second
treatment with IFN-a, the cells were mock infected or infected with 0.01
MOI VSV10. One hr post infection the cells were treated with 20 ng/mL
FR901228 (FR), where indicated. 19 hr post infection, the cells were
analyzed for MICA/B surface expression by flow cytometry. The data
represent one out of two experiments.
doi:10.1371/journal.pone.0023023.g002

Obstruction of NKG2D-Ligand Expression by VSV
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transient overexpression of MICA. Treatment with CHX 4 hr

post transfection inhibited surface expression of MICA by

71.1%61.8%, and treatment with CHX 12 hr post transfection

inhibited surface expression of MICA by 34.1%61.4%. Since

transient over expression of MICA can be inhibited by CHX, but

not by VSV infection, this implies that a global inhibition of

translation is not the major course of VSV-mediated down

modulation of MICA surface expression.

Discussion

This report is the first showing an effect of VSV infection on

NKG2D-ligand expression. We observed that infection of cancer

cells with the oncolytic virus, VSV, leads to an induction of mRNA

expression of the NKG2D-ligand, MICA. However, the increase

in MICA mRNA expression was not followed by an increase in

surface expression. VSV infection inhibited stress-induced and

endogenous surface expression of several NKG2D-ligands,

including MICA/B and ULBP-2, indicating that the VSV-

mediated inhibition targets NKG2D-ligands from both the MIC

and RAET1 gene families. Furthermore, the VSV-mediated down

modulation of NKG2D-ligand expression was observed in Jurkat

T-cells and melanoma cells, showing that the down-modulation is

not cell type specific.

VSV has an interest in keeping NKG2D-ligands away from the

cell surface, especially since the virus infection leads to a robust

induction of MICA mRNA. We did not discover the viral

mechanism or gene product mediating the down modulation of

NKG2D-ligands, and the precise molecular mechanism behind

this remains to be identified. However, we did find that the well

documented escape mechanism of VSV (i.e. inhibition of

Figure 3. Infection with the M protein mutated virus strain,
VSVDM51, blocks NKG2D-ligand surface expression. A, JE6-1 cells
were either mock infected+non-treated with FR901228 (-), mock
infected+treated with 20 ng/ml FR901228 for 18 hr (FR) or infected
with the indicated MOI of VSVDM51 for 19 hr. The MICA mRNA level was
examined by real-time RT-PCR and surface expression of MICA/B by
flow cytometry. The MICA mRNA level is displayed as fold expression
relative to the mock infected sample. The bar graphs show mean6SD
from four and three experiments, respectively. B and C, JE6-1 cells were
mock infected (-) or infected with the indicated MOI of VSVDM51 one hr
prior to treatment with 20 ng/mL FR901228. 19 hr post infection, the
cells were analyzed for MICA/B or ULBP-2 surface expression or
intracellular MICA/B expression by flow cytometry. The bar graphs show
mean6SD from three experiments. D, The melanoma cell lines, FM-86
and FM-78, were mock infected (-) or infected with 0.1 MOI VSVDM51 for
19 hr and analysed for MICA/B surface expression by flow cytometry.

The bar graphs show mean6SD from two experiments. E, The VSVDM51

M protein was sequenced as described in section 2.7. The VSVDM51

clone insert was aligned to the gene bank sequence of M protein (VSV
WT; M11754.1; Indiana serotype of VSV). For all the bar graphs, * p,0.05
and *** p,0.0001.
doi:10.1371/journal.pone.0023023.g003

Figure 4. VSV-mediated down modulation of MICA/B surface
expression is not caused by apoptosis. JE6-1 cells were incubated
with 50 mM ZVAD-Fmk (ZVAD) just prior to mock infection (-) or
infection with 0.01 MOI VSV10 or VSVDM51. One hr post infection, the
cells were treated with 20 ng/mL FR901228 (FR), where indicated. 19 hr
post infection, the cells were analyzed for MICA/B surface expression by
flow cytometry. The bar graphs show mean6SD from three experi-
ments. *** p,0.0001.
doi:10.1371/journal.pone.0023023.g004

Obstruction of NKG2D-Ligand Expression by VSV
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nucleocytoplasmic transport of mRNAs by the M protein [9–11])

was not involved in the down modulation of NKG2D-ligands on

Jurkat T-cells. Thus, it appears that VSV possess an unknown

escape mechanism targeting NKG2D-ligand mediated immune

recognition.

The VSV M protein is involved in several stages of the

infection [4–6], thus we cannot rule out an involvement of the M

protein in the down modulation of NKG2D-ligand surface

expression, by a mechanism distinct from nucleocytoplasmic

transport.

We have previously shown that MICA/B is not up-regulated on

apoptotic cells [24]. The down regulation of NKG2D-ligand

expression could therefore be an outcome of VSV-induced

apoptosis. Inhibition of apoptosis by treatment with ZVAD-Fmk

only led to a minor increase in FR901228-induced MICA/B

surface expression after VSV infection, and therefore apoptosis is

likely not a key player in the down modulation of NKG2D-ligand

expression by VSV.

NKG2D-ligand expression can be controlled by ubiquitinyla-

tion, and the E3 ubiquitin ligase K5 from Kaposai sarcoma virus

has been shown to down regulate cell surface expression of MICA

by ubiquitination of lysine residues in the protein’s cytoplasmic tail

[33]. Expression of the E3 ubiquitin ligase Triad3A is induced by

VSV infection, and is an alternative way that VSV possess to

inhibit the activation of an antiviral response [28]. Triad3A

negatively regulates the RIG-I/MAVS signalling pathway through

TRAF3 degradation [28], and promotes proteolytic degradation

of some Toll-like receptors [34]. Triad3A could therefore be

involved in the down modulation of NKG2D-ligands. We have

tested the influence of Triad3A on NKG2D-ligand expression.

However, overexpression of Triad3A in Jurkat T-cells weakly

affected NKG2D-ligand expression following HDAC-inhibitor

treatment and only at transfection levels that decreased cell

viability (data not shown). We therefore find it less likely that

Triad3A has a major role in the VSV-mediated down modulation

of NKG2D-ligands.

A down modulation of FR901228-induced MICA/B cell

surface expression was detectable 12 hr post VSV infection,

which could imply that a certain level of VSV proteins must be

present before the down modulation is observed. However, future

studies needs to clarify if this effect is a direct or indirect result of

the VSV infection.

Constitutive surface expression of MICA, following transient

transfections with two different alleles of MICA (*009 & *008),

could not be inhibited by VSV infection, thus the VSV-mediated

block of NKG2D-ligand surface expression seems not to

discriminate between the different alleles of MICA and to occur

at an early post transcriptional level.

VSV infection is recognized for its global inhibition of host

protein translation [30–32]. The MICA mRNA level is increased

4 hr after FR901228 treatment and 12 hr after VSV infection, it is

therefore possible that the VSV-mediated reduction of MICA

surface expression is caused by an inhibition of translation. In this

study we examine MICA surface expression in three experimental

setups: 1) after VSV infection; 2) after HDAC-inhibitor treatment

+/2 VSV infection and 3) after transient transfection with vector

constructs encoding MICA +/2 VSV infection. VSV infection

inhibits MICA surface expression in 1) and 2), but not in 3), which

suggests that global inhibition of translation is not the primary

course of the VSV-mediated inhibition. It should be noted that 3)

is a transient transfection with a MICA construct just prior to VSV

infection, it is therefore unlikely that MICA is expressed if there is

a global inhibition of translation. To examine this aspect further,

we treated MICA-transiently transfected cells with CHX, a potent

inhibitor of translation. Since treatment with CHX, and not VSV

infection, led to a decrease in MICA surface expression, this

suggests that a general inhibition of translation by VSV is not the

primary mechanism of inhibition of MICA surface expression, at

least not within the time frame and VSV concentrations used in

our experimental settings.

Together our results suggest that VSV targets NKG2D-ligand

surface expression by a mechanism different from other viruses.

HCMV UL142 retains several MICA alleles (but not the truncated

allele MICA*008) in the cis-golgi aparatus, but it does not affect

MICB [18]; HCMV UL16 retain MICB, ULBP-1, and ULBP-2

in the ER [19–22]; HCMV micro-RNA specifically targets the 39

untranslated region of the MICB transcript [35]; and adenovirus

E3/19K retain both MICA (including MICA*008) and MICB in

the ER, but does not affect ULBP-1–3 [23].

Figure 5. VSV-mediated inhibition of MICA surface expression
occurs at an early post transcriptional level. A, JTag-9 cells were
transiently transfected with 5 mg MICA*008-GFP (MICA*008) or MI-
CA*009-GFP (MICA*009) vector constructs. Two hr post transfection, the
cells were either mock infected or infected with 0.001 MOI VSV10 for
19 hr. The cells were analyzed for surface MICA/B expression by flow
cytometry. The dot-plots represent one out of three experiments. B,
JTag-9 cells were transiently transfected as described in A. Two hr post
transfection, the cells were either mock infected (-) or infected with
0.001 or 0.01 MOI VSVDM51 for 19 hr. The cells were analyzed for MICA/B
surface expression by flow cytometry. The bar graphs show mean6SD
from three experiments.
doi:10.1371/journal.pone.0023023.g005
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Previous efforts have shown that it is possible to modify the VSV

genome to enhance the oncolytic properties of VSV, e.g. by

adding cDNA encoding IL-4, which had a positive effect on VSV-

induced oncolysis in experimental animal models [36]. Our results

suggest that it may be beneficial to alter the VSV genome to

accommodate surface expression of NKG2D-ligands, depending

on the type of cancer. This will require a further delineation of the

molecular mechanism behind VSV-mediated hindering of

NKG2D-ligand surface expression, but will potentially boost the

anti-tumor ability of VSV.

VSV is well-known for its oncolytic ability and the VSV-

mediated regulation of NKG2D-ligands may have several effects

in this regard.

Various tumors, particular Melanoma, Prostate, Ovarian and

B-CLL cancers, are known to evade the immune system by

shedding soluble NKG2D-ligands [37–40]. This shedding cause a

persistent down modulation of NKG2D expression and leads to

impaired anti-cancer activity by NK cells and CD8 T cells [41]. In

this specific context, the VSV-mediated inhibition of NKG2D-

ligand expression could have a favorable effect on immunity

against cancer. Additional studies are however needed to address if

VSV can inhibit the shedding of soluble NKG2D-ligands from

cancer cells.

Interestingly, HDAC-inhibitors have been found to increase the

oncolytic effect of VSV in vivo in different cancers [27]. In this

particular circumstance, we would envisage that the synergistic

induction of cancer cell death with VSV infection and HDAC-

inhibitor treatment prevails over the lack of NKG2D-ligand

expression It is however noteworthy that the study uses Melanoma

and Prostate cancer cells, which may express suppressive soluble

NKG2D-ligands.

In apparent contradiction to the results presented in the current

manuscript, previous reports have shown that VSV infection

results in a robust recruitment of NK and NK-T cells in immune-

competent hosts [42,43]. In our opinion the most likely

explanation is that VSV infection induces other molecules that

can recruit and activate NK cells. Although not limited to, likely

candidates could be: Hsp70, DNAM-1, Calreticulin and HMGB1

[44–46]. Future studies need to clarify this potentially interesting

effect of VSV infection on other immune stimulatory proteins.

The question is then why VSV inhibits NKG2D-ligand

expression when other stimulatory molecules might be induced

or not affected. Although speculative in nature there are several

likely explanations: 1) NK cells have several stimulatory receptors

e.g. NKG2D, DNAM-1, 2B4, NKp46 and others [47], and it has

elegantly been shown that full NK cell activation is dependent

upon engagement of several of these receptors in combination

[48]. It is therefore possible that VSV blocks NKG2D engagement

to prevent full NK cell activation, this may be particular important

for VSV infection as it directly stimulates NK cell recruitment

[42,43]; 2) Diefenbach et al. have furthermore demonstrated that

NKG2D-ligand expression by tumor cells is important for their

ability to induce immunological memory [49]. Thus, it is possible

that the NKG2D/NKG2D-ligand system plays a specific role in

the development of a memory response against VSV.

The outcome of cancer treatment or co-treatment with VSV

will depend on the relative contribution of different contradictory

factors. Positive factors could be: the synergistic chemotherapeutic

potential and the down modulation of tumor-mediated shedding

of soluble NKG2D-ligands. Negative factors could be: the lack of

induction of immunological memory due to reduced NKG2D-

ligand expression and the lack of tumor recognition due to

reduced NKG2D-ligand expression.

The focus of the current study has been to demonstrate and

characterize the VSV-mediated suppression of MICA/B and

ULBP2 surface expression. Since viruses rarely, if ever, target

cellular proteins without a scope, we believe that our findings are a

significant step forward in the understanding of VSV biology.
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