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Dimensionality reduction plays a pivotal role in preparing high-dimensional data for classification 
and discrimination tasks by eliminating redundant features and enhancing the efficiency of 
classifiers. The effectiveness of a dimensionality reduction algorithm hinges on its numerical 
stability. When data projections are numerically stable, they lead to enhanced class separability 
in the lower-dimensional embedding, consequently yielding higher classification accuracy. This 
paper investigates the numerical attributes of dimensionality reduction and discriminant subspace 
learning, with a specific focus on Locality-Preserving Partial Least Squares Discriminant Analysis 
(LPPLS-DA). High-dimensional data frequently introduce singularity in the scatter matrices, 
posing a significant challenge. To tackle this issue, the paper explores two robust implementations 
of LPPLS-DA. These approaches not only optimize data projections but also capture more 
discriminative features, resulting in a marked improvement in classification accuracy. Empirical 
evidence supports these findings through numerical experiments conducted on synthetic and 
spectral datasets. The results demonstrate the superior performance of the proposed methods 
when compared to several state-of-the-art dimensionality reduction techniques in terms of both 
classification accuracy and dimension reduction.

1. Introduction

The availability of large-scale, high-dimensional data is on the rise. However, constructing an effective and efficient prediction 
model for tasks such as clustering and classification using high-dimensional data presents a formidable challenge, primarily due to 
the abundance of irrelevant and redundant attributes. For instance, consider satellite hyperspectral images, which boast millions 
of pixels and hundreds of spectral bands, resulting in a significant redundancy of information and imposing colossal computational 
overheads [1]. To address this issue, dimensionality reduction serves as a crucial technique. It simplifies the model structure by 
eliminating superfluous features, ultimately yielding a lower-dimensional representation of the data that exclusively retains the most 
pertinent features from the original dataset [2,3].

Among the conventional techniques for dimensionality reduction, supervised methods like Fisher’s linear discriminant analysis 
(LDA) and partial least squares discriminant analysis (PLS-DA) are considered more suitable when classification is the primary goal. 
This is because they integrate dimensionality reduction and discriminant analysis into a single unified algorithm. In the case of 
LDA, dimensionality reduction and the enhancement of class separability are achieved through a delicate interplay between the 
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overall separation of data belonging to different classes and the separation of data within each class. Despite its many successes, 
LDA has been known to suffer from the small sample size problem [4], a situation in which the number of samples is much smaller 
than the dimension of the sample space, resulting in the singularity of the within-class scatter matrix in LDA. Additionally, LDA 
assumes a global Euclidean structure of the data, which restricts its ability to uncover local nonlinear structures [5]. It has also been 
observed in [6] that LDA, which measures data distance using the 𝐿2 norm, can be sensitive to outliers, potentially resulting in 
inaccurate estimations of class means and the calculation of within-class and between-class scatter. In response to these challenges, 
numerous enhancements and extensions of LDA have been introduced in recent years. Notable developments include Robust Linear 
Discriminant Analysis (RLDA) [7], the Sparse Discriminant Feature Selection (SDFS) [8], the 𝑙2,1-LDA method which learns robust 
discriminative projections by minimizing and maximizing 𝑙2,1-norm simultaneously [6], the 3E-LDA method [9] and the Robust 
Sparse LDA (RSLDA) [10].

PLS-DA aims to find a projection of high-dimensional data into a lower-dimensional subspace that maximizes the total covariance 
between the data vectors and their class membership. PLS-DA has demonstrated significant success in discriminating and classifying 
high-dimensional spectral data, as documented in several studies [11–16]. However, a major drawback of PLS-DA is its neglect of the 
within-class data structure. This can lead to suboptimal performance when within-class variability predominates over between-class 
variability. As observed in [17], PLS-DA fails to account for scenarios where each class exhibits a distinct structure. In cases where 
one class has greater dispersion than the other, PLS-DA tends to bias the separation boundary towards the larger and more dispersed 
class. A recent study by [18,19] pointed out that only the between-class scatter matrix emerges in the eigenstructure of PLS-DA. The 
within-class scatter matrix which encapsulates the class-specific variation is ignored. Consequently, PLS-DA may yield unsatisfactory 
results when samples within a class form multiple separate clusters.

A more recent class of dimensionality reduction methods incorporates manifold learning and locality-based methods to preserve 
the specific structure of the original data as much as possible [5,20,21]. LPPLS-DA belongs to this class of methods where the 
dimension reduction capability of PLS-DA is enhanced by preserving the local class structure of the original data [19]. LPPLS-DA 
method seeks to find a low-dimensional embedding that not only preserves the class structure but also maximizes class separation. 
This is achieved by constructing an affinity graph using class labels to capture within-class structures while inheriting the global 
between-class structure from the underlying PLS-DA framework. In this regard, LPPLS-DA shares similarities with LDA [22] as it 
involves solving a multiobjective optimization that maximizes between-class scatter and minimizes within-class scatter at the same 
time. The typical approach to formulate this multi-objective optimization is through a generalized eigenvalue problem that involves 
both the between-class and within-class scatter matrices.

Indeed, as highlighted in [23], LPPLS-DA shares the same eigenstructure as LDA which is of the form

𝐴𝑤 = 𝜆𝐵𝑤, (1)

where 𝐴 represents the between-class scatter matrix, and 𝐵 refers to the within-class scatter matrix. It is worth noting that this 
generalized eigenvalue problem becomes ill-posed when the within-class scatter matrix is singular. In the case of LPPLS-DA, the 
problem is ill-posed when the locality-preserving within-class scatter matrix is singular. Consequently, the small sample size problem 
is not only an issue for LDA but also affects LPPLS-DA. A typical way to handle the singularity of the within-class scatter matrix is by 
using the Tikhonov regularization [24] where a constant value is added to the diagonal entries of the matrix [4]. Various numerical 
implementations of regularized LDA have been proposed using this technique [25–27]. However, it is essential to recognize that the 
ill-posed nature of the generalized eigenvalue problem described in (1) is not solely a result of the singularity of matrix 𝐵. According 
to [28,29], this issue may also stem from the singularity of both matrices 𝐵 and 𝐴. This situation is relevant in practice because, for 
high-dimensional data, on top of the small sample size problem, high correlation levels among the variables (i.e. multicollinearity) 
can also lead to the singularity of the between-class scatter matrix [30].

The singularity issues encountered in LPPLS-DA can introduce instability in the numerical algorithm that computes the low-

dimensional subspace where classification models are derived. When the algorithm is unstable, the computed projection matrices 
may fail to adequately capture discriminative features of a dataset. This, in turn, can result in suboptimal classification outcomes. This 
paper aims to propose two numerically stable implementations of LPPLS-DA. The first, termed Enhanced LPPLS-DA (En-LPPLSDA), 
applies diagonal shifts to both the PLS-DA between-class scatter matrix and the locality-preserving within-class scatter matrix. These 
shifts serve to stabilize the diagonalization procedures of these matrices. Stable diagonalization ensures improved orthogonalization 
of the eigenvectors needed for data projection, ultimately increasing the efficiency of dimensionality reduction. The second approach 
involves reformulating the LPPLS-DA objective using the maximum scatter difference criterion [31]. This gives rise to LPPLS-DA with 
maximum scatter difference (LPPLSDAMSD), which reduces the problem to the conventional eigenvalue problem. In this approach, 
the need to stabilize two scatter matrices is replaced by the task of stabilizing the scatter difference matrix. It is shown that, both 
En-LPPLSDA and LPPLSDAMSD methods yield the same eigenspace as the traditional LPPLS-DA, but they are better conditioned and 
offer improved numerical stability.

The rest of the paper is organized as follows: Section 2, provides an overview of the dimensionality reduction problem and 
presents the mathematical formulations of several supervised linear dimensionality reductions are given. Section 3 discusses the 
numerical properties of LPPLS-DA and introduces the newly proposed En-LPPLSDA and LPPLSDAMSD approaches. This section 
also furnishes detailed algorithms for implementing these methods. The experimental results in Section 4 showcase experiments 
conducted on synthetic datasets, establishing a connection between numerical stability and the performance of LPPLS-DA-based 
techniques. In Section 5, the comparative performance of LPPLS-DA, En-LPPLSDA, LPPLSDAMSD and other competing methods 
in the dimensionality reduction and classification of four spectra datasets are presented. The conclusion of the paper is given in 
2

Section 6.
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Fig. 1. A simplified geometrical perspective of linear dimensionality reduction: Projection of high dimensional data belonging to two classes, Class 1 (red) and Class 
2 (green). (a) Non-optimal projections fail to separate the two classes. (b) Optimal projection produces a good separation of data from different classes.

2. Related work

2.1. Dimensionality reduction for data classification: problem description

Given a set of data {𝑥1, 𝑥2, … , 𝑥𝑛} where each 𝑥𝑘 ∈ 𝑅𝑚 (𝑚 is the dimension of the data space) is an observation vector from 𝑚 vari-

ables. The linear dimensionality reduction problem is a problem of finding a 𝑚 × 𝑑 transformation matrix 𝑊 that maps 𝑥1, 𝑥2, … , 𝑥𝑛

to a set of points {𝑦1, 𝑦2, … , 𝑦𝑛}, where 𝑦𝑘 ∈ 𝑅𝑑 . Here, we expect 𝑑 << 𝑚 with 𝑑 being the dimension of the low-dimensional 
embedding. The projected data 𝑦𝑘 is an image of 𝑥𝑘 in the low dimensional embedding and we write 𝑦𝑘 = 𝑊 𝑇 𝑥𝑘. Fig. 1 depicts a 
geometrical representation of linear dimensionality reduction of a dataset that contains two classes. Non-optimal data projection may 
not be able to discriminate data from different classes, thus it can produce poor class separation in the low-dimensional embedding 
(Fig. 1(a)), A good dimensionality reduction algorithm should be able to project data onto the low-dimensional embedding such that 
class separation is optimum Fig. 1(b). A classifier algorithm such as the 𝑘 nearest neighbor (kNN) can be applied to the projected 
data to classify the data into respective classes. Because the classifier algorithm is applied in the low-dimensional space, it is expected 
to be more efficient than if it were applied to the original data in the 𝑚-dimensional space.

2.2. Supervised linear dimensionality reduction and the eigen structures

Supervised dimensionality reduction assumes that class labels of a dataset are known. To include the class labels in the mathe-

matical formulations, throughout this paper, a data set of 𝑛 data vectors in an 𝑚-dimensional space is denoted as

𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛] = [𝑋1,𝑋2,… ,𝑋𝐺] ∈ 𝑅𝑚×𝑛,

where the data is clustered into 𝐺 classes and each block matrix 𝑋𝑔 ∈ 𝑅𝑚×𝑛𝑔 has 𝑛𝑔 data vectors, where 𝑁𝑔 (1 ≤ 𝑔 ≤ 𝐺) be the set of 
column indices that belong to the class 𝑔. The between-class scatter matrix 𝑆𝑏 and the within-class scatter matrix 𝑆𝑤 are defined as

𝑆𝑏 =
𝐺∑

𝑔=1
𝑛𝑔(𝜇(𝑔) − 𝜇)(𝜇(𝑔) − 𝜇)𝑇 and 𝑆𝑤 =

𝐺∑
𝑔=1

𝑛𝑔

∑
𝑘∈𝑁𝑔

(𝑥𝑘𝜇(𝑔))(𝑥𝑘 − 𝜇(𝑔))𝑇 ,

where 𝜇 = 1
𝑛

∑𝑛
𝑘=1 𝑥𝑘 denotes the total sample mean vector and 𝜇(𝑔) = 1

𝑛𝑔

∑
𝑘∈𝑁𝑔

𝑥𝑘 denotes the 𝑔th class mean vector. The separa-

bility of classes in a data set is often measured by using the traces of 𝑆𝑏 and 𝑆𝑤.

One of the most popular supervised linear dimensionality reduction methods is LDA. LDA seeks to find a linear transformation 
𝑦𝑘 = 𝑊 𝑇 𝑥𝑘, such that in the projected subspace, the within-class scatter, 𝑆𝑤 is minimized and the between-class scatter, 𝑆𝑏 is 
maximized. To do so, the transformation 𝑊 is determined by maximizing Fisher’s criterion, i.e.,

max
𝑊

(𝑊 𝑇 𝑆𝑤𝑊 )−1(𝑊 𝑇 𝑆𝑏𝑊 ),
3

that leads to the eigenvalue problem of the form [32]
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(𝑆𝑤)−1𝑆𝑏𝑤 = 𝜆𝑤, (2)

Equivalently, (2) can be expressed as a generalized eigenvalue of the form

𝑆𝑏𝑤 = 𝜆𝑆𝑤𝑤,

In many applications such as hyperspectral classification [33], cancer classification with gene expression profiling [34] and face 
recognition [35], there is insufficient data to determine the within-class scatter matrix reliably, thus leading to an unstable inverse of 
the matrix and hence an ill-conditioned eigenvalue problem. This problem is more commonly known as the small sample size problem

in which the number of available samples is less than the dimensionality of data.

PLS-DA is considered an alternative to LDA in that it combines dimensionality reduction and discriminant analysis into one 
algorithm. PLS-DA is derived from the well-known PLS algorithm for modeling the linear relationship between two sets of observed 
variables. The main idea behind PLS is to find projection matrices 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑛]𝑇 ∈ 𝑅𝑛×𝑚 and 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑛]𝑇 ∈ 𝑅𝑛×𝑁 , 
where each column projection vector pair (𝑤, 𝑣) maximizes the co-variance of the projected data. Mathematically, this is represented 
by a subspace optimization problem of the form

max
𝑊 ∈𝑅𝑛×𝑑 ,𝑊 𝑇 𝑊 =𝐼

𝑡𝑟(𝑊 𝑇 �̄�𝑇 𝑌 𝑌 𝑇 �̄�𝑊 ), (3)

where �̄� is the mean-centered data matrix, and the columns of 𝑊 are the 𝑑 eigenvectors of �̄�𝑇 𝑌 𝑌 𝑇 �̄� (with 𝑑 < 𝑚) associated 
with the 𝑑 largest eigenvalues. Here, the matrix 𝑊 defines the projection matrix that transforms high-dimensional data into its 
low-dimensional representation. For discrimination and classification purposes, the input data matrix 𝑌 is replaced by a dummy 
(class membership) matrix defined as

𝑌 =

⎛⎜⎜⎜⎜⎝
1𝑛1

0𝑛1
… 0𝑛1

0𝑛2
1𝑛2

… 0𝑛2
⋮ ⋮ ⋱ ⋮
0𝑛𝐺

0𝑛𝐺
… 1𝑛𝐺

⎞⎟⎟⎟⎟⎠
(4)

where 0𝑛𝑔
and 1𝑛𝑔

are 𝑛𝑔 × 1 vectors of zeros and ones respectively.

It was shown in [19] that, given 𝑌 as in (4),

𝑆𝑏 = �̄�𝑇 𝑌 𝑌 𝑇 �̄� = 1
(𝑛− 1)2

𝐺∑
𝑔=1

𝑛2𝑔(𝜇
(𝑔) − 𝜇)(𝜇(𝑔) − 𝜇)𝑇 , (5)

and the optimization problem (3) is equivalent to the eigenvalue problem

𝑆𝑏𝑤 = 𝜆𝑤. (6)

Further scrutiny reveals that the expression in (5) can be written as

𝑆𝑏 = �̌�−1
𝑤 𝑆𝑏,

where �́�𝑤 = (𝑛 − 1)2𝑑𝑖𝑎𝑔(�̌�(1)
𝑤 , �̌�(2)

𝑤 , … , �̌�(𝐺)
𝑤 ), such that �̌�(𝑔)

𝑤 is an 𝑛𝑔 × 𝑛𝑔 diagonal matrix whose diagonal entries are all equal to 1
𝑛𝑔

. 

By comparing (6) with (2), the total within-class distribution is simplified as the diagonal matrix �̌�𝑤. Thus in comparison with LDA, 
although PLS-DA may not suffer from instability due to the small sample size problem, the representation of the local within-class 
structure is rather limited, and significant information can be overlooked.

2.3. Dimensionality reduction based on LPPLS-DA

In an effort to improve PLS-DA, [19] combined PLS-DA with a manifold learning technique to capture the local nonlinear structure 
of within-class distribution. Locality-preserving manifold learning involves constructing an affinity graph optimized to preserve local 
neighborhood structures in the embedding space. LPPLS-DA method employs class information while constructing the neighborhood 
graph to enhance the discriminating ability of the method further. Although both LDA and LPPLS-DA aimed at preserving within-

class distances, the within-class structure preserving feature in LPPLS-DA is somewhat different from LDA. LDA assumes data to be 
distributed normally, whereas, in LPPLS-DA, local data distribution is captured via the affinity graph and this graph structure is 
preserved in the low-dimensional embedding. In this way, intrinsic information on local data distribution can be preserved during 
dimensionality reduction.

The overall objective of LPPLS-DA is to find a low-dimensional subspace in which the intrinsic geometry and discriminant 
structure of data are preserved. It finds a projection matrix 𝑊 that transforms the high-dimensional data set 𝑋 into a low-dimensional 
subspace 𝑍 = 𝑋𝑊 such that the overall local distance of data samples from the same class is preserved. The local/class structure 
for samples in class 𝑔 is coded via an adjacency graph whose edges are weighted by the entries of a matrix 𝑆(𝑔) and the combined 
4

structure for the entire dataset is in the form of a sparse 𝑛 × 𝑛 matrix 𝑆 with the following structure:
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𝑆 =

⎛⎜⎜⎜⎜⎝
𝑆(1) 0𝑛1×𝑛2

… 0𝑛1×𝑛𝐺

0𝑛2×𝑛1
𝑆(2) … 0𝑛2×𝑛𝐺

⋮ ⋮ ⋱ ⋮
0𝑛𝐺×𝑛1

0𝑛𝐺×𝑛2
… 𝑆(𝐺)

⎞⎟⎟⎟⎟⎠
. (7)

The entries of 𝑆 are given by:

𝑆𝑖𝑗 =
⎧⎪⎨⎪⎩
exp

(
− ‖𝑥𝑖−𝑥𝑗‖2

𝑡

)
; if 𝑥𝑖 and 𝑥𝑗 both belong to the same class,

0; Otherwise,
(8)

where 𝑡 in (8) is a user-specified parameter. The choice of the weights in (7) guarantees that samples from the same class are 
connected by the adjacency graph. Furthermore, if the distance between two samples in the same class is small, a large weight is 
assigned to the edge connecting them to highlight the importance of the two samples in the class structure. This attribute enhances 
the discriminative feature for each class in the dataset so that when the conventional PLS-DA objective is maximized, class separation 
is enhanced at the same time.

A reasonable criterion for preserving the local structure is to minimize the following objective function [36]:∑
𝑖𝑗

(𝑧𝑖 − 𝑧𝑗 )2𝑆𝑖𝑗 , (9)

where 𝑧𝑖 is the projection of sample 𝑥𝑖 onto the lower-dimensional subspace 𝑍 . The structure of 𝑆 turns the sum in (9) into a 
weighted within-class scatter distance. Further, it is shown in [19] that minimizing (9) is equivalent to

min
𝑊 𝑇 𝑊 =𝐼

𝑡𝑟(𝑊 𝑇 𝑋𝐿𝑋𝑇 𝑊 ),

where 𝐿 = 𝐷 − 𝑆 is the graph Laplacian, and 𝐷 is a diagonal matrix whose entries are equal to the column (or row) sum of 𝑆 . 
To combine the PLS-DA approach of maximizing the between-class separation and minimizing within-class scatter with locality 
preserving, two distinct objectives are solved:

max
𝑊 𝑇 𝑊 =𝐼

𝑡𝑟
(
𝑊 𝑇 𝑆𝑏𝑊

)
, (10)

min
𝑊 𝑇 𝑊 =𝐼

𝑡𝑟
(
𝑊 𝑇 𝑆𝑤𝑊

)
, (11)

where 𝑆𝑤 = �̄�𝑇 𝐿�̄� is called the LPPLS-DA within-class scatter matrix that codes the local/class structures. In LPPLS-DA, the objec-

tives above are combined by maximizing a discriminative ratio of the form:

𝐽 (𝑊 ) = 𝑡𝑟

(
𝑊 𝑇 𝑆𝑏𝑊

𝑊 𝑇 𝑆𝑤𝑊

)
. (12)

The objective function in (12) tries to maximize the between-class scatter and minimize the within-class scatter simultaneously, 
similar to the objective of LDA (2). Likewise, the optimum 𝑑-dimensional projection matrix 𝑊 is the matrix whose columns are the 
eigenvectors corresponding to the first 𝑑 principal eigenvalues of a generalized eigenvalue problem of the form:

𝑆𝑏𝑤 = 𝜆𝑆𝑤𝑤. (13)

Because both LPPLS-DA and LDA have the same eigenstructure, the numerical properties of LPPLS-DA are also affected by the 
conditioning of 𝑆𝑤. The small sample size problem can also lead to the ill-conditioning of 𝑆𝑤 because in such a case, the graph 
Laplacian is singular.

3. LPPLS-DA with improved numerical properties

Computational methods for solving the generalized eigenvalue problem in (13) are designed based on the simultaneous diagonal-

ization of the form [37,32]

𝑊 𝑇 𝑆𝑤𝑊 = 𝐼, (14)

𝑊 𝑇 𝑆𝑏𝑊 = Λ, (15)

where 𝑊 is an orthogonal matrix containing the generalized eigenvectors. To achieve (14) and (15), a series of orthogonalization 
procedures are implemented, and if the eigenvector basis has poor conditioning, even a relatively small perturbation can lead to 
instability. Thus, accurate computation of the eigenvectors of (13) can be especially challenging when the matrices 𝑆𝑏 and 𝑆𝑤 are 
singular or nearing singularity. In such cases, it is reasonable to expect that the computed eigenvectors are not quite orthogonal and 
5

may not lead to an optimal projection.
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Algorithm 1: Enhanced LPPLS-DA.

Input:

1. Training set with class labels 𝑥(1)
1 , 𝑥

(1)
2 ,… , 𝑥(1)

𝑛1
, 𝑥

(2)
1 , 𝑥

(2)
2 ,… , 𝑥(2)

𝑛2
,… , 𝑥

(𝐺)
1 , 𝑥

(𝐺)
2 ,… , 𝑥(𝐺)

𝑛𝐺

2. Dimensionality of embedding space 𝑑
Output:

1. The optimal transformation matrix 𝑊 ∈ 𝑅𝑚×𝑑

2. The 𝑑-dimensional embedding coordinates 𝑍 for the original input data 𝑋
Step 1: Compute 𝑆𝑏 as follows:

(i) Form mean-centered data matrix �̄�.

(ii) Form the class membership matrix 𝑌 according to (4).

(iii) Compute 𝑆𝑏 according to (5).

Step 2: Construct 𝑆𝑤 as follows:

(i) Construct the weight matrix 𝑆 according to (7).

(ii) Compute the graph Laplacian 𝐿 =𝐷 −𝑆 where the diagonal entries of 𝐷 are the column/row sum of 𝑆 , i.e.,

𝐷𝑗𝑗 =
𝑛∑

𝑖=1
𝑆𝑖𝑗 , 𝑗 = 1,2,… , 𝑛;

(iii) Compute 𝑆𝑤 = 𝑋𝑇 𝐿𝑋.

Step 3: Form the diagonally shifted matrices:

𝑆𝑏 = 𝑆𝑏 + 𝜎𝑏𝐼,

𝑆𝑤 = 𝑆𝑤 + 𝜎𝑤𝐼.

Step 4: Compute the 𝑑 largest eigenvalues and the corresponding eigenvectors of the generalized eigenvalue problem 𝑆𝑏𝑤 = 𝜆𝑆𝑤𝑤.

Step 5: Construct the matrix 𝑊 whose columns are the generalized eigenvectors calculated from Step 4 above.

Step 6: Compute the 𝑑-dimensional embedding 𝑍 = �̄�𝑊 .

3.1. Diagonal shifts

In the conventional LPPLS-DA and LDA method, the singularity of 𝑆𝑤 (or the within-class scatter matrix 𝑆𝑤 in LDA) is often 
the major concern and because it is linked to the small sample size problem [38]. To address this issue, in the LPPLS-DA algorithm, 
the locality preserving within-class scatter matrix 𝑆𝑤 is stabilized by a diagonal shift which is equivalent to adding a Tikhonov 
regularization [24] to the objective function. The generalized eigenvalue problem becomes

𝑆𝑏𝑤 = 𝜆(𝑆𝑤 + 𝜎𝑤𝐼)𝑤, (16)

where 𝜎𝑤 > 0 is a scalar determined empirically to achieve optimum performance. However, when working with a large dataset of 
samples with high dimensionality, 𝑆𝑏 (or the between-class scatter matrix 𝑆𝑏 in LDA) can also become singular, or close to becoming 
singular, particularly when discrimination of different classes in the dataset is poor. According to [28,29], ill-conditioning of the 
generalized eigenvalue problem (13) may result from the ill-conditioning of both, the locality-preserving within-class scatter matrix 
𝑆𝑤 and the between-class scatter matrix 𝑆𝑏. Thus, in addition to stabilizing 𝑆𝑤 as in (16), further enhancement to LPPLS-DA can be 
achieved by also adding a diagonal shift of 𝜎𝑏 to 𝑆𝑏.

Diagonal-shifted 𝑆𝑤 and 𝑆𝑏 transform the eigenvalue problem in (13) to

𝑆𝑏𝑤 = 𝜆𝑆𝑤𝑤, (17)

where 𝑆𝑏 = 𝑆𝑏 + 𝜎𝑏𝐼 and 𝑆𝑤 = 𝑆𝑤 + 𝜎𝑤𝐼 . Simultaneous diagonalization problem associated with (17) is

𝑊 𝑇 (𝑆𝑤 + 𝜎𝑤𝐼)𝑊 = 𝑊 𝑇 𝑆𝑤𝑊 = (1 + 𝜎𝑤)𝐼, (18)

𝑊 𝑇 (𝑆𝑏 + 𝜎𝑏𝐼)𝑊 = 𝑊 𝑇 𝑆𝑏𝑊 =Λ+ 𝜎𝑏𝐼. (19)

Consequently, if there are eigenvalues of 𝑆𝑏 (𝑆𝑤) that are zero (i.e. singular) or close to zero (i.e. near singularity), the diagonal shift 
𝜎𝑏 (𝜎𝑤) shifts the eigenvalues toward the positive direction, thereby improving the conditioning of the matrices. Notice that from 
(18) and (19), the eigenspace of (𝑆𝑏, 𝑆𝑤) is the same as the eigenspace of (𝑆𝑏, 𝑆𝑤). Only the eigenvalues (i.e. diagonal entries of Λ) 
are shifted by 𝜎𝑏 (𝜎𝑤). The shift in eigenvalues can always be adjusted within the algorithm if needed. But since the eigenvalues 
are not needed to determine the projection matrix 𝑊 , the discussions on the eigenvalues are not pursued further in this paper. The 
6

procedures for computing 𝑊 based on (18) and (19) are given in Algorithm 1.
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Algorithm 2: LPPLSDAMSD.

Input:

1. Training set with class labels 𝑥(1)
1 , 𝑥

(1)
2 ,… , 𝑥(1)

𝑛1
, 𝑥

(2)
1 , 𝑥

(2)
2 ,… , 𝑥(2)

𝑛2
,… , 𝑥

(𝐺)
1 , 𝑥

(𝐺)
2 ,… , 𝑥(𝐺)

𝑛𝐺

2. Dimensionality of embedding space 𝑑
Output:

1. The optimal transformation matrix 𝑊 ∈ 𝑅𝑚×𝑑

2. The 𝑑-dimensional embedding coordinates 𝑍 for the original input data 𝑋
Do Steps 1-2 of Algorithm 1

Step 3: Form the scatter-difference matrix �̄� = 𝑆𝑏 − 𝜃𝑆𝑤

Step 4: Add a diagonal shift for improved stability: 𝑆 = �̄� + 𝜎𝜃𝐼

Step 5: Compute the 𝑑 largest eigenvalues and the corresponding eigenvectors of the generalized eigenvalue problem 𝑆𝑤 = 𝜆𝑤.

Step 6: Construct the matrix 𝑊 whose columns are the generalized eigenvectors calculated from Step 4 above.

Step 7: Compute the 𝑑-dimensional embedding 𝑍 = �̄�𝑊 .

3.2. Maximum scatter difference criterion

The LPPLSDAMSD method is designed based on the maximum scatter difference (MSD) criterion. Based on this criterion, the 
simultaneous optimization of objective functions (10) and (11) is achieved by maximizing the following function:

𝐽 (𝑊 ) = 𝑡𝑟𝑊 𝑇 (𝑆𝑏 − 𝜃𝑆𝑤)𝑊 ,

subject to the constraint 𝑊 𝑇 𝑊 = 𝐼 . The parameter 𝜃 is the scatter-difference parameter that will be empirically determined. It can 
be shown that the optimum 𝑑-dimensional projection matrix 𝑊𝑜𝑝𝑡 is the matrix whose columns are the eigenvectors corresponding 
to the first 𝑑 principal eigenvalues of an eigenvalue problem of the form:

(𝑆𝑏 − 𝜃𝑆𝑤)𝑤 = 𝜋𝑤. (20)

Notice that, if the orthogonal matrix 𝑊 satisfies the simultaneous diagonalization in (14) and (15), then

𝑊 𝑇 (𝑆𝑏 − 𝜃𝑆𝑤)𝑊 =Λ− 𝜃𝐼. (21)

The matrix form for (20) is

(𝑆𝑏 − 𝜃𝑆𝑤)𝑊 = 𝑊 Π, (22)

where Π is a diagonal matrix containing the eigenvalues of (20). By comparing (21) with (22), we can interpret the generalized 
eigenvectors of (𝑆𝑏, 𝑆𝑤) as the eigenvectors of (22) associated with eigenvalues Λ − 𝜃𝐼 . Based on this observation, it is deduced that 
the projection matrix of the conventional LPPLSDA is equivalent to the projection matrix of the LPPLSDAMSD.

The stability of the eigenvalue problem in (20) depends on the conditioning of a single matrix which is 𝑆𝑏 − 𝜃𝑆𝑤. Singularity (or 
near-singularity) of either (𝑆𝑏 or 𝑆𝑤) can be compensated in the matrix pencil �̄� = 𝑆𝑏 − 𝜃𝑆𝑤. Further stability can be achieved by 
adding a diagonal shift 𝜎𝜃 to �̄� to give 𝑆 = �̄� + 𝜎𝜃𝐼 . The procedures for the LPPLSDAMSD method are given in Algorithm 2.

4. Experiments A: synthetic datasets

While a dimension reduction method may be based on sound modeling principles, its numerical implementation can introduce 
instability, preventing the realization of its full potential. To emphasize the impact of this issue on the performance of LPPLS-DA, 
this section presents a systematic approach to study the numerical properties of LPPLS-DA. The aim is to provide an intuitive and 
visual understanding of the dimensionality reduction problem and the effects of numerical instability.

Two sets of experiments are conducted on specifically designed synthetic data. in Section 4.1, experiments are performed using 
four different supervised methods namely PLS-DA, LDA, supervised LPP (SLPP), and LPPLS-DA to highlight the dimension reduction 
properties of these methods and underscore the true capabilities of LPPLS-DA. In Section 4.2, the effects of singularities of the 
between-class and within-class scatter matrices on the performance of LPPLS-DA are demonstrated. Furthermore, the effectiveness of 
En-LPPLSDA and LPPLSDAMSD in overcoming the numerical instability resulting from ill-conditioned datasets is discussed.

4.1. Supervised dimensionality reduction via PLS-DA, LPPLS-DA, LDA and SLPP

To demonstrate visually the comparative dimension reduction properties of the PLS-DA, LPPLS-DA, LDA, and SLPP, a synthetic 
dataset containing two classes with Gaussian distribution is used. Each class is composed of 60 samples. The two classes of samples 
form two separate (main) clusters with samples in Class 1 forming three small clusters with 20 samples in each cluster. Samples in 
the dataset have three features and the specific distribution is shown in Fig. 2. The data set is designed so that the optimal projection 
is vertical onto the horizontal plane. For the LPPLS-DA method, the condition number of 𝑆𝑤 for this dataset is 2.3817 while the 
condition number of 𝑆𝑏 is 7.6942 ×1016. In the case of LDA, the condition number of 𝑆𝑤 is 9.4902 and the condition number of 𝑆𝑏 is 
5.8904 ×1016. Therefore, it is reasonable to expect that the conditioning of LPPLS-DA and LDA for the chosen dataset is comparable.

The methods PLS-DA, LPPLS-DA, LDA, and SLPP are applied to the dataset and two-dimensional embeddings obtained for each 
7

method are depicted in Fig. 3. Among the four methods, PLS-DA, LDA, and LPPLS-DA emphasize class separation and this property 
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Fig. 2. Synthetic dataset composed of two classes. Dataset from Class 1 is composed of three small clusters.

is clearly captured in Figs. 3(a), (b), and (d), where projected data from Class 1 and Class 2 are shown to be well-separated. For 
SLPP, between-class separation is not emphasized, and it can be seen in Fig. 3(c) that class separation is almost completely ignored. 
A closer observation of the within-class structures reveals that, only LPPLS-DA manages to capture and preserves the three-clustered 
distribution of Class 1 data in its two-dimensional embedding while maximizing class separation. SLPP manages to capture and 
preserve the class structures but with limited ability to discriminate the different classes. PLS-DA and LDA captured some of the 
multi-clustered structure of Class 1 data but with limited effect.

The experiment in this section allows us to assess visually the dimensionality reduction properties of PLS-DA, LDA, SLPP, and 
LPPLS-DA. Intuitively, the performance of each method is restricted by how it is designed. Compared to generic methods like PCA 
and SLPP, the discriminant methods PLS-DA, LDA and LPPLS-DA perform better in separating the different classes in a dataset. But it 
is evident that, if there are unique features within a specific class, for example in this case, a class with multi-clustered distribution, 
the structure-preserving property in LPPLS-DA is proven to be more effective in capturing the intrinsic information. Capturing more 
discriminative features in the low-dimensional embedding is desirable because it leads to a more accurate representation of the 
dataset’s class structure in the classification model derived from the low-dimensional space.

4.2. Effects of numerical instability on LPPLS-DA

The generalized eigenvalue problem (13) is ill-posed and potentially numerically unstable when dealing with small-sample size 
problems. To portray this situation, a data matrix 𝑋 with 𝑛 rows and 𝑚 columns is generated, where 𝑛 corresponds to the total 
number of samples in the dataset and 𝑚 refers to the number of variables. A small sample size problem is a situation where 𝑛 < 𝑚

and in the experiments in this section, 𝑚 is set to equal 2𝑛. Three different datasets are created, each of which has 𝑛 = 120 samples 
from three different classes.

1. Dataset Synthetic I contains 120 samples from three classes generated from the same Gaussian distribution. Each class contains 
60 samples with 240 variables, and variables 120 to 240 of each class are affected by noise (different noise levels for each class).

2. Dataset Synthetic II contains 120 samples from three classes generated from the different Gaussian distributions. Class 1 has a 
standard deviation of 0.1, Class 2 has a standard deviation of 0.05, and Class 3 has a standard deviation of 0.01.

3. Dataset Synthetic III contains 120 samples from three classes generated from different Gaussian distributions. Class 1 is composed 
of two small clusters with 30 samples each, and the clusters have different Gaussian distributions.

The conditioning of the dimensionality reduction problem with respect to these datasets is determined by matrices 𝑆𝑏 and 𝑆𝑤

(LPPLS-DA), 𝑆𝑏 and 𝑆𝑤 (En-LPPLSDA), and 𝑆 (LPPLSDAMSD). Table 1 summarizes the condition numbers of these matrices for each 
of the datasets.

Condition numbers in Table 1 highlight the ill-conditioned property of the LPPLS-DA method. Both matrices 𝑆𝑏 and 𝑆𝑤 exhibited 
very high condition numbers in all three synthetic datasets, indicating that ill-posedness and instability result not only from the 
ill-conditioning of 𝑆𝑤 but also from the ill-conditioning of 𝑆𝑏. Table 1 reveals that adding the diagonal shifts to both 𝑆𝑏 and 𝑆𝑤

significantly reduces the condition numbers of the shifted matrices 𝑆𝑏 and 𝑆𝑤 to approximately 1. The condition number of 𝑆 for 
LPPLSDAMSD also hovers around 1. Thus it is expected that the eigenvalue problems associated with En-LPPLSDA and LPPLSDAMSD 
8

are more stable compared to the eigenvalue problem associated with the conventional LPPLS-DA.
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Fig. 3. Two-dimensional embeddings resulted from (a) PLS-DA, (b) LDA, (c) SLPP, and (d) LPPLS-DA.

Table 1

Condition numbers of the matrices associated with LPPLS-DA, En-LPPLSDA and LP-

PLSDAMSD for synthetic datasets.

Datasets Condition number

𝑆𝑏 𝑆𝑤 𝑆𝑤 𝑆𝑏 𝑆

Synthetic I 4.7655 × 1020 1.7626 × 1018 1.0023 1.0022 1.0322
Synthetic II 4.7655 × 1020 1.7626 × 1018 1.000 1.000 1.000

Synthetic III 4.7655 × 1020 1.7626 × 1018 1.000 1.000 1.000

The effects of conditioning on the quality of dimensionality reduction can be seen in Figs. 4–6. Figs. 4(a)-(d) illustrates the 
dimensionality reduction of dataset Synthetic I, revealing no significant difference between the two-dimensional embeddings of 
PLS-DA and LPPLS-DA. Conversely, the two-dimensional embedding of En-LPPLSDA (Fig. 4(c)) demonstrates improved between-

class separation and more compact within-class structures. This observation emphasizes the fact that discrimination of the different 
classes in the dataset is suboptimal when the problem is ill-conditioned. Improving the conditioning of the problem as in the case of 
En-LPPLSDA enables more robust discrimination. Optimal discrimination is also achieved with LPPLSDAMSD as shown in Fig. 4(d). 
Here, the robustness of the method depends on the condition number of the scatter difference matrix 𝑆 . Figs. 5 and 6 bring to light the 
effects of conditioning on the structure-preserving feature of each method. For dataset Synthetic II, the two-dimensional embeddings 
in Fig. 5(a) and Fig. 5(b) show that between-class separation is almost non-apparent in the case of PLS-DA and LPPLS-DA. But for 
En-LPPLSDA and LPPLSDAMSD (Fig. 5(c) and Fig. 5(d) respectively), we observe good between-class separation as well as distinct 
structure-preserving. The distribution of samples from Class 3 which has the smallest variance, appears in the two-dimensional 
embedding as having the most compact structure. The enhanced structure-preserving feature is also visible in Figs. 6(a)-(d) for dataset 
Synthetic III. Here, Class 1 samples are composed of two separate clusters and this property is preserved well by the numerically 
robust En-LPPLSDA and LPPLSDAMSD.

In conclusion, the conditioning of both the between-class scatter matrix and the locality-preserving within-class scatter matrix 
significantly impacts the numerical stability of the LPPLS-DA method. Improving the conditioning of the method by either adding 
diagonal shifts to the between-class scatter matrix and the locality-preserving within-class scatter matrix or reformulating the problem 
as a maximum scatter-difference problem, gives rise to two numerically robust methods namely the En-LPPLSDA and LPPLSDAMSD 
9

respectively which provide more optimal discrimination of the classes and at the same time preserve intrinsic class information.
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Fig. 4. Ill-conditioned dataset Synthetic I. Two-dimensional projections resulted from (a) PLS-DA, (b) LPPLSDA, (c) En-LPPLSDA, and (d) LPPLSDAMSD.

5. Experiments B: real-life datasets

The aim of this section is to provide an overall understanding of the effect of numerical instability and ill-conditioning on di-

mension reduction algorithms and their impact on subsequent classification accuracy. Experiments are conducted using four publicly 
available spectra datasets. All experiments have been performed in MATLAB R2019a on an Intel core i7 3.20 GHz Windows 10 
machine with 8 GB memory.

5.1. Datasets

The datasets used in the experimental studies in this section are Coffee [39,40], Meat [41,40], Oil [42,40] and Fruit [43,40]

datasets. Table 2 summarizes the statistics of these datasets.

1. The Coffee dataset contains 56 samples belonging to two different species; arabica and robusta species with 29 and 27 samples, 
respectively. Spectra were acquired from the sample by Fourier transform infrared spectroscopy with diffuse reflectance sampling 
where each spectrum contains 286 variables in the range of 810 − 1910 cm−1.

2. The Meat dataset contains infrared spectra of 60 independent samples of fresh minced meats: turkey, chicken, and pork, with 
20 samples belonging to each class. The spectra were obtained by Fourier transform infrared spectroscopy with attenuated total 
reflectance (ATR) sampling and each spectrum contain 448 variables in the range of 1005 − 1867 cm−1.

3. The Oil dataset contains infrared spectra of 60 samples of authenticated extra virgin olive oils from 4 different countries of 
origin: Spain, Portugal, Italy, and Greece with 25, 8, 17, and 10 samples, respectively. The spectra were acquired by Fourier 
transform infrared spectroscopy with attenuated total reflectance (ATR) sampling. Each spectrum contains 570 variables in the 
range of 798 − 1896 cm−1.

4. The Fruit dataset contains 983 samples of authenticated fruit purees belonging to two different classes: “Strawberry” and “Non-

Strawberry” with 351 and 632 samples, respectively. The class labeled “Strawberry” contains purees prepared from whole fruits, 
while the class labeled “Non-Strawberry” contains a diverse collection of other purees including strawberry adulterated with 
other fruits and sugar solutions, apricot, cherry, plum, blackberry, blackcurrant, apple, raspberry, grape juice and mixtures of 
these. Mid-infrared spectra were obtained from each puree using attenuated total reflectance (ATR) sampling. Each spectrum 
10

contains 235 variables in the range of 899 − 1802 cm−1.
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Fig. 5. Ill-conditioned dataset Synthetic II. Two-dimensional projections resulted from (a) PLS-DA, (b) LPPLSDA, (c) En-LPPLSDA, and (d) LPPLSDAMSD.

Table 2

Summary of datasets used in the experiments.

Datasets Sample size No. of features No. of classes Spectral region (cm−1)

Coffee 56 286 2 810 − 1910
Meat 60 448 3 1005 − 1867
Oil 60 570 4 789 − 1896
Fruit 983 235 2 899 − 1802

5.2. Numerically unstable dimension reduction and the effects on classification

To be able to perform effective classification tasks in the low-dimensional subspace, it is important to ascertain that projection 
matrices computed using the dimensionality reduction algorithms project samples optimally onto a lower-dimensional embedding. 
The optimal projection here means class separation is optimized and innate features of each class such as local class structures 
are preserved in the low-dimensional embedding. Classification models developed using optimally projected training samples have 
a better chance of capturing significant class information of the original dataset. The accuracy of classification using the trained 
classification model is also expected to be higher if the distribution of projected test samples (i.e., unknown data) is comparatively 
similar to the distribution of projected training samples. Numerically unstable dimensionality reduction algorithms may lead to 
test samples being projected outside the distribution of training samples. To gain some understanding of how conditioning affects 
classification, we take a closer look at the distribution of projected samples from the datasets introduced in the previous section.

Table 3 summarizes the condition numbers of matrices 𝑆𝑏, 𝑆𝑤, 𝑆𝑏, 𝑆𝑤, and 𝑆 for each of the datasets used in this section. It 
is evident that matrices 𝑆𝑏 and 𝑆𝑤 exhibit very large condition numbers for all real-life datasets, whereas condition numbers of 
matrices associated with the En-LPPLSDA and LPPLSDAMSD methods are very close to 1. Based on these numbers it is expected 
that the dimension reduction problems of En-LPPLSDA and LPPLSDAMSD are better conditioned and more stable compared to the 
dimension reduction problem of the conventional LPPLS-DA.

In Figs. 7–10, we illustrate the distribution of projected samples from the four datasets under consideration, each divided into a 
training set and a test set. The projection matrices are computed using LPPLS-DA, En-LPPLSDA, and LPPLSDAMSD for the training 
11

sets. These projection matrices are then applied to project both the training and test samples onto the lower-dimensional embeddings. 
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Fig. 6. Ill-conditioned dataset Synthetic III. Two-dimensional projections resulted from (a) PLS-DA, (b) LPPLSDA, (c) En-LPPLSDA, and (d) LPPLSDAMSD.

Table 3

Condition numbers of the matrices associated with LPPLS-DA, En-LPPLSDA and 
LPPLSDAMSD for real-life datasets.

Datasets Condition number

𝑆𝑏 𝑆𝑤 𝑆𝑤 𝑆𝑏 𝑆

Coffee 8.3755 × 1021 6.0466 × 1019 1.0000 1.0000 1.0000
Meat 3.9673 × 1023 1.9382 × 1020 1.1794 1.0413 1.1931

Oil 3.4168 × 1021 6.2982 × 1020 1.0292 1.0206 1.0897

Fruit 1.0386 × 1022 2.5376 × 1010 1.001 1.002 1.0117

The objective of this experiment is to compare the distribution of projected training and test samples in terms of class separation and 
to analyze the effect of conditioning on these distributions. The observations for each dataset are outlined below:

• Coffee dataset (Figs. 7(a)-(c)): Training and test samples from the Coffee dataset are projected onto two-dimensional embed-

dings i.e., dimension reduction from 286 to 2. Results from each method suggest that optimum separation between Class 1 and 
Class 2 is achievable with only one component. Class separability of projected training samples is significantly better for En-

LPPLSDA and LPPLSDAMSD than LPPLS-DA which shows that conditioning of the methods affects projection quality. LPPLS-DA 
exhibits a slightly different distribution of projected test samples compared to training samples, with less well-defined class 
separation. On the contrary, En-LPPLSDA and LPPLSDAMSD maintain a distribution of projected test samples similar to that of 
the training samples, with more distinct class separation.

• Meat dataset (Figs. 8(a)-(c)): Training and test samples from the Meat dataset are projected onto two-dimensional embeddings 
i.e., dimension reduction from 448 to 2. LPPLS-DA performs rather poorly in terms of class separability. A significant overlap is 
observed between Class 1 and Class 3 samples in the distribution of projected test samples. The numerical instability in LPPLS-

DA is quite pronounced, and more severe than the Coffee dataset. En-LPPLSDA and LPPLSDAMSD significantly improve class 
separability compared to LPPLS-DA. The distribution of projected test samples by these algorithms is also similar to the projected 
training samples.

• Oil dataset (Figs. 9(a)-(c)): Training and test samples are projected onto three-dimensional embeddings i.e., dimension re-
12

duction from 570 to 3. This dataset has four classes thus it is expected that more dimension is needed to achieve good class 
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Fig. 7. Visualization of the two-dimensional embedding of the Coffee dataset. Distribution of projected training samples (left) and test samples (right) from (a) 
LPPLS-DA, (b) En-LPPLSDA, (c) LPPLSDAMSD.

separability. En-LPPLSDA and LPPLSDAMSD, which are numerically stable, achieve better class separability in the training sam-

ples compared to the ill-conditioned LPPLS-DA. Class separability of projected test samples, while somewhat inferior to previous 
datasets, still shows samples from each class projected close to the locality of the training samples.

• Fruit dataset (Figs. 10(a)-(c)): Training and test samples are projected onto two-dimensional embeddings i.e., dimension 
reduction from 235 to 3. Class separation for this dataset is not as good as for the other datasets. However, the plane of 
separation of Class 1 and Class 2 is quite visible in the En-LPPLSDA and LPPLSDAMSD embeddings for both training and test 
samples. The En-LPPLSDA and LPPLSDAMSD embeddings reveal that optimal class separation can be achieved with Component 
1 alone.

Based on the results in this section, there is substantial evidence that ill-conditioning of the dimensionality reduction method 
induces numerical instability and can affect the accuracy of classification in the lower-dimensional space. The numerically stable 
En-LPPLSDA and LPPLSDAMSD produce better class separability of training samples compared to the ill-conditioned LPPLS-DA. 
Numerical stability results in the distribution structures of projected test samples being similar to those of training samples. Similar 
13

distribution structures enable higher classification accuracy in the lower-dimensional space.
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Fig. 8. Visualization of the two-dimensional embedding of the Meat dataset. Distribution of projected training samples (left) and test samples (right) from (a) 
LPPLS-DA, (b) En-LPPLSDA, (c) LPPLSDAMSD.

5.3. Dimensionality reduction for classification of real-life datasets

In this section, several numerical experiments are conducted to validate the effect of numerical instability and ill-conditioning of 
dimensionality reduction algorithms on classification accuracies. A comparison of the proposed LPPLSDAMSD and En-LPPLSDA with 
state-of-the-art dimension reduction methods is also conducted.

5.3.1. Experimental setup

Classification accuracies are obtained for different values of the number of extracted components/feature 𝑑 where 𝑑 also de-

termines the dimension of the low-dimensional embedding in which the classification task is performed. A 10-fold cross-validation 
approach is applied in each experiment to obtain an average classification accuracy for each method. The cross-validation procedure 
involves

• Random partitioning of datasets into training and test sets.

• The training set is used to compute the projection matrix 𝑊 .

• Projected training samples are used to build the k-NN classification model.
14

• The test set is projected onto the low-dimensional embedding using 𝑊 .
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Fig. 9. Visualization of the two-dimensional embedding of the Oil dataset. Distribution of projected training samples (left) and test samples (right) from (a) LPPLS-DA, 
(b) En-LPPLSDA, (c) LPPLSDAMSD.

• k-NN classification model is applied to classify projected test samples.

To reduce variability in the results, the random partitioning of datasets into training sets and test sets is repeated 10 times, and the 
average classification accuracy rates are reported. The basic procedure for dimensionality reduction for classification is shown in the 
form of a flow chart in Fig. 11.

The regularization parameters in LPPLS-DA, En-LPPLSDA, and LPPLSDAMSD and the scatter-difference parameter in LPPLS-

DAMSD are fixed in all experiments in this section. These values are 𝜎𝑤 = 𝜎𝑏 = 𝜎𝜃 = 0.9 and 𝜃 = 5.

The optimal number of neighbors (i.e. 𝑘) to be used in the k-NN classifier could be specific to different data sets and dimensionality 
reduction methods. Therefore, cross-validation procedures were carried out to investigate the effect of different values 𝑘 on the 
15

maximum classification accuracy achievable by each method. The outcome of these procedures is explained in the following sections.



Heliyon 10 (2024) e26157N.A. Ahmad

Fig. 10. Visualization of the two-dimensional embedding of the Fruit dataset. Distribution of projected training samples (left) and test samples (right) from (a) 
LPPLS-DA, (b) En-LPPLSDA, (c) LPPLSDAMSD.

5.3.2. Classification accuracies: effect of numerical stability and conditioning

In this section the effect of numerical stability and conditioning of dimensionality reduction algorithms on the classification of 
the four datasets described in Section 5.1 is evaluated. Condition numbers in Table 3 indicate that, LPPLSDAMSD and En-LPPLSDA 
are expected to be better conditioned and more numerically stable compared to PLS-DA and LPPLS-DA. The classification accuracies 
of LPPLSDAMSD, En-LPPLSDA, LPPLS-DA, and PLS-DA are analyzed with respect to the dimension of the low-dimensional embed-

ding space (i.e. the number of extracted components, 𝑑). Ideally, maximum classification accuracy is achieved for the value of 𝑑
that corresponds to the true dimensionality of the dataset. The purpose of the analysis is to determine whether En-LPPLSDA and 
LPPLSDAMSD provide a significant improvement to LPPLS-DA and PLS-DA.

To further highlight the effect of numerical stability and conditioning, a similar comparison is made between LDA and its numer-

ically stable versions, namely the enhanced LDA (En-LDA) and LDA with maximum scatter difference (LDA-MSD) [31]. The En-LDA 
algorithm is designed similarly to En-LPPLSDA where diagonal shifts 𝜎𝐼 (𝜎 is the regularization parameter) are added to the matrices 
𝑆𝑏 and 𝑆𝑤 in (2) to improve their conditioning. Table 4 shows the condition numbers of the matrices associated with LDA, En-LDA, 
and LDA-MSD. Based on these numbers it is expected that En-LDA and LDA-MSD are more numerically stable and better conditioned 
16

compared to the conventional LDA.
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Fig. 11. Dimensionality reduction for classification.

Table 4

Condition number of the matrices associated with LDA, En-LDA and LDA-MSD for real-life datasets.

Datasets Condition number

Between-class Within-class Between-class Within-class 𝑆

(LDA) (LDA) (En-LDA) (En-LDA) (LDA-MSD)

Coffee 1.5978 × 1021 3.3345 × 1019 1.3103 1.004 1.3103
Meat 1.1881 × 1021 1.5864 × 1020 1.6665 1.000 1.6667

Oil 7.3791 × 1021 2.2181 × 1020 1.6666 1.000 1.6667

Fruit 4.8131 × 1023 2.5343 × 1010 6.3423 1.0800 10.5210

The outcome of the cross-validation procedure to determine the number of neighbors (i.e., 𝑘) to be used in the k-NN classifier 
in the case of dimension reduction by the PLS-DA family of algorithms is summarized in Figs. 12(a)-(d) for data sets Coffee, Meat, 
Oil and Fruit respectively. It is revealed that for all the data sets concerned, the best average classification accuracy associated with 
dimension reduction by the PLS-DA family of algorithms remains steady for small values of 𝑘 and shows a downward trend as 𝑘
increases. Based on this observation, in the subsequent experiments, the k-NN classifier with 𝑘 = 3 is used in all the classification 
tasks involving PLS-DA, LPPLS-DA, En-LPPLSDA, and LPPLSDAMSD. In Figs. 13(a)-(d), the outcome of the cross-validation procedure 
involving the LDA-based algorithms for the four data sets involved is displayed. For all data sets used, a slight fluctuation in the 
accuracy is observed in all three LDA-based methods for the smaller 𝑘 values. All algorithms appear to settle on a maximum at 𝑘 = 7
so this is the value chosen in all the classification tasks involving the LDA, En-LDA and LDA-MSD.

The classification accuracies resulting from the reduction of the dimensionality by all the algorithms mentioned above are shown 
in Figs. 14(a)-(d). For Coffee and Fruit datasets, binary classification is involved, whereas multiclass classification is involved for 
Meat and Oil datasets (with 3 and 4 classes, respectively). Observations for each dataset are outlined below:

• Coffee dataset (Fig. 14(a)) All the PLS-DA-based algorithms achieve accuracies of above 95% with 𝑑 ≥ 1. The more stable 
algorithms (that is, En-LPPLSDA and LPPLSDAMSD) provide slightly better accuracies, where, with 𝑑 = 1, LPPLSDAMSD achieves 
an accuracy of close to 99% and En-LPPLSDA achieves almost 98%. On the other hand, with 𝑑 = 1, LPPLS-DA achieves an 
accuracy of slightly less than 97%, and PLS-DA achieves an accuracy of about 96%. For the LDA-based algorithm, the more 
stable versions show marked improvement to the conventional LDA. It is noted that LDA-MSD achieves comparable performance 
to both En-LPPLSDA and LPPLSDAMSD for 𝑑 ≥ 2, and En-LDA achieves comparable performance to LPPLS-DA also for 𝑑 ≥ 2.

• Meat dataset (Fig. 14(b)) In this three-class classification, the modified algorithms (En-LPPLSDA and LPPLSDAMSD) show 
significantly better performance compared to their conventional counterparts. All algorithms achieve maximum accuracy with 
only two extracted components; LPPLSDAMSD achieves an accuracy of over 98%, En-LPPLSDA achieves over 97%, and both 
LPPLS-DA and PLS-DA achieve an accuracy of only 94%. The LDA-based algorithms achieve maximum accuracy with 𝑑 ≥ 3, thus 
17

requiring one more component than the PLS-DA counterparts.
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Fig. 12. Best average classification accuracies of PLS-DA, LPPLS-DA, En-LPPLSDA and LPPLSDAMSD for the four datasets using k-NN classifier with 𝑘 = 2 to 𝑘 = 10.
18

Fig. 13. Best average classification accuracies of LDA, En-LDA and LDA-MSD for the four datasets using k-NN classifier with 𝑘 = 2 to 𝑘 = 10.
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Fig. 14. Average classification accuracies associated with PLS-DA, LPPLS-DA, En-LPPLSDA, LPPLSDAMSD, LDA, En-LDA AND LDA-MSD. Here, half of the datasets 
are used as training sets, and the remaining half as test sets.

• Oil dataset (Fig. 14(c)) In this four-class classification, the numerically stable algorithms (En-LPPLSDA, LPPLSDAMSD, En-LDA 
and LDA-MSD) show significantly better performance compared to their conventional counterparts. The PLS-DA based algorithms 
achieve maximum accuracy with only three components while the LDA-based methods achieve their maximum accuracy with 
four components. LPPLSDAMSD is shown to perform way better than En-LPPLSDA for this data set with LPPLSDAMSD achieving 
an accuracy of 93.33%, En-LPPLSDA achieving 88.83%, and both LPPLS-DA and PLS-DA achieving an accuracy of 85.33% (with 
slight improvement as 𝑑 increases).

• Fruit dataset (Fig. 14(d)) Unlike the first three datasets, the number of features of the Fruit dataset is less than the number of 
samples, that is, the small sample size problem is not the main issue. This is evident from Table 3 and Table 4 where the condition 
number of the unconditioned within-class scatter matrix is much lower compared to the other datasets. However, the condition 
number of the unconditioned between-class scatter matrix is still very high. For this dataset, LPPLSDAMSD, En-LPPLSDA, and 
LPPLS-DA show somewhat comparable performance with ≥ 94% accuracy achieved with only one component. PLS-DA performs 
rather poorly for this dataset. The LDA-based algorithms exhibit comparable maximum accuracy to the respective PLS-DA 
counterparts, however, En-LDA and LDA-MSD are shown to consistently need one extra component than En-LPPLSDA and 
LPPLSDAMSD to achieve the maximum accuracy.

In summary, the results demonstrate that improving the numerical stability of dimension reduction methods, as seen in En-

LPPLSDA and LPPLSDAMSD, leads to enhanced accuracy when compared to their less stable counterparts, LPPLS-DA and PLS-DA. 
These findings align with the observations in Section 5.2, indicating that numerically stable dimension reduction techniques bet-

ter retain discriminant information in the low-dimensional embedding, resulting in improved k-NN classification performance. The 
parallel performance improvements in En-LDA and LDA-MSD compared to LDA emphasize the significance of enhancing the condi-

tioning of scatter matrices. Thus, enhancing the stability and conditioning of both between-class and within-class scatter matrices 
represents a promising avenue for improving the performance of LPPLS-DA and LDA.

Next, the focus is on evaluating the performance of the algorithms with varying sizes of the training set. Three scenarios are ex-

amined, each corresponding to different fractions of the total sample size: one-third, half, and two-thirds. The results, as summarized 
in Table 5, highlight that En-LPPLSDA and LPPLSDAMSD consistently achieve higher average classification accuracy rates compared 
to PLS-DA and LPPLS-DA across all datasets. Moreover, both En-LPPLSDA and LPPLSDAMSD exhibit a gradual improvement in per-

formance as the size of the training sets increases, progressing from one-third to half and then two-thirds of the overall sample size. 
19

These findings underline the superiority of LPPLSDAMSD in terms of both accuracy and the number of components required to attain 
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Table 5

Maximum average classification accuracy for PLS-DA, LPPLS-DA, En-LPPLSDA and LPPLSDAMSD for different sizes 
of training set.

Accuracy Number of Accuracy Number of Accuracy Number of

(1∕3 Train) extracted (1∕2 Train) extracted (2∕3 Train) extracted

components components components

Coffee dataset:

PLS-DA 0.937 16 0.979 18 0.990 2
LPPLS-DA 0.950 20 0.986 12 1.000 14
En-LPPLSDA 0.961 1 0.985 1 1.000 11
LPPLSDAMSD 𝟎.𝟗𝟖𝟒 𝟏 𝟎.𝟗𝟗𝟑 𝟏 𝟏.𝟎𝟎𝟎𝟎 𝟏

Meat dataset

PLS-DA 0.908 16 0.945 16 0.973 10
LPPLS-DA 0.908 16 0.948 20 0.980 20
En-LPPLSDA 0.9350 2 0.973 2 0.983 2
LPPLSDAMSD 𝟎.𝟗𝟒𝟑 𝟐 𝟎.𝟗𝟖𝟐 𝟐 𝟎.𝟗𝟗𝟓 𝟐

Oil dataset

PLS-DA 0.849 19 0.870 19 0.883 20
LPPLS-DA 0.849 13 0.872 19 0.880 10
En-LPPLSDA 0.8513 3 0.888 3 0.900 3
LPPLSDAMSD 𝟎.𝟗𝟎𝟏 𝟑 𝟎.𝟗𝟑𝟑 𝟑 𝟎.𝟗𝟒𝟓 𝟑

Fruit dataset

PLS-DA 0.883 20 0.906 19 0.919 19
LPPLS-DA 0.943 20 0.955 20 0.956 10
En-LPPLSDA 0.931 3 0.942 1 0.943 1
LPPLSDAMSD 𝟎.𝟗𝟓𝟓 𝟏 𝟎.𝟗𝟔𝟎 𝟏 𝟎.𝟗𝟔𝟔 𝟏

it. Notably, the performance of LPPLSDAMSD slightly outpaces that of En-LPPLSDA, emphasizing the overall effectiveness of the 
maximum scatter-difference criterion in enhancing the numerical stability of LPPLS-DA.

5.3.3. Comparison with state-of-the-art dimensionality reduction methods

In this section, the comparative performance of LPPLSDAMSD and En-LPPLSDA is assessed against five state-of-the-art dimension-

ality reduction methods, namely RLDA, SDFS, 𝑙2,1-LDA, 3E-LDA and RSLDA. The parameters for each method are set to the suggested 
values provided by the respective authors. For the iterative optimization methods, a termination condition of up to 100 iterations is 
applied. A cross-validation procedure is utilized to determine the optimal number of nearest neighbors for the k-NN classifier. The 
results, as shown in Figs. 15(a)-(d), demonstrate that for all four data sets, the maximum classification accuracy is achieved by the 
k-NN classifier with 𝑘 = 3. Therefore, the subsequent classification task in this section is conducted with 𝑘 = 3.

Figs. 16(a)-(d) presents a comparison of the average classification accuracies resulting from various dimensionality reduction 
methods. In general, LPPLSDAMSD and En-LPPLSDA outperform other methods across all datasets. Notably, as shown in Fig. 16(a), 
𝑙2,1-LDA achieves comparable accuracy with En-LPPLSDA and LPPLSDAMSD for the Coffee dataset, but it requires at least eight 
components to do so, while En-LPPLSDA and LPPLSDAMSD only need one component. Similarly, for the Meat dataset in Fig. 16(b), 
RLDA and RSLDA reach maximum accuracy comparable to En-LPPLSDA and LPPLSDAMSD but require six and three components, 
respectively, while En-LPPLSDA and LPPLSDAMSD achieve it with only two components. For the Oil and Fruit datasets (Figs. 16(c) 
and (d) respectively), LPPLSDAMSD excels in dimension reduction performance, achieving the best classification accuracy with very 
few components compared to other methods.

Table 6 provides an overview of the best maximum accuracies achieved by various dimensionality reduction methods for different 
sizes of training sets (one-third, half, and two-thirds of the total sample size). It also includes the number of components required 
to attain these accuracies. The results highlight the consistency and superiority of En-LPPLSDA and LPPLSDAMSD across all datasets 
and training set sizes. These methods consistently achieve higher accuracies than other methods and do so with the least number 
of components. The effectiveness of dimension reduction by En-LPPLSDA and LPPLSDAMSD is evident, as they require only a few 
components to capture most of the discriminant information in each dataset. This demonstrates the robustness and efficiency of these 
methods in various scenarios.

Figs. 17(a)-(d) provides a comparison of the computational cost of each method, measured by their average runtime. The average 
runtime of En-LPPLSDA and LPPLSDAMSD is similar to that of 3E-LDA and RLDA, and significantly less than that of SDFS, RSLDA, 
and 𝑙2,1-LDA. For the iterative optimization methods, increasing the number of iterations allows the methods to provide better 
accuracy and require less number of components. However, it comes at the cost of increased computational time.

6. Conclusions

Classification of high-dimensional datasets, often employing classifiers like the k-NN classifier, encounters challenges due to the 
20

presence of redundant features. Dimensionality reduction is a critical preprocessing step aimed at enhancing the effectiveness of 
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Fig. 15. Best average classification accuracies of RLDA, SDFS, 𝑙2,1-LDA, 3E-LDA and RSLDA for the four datasets using k-NN classifier with 𝑘 = 2 to 𝑘 = 10.

Fig. 16. Comparison of average classification accuracies of LPPLSDAMSD and En-LPPLSDA with state-of-the-art dimension reduction methods. Here, half of the 
21

datasets are used as training sets, and the remaining half as test sets.
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Table 6

Maximum average classification accuracy for state-of-the-art dimension reduction methods for different sizes of 
training set.

Accuracy Number of Accuracy Number of Accuracy Number of

(1∕3 Train) extracted (1∕2 Train) extracted (2∕3 Train) extracted

components components components

Coffee dataset

RLDA 0.903 14 0.925 16 0.947 19
SDFS 0.968 13 0.986 15 1.000 18
𝑙2,1-LDA 0.979 18 0.989 14 1.000 6
3E-LDA 0.982 19 0.975 12 0.700 2
RSLDA 0.934 4 0.961 3 0.968 3
En-LPPLSDA 0.961 1 0.985 1 1.000 11
LPPLSDAMSD 𝟎.𝟗𝟖𝟒 𝟏 𝟎.𝟗𝟗𝟑 𝟏 𝟏.𝟎𝟎𝟎 𝟏

Meat dataset

RLDA 0.956 17 0.982 10 0.970 18
SDFS 0.891 15 0.932 19 0.918 16
𝑙2,1-LDA 0.890 15 0.912 16 0.928 16
3E-LDA 0.866 20 0.853 20 0.902 17
RSLDA 0.964 6 0.980 4 0.965 7
En-LPPLSDA 0.935 2 0.973 2 0.983 2
LPPLSDAMSD 𝟎.𝟗𝟒𝟑 𝟐 𝟎.𝟗𝟖𝟐 𝟐 𝟎.𝟗𝟗𝟓 𝟐

Oil dataset

RLDA 0.814 20 0.848 18 0.855 19
SDFS 0.814 20 0.838 16 0.842 18
𝑙2,1-LDA 0.828 18 0.878 20 0.900 16
3E-LDA 0.659 20 0.720 15 0.585 4
RSLDA 0.822 8 0.853 13 0.870 8
En-LPPLSDA 0.851 3 0.888 3 0.900 3
LPPLSDAMSD 𝟎.𝟗𝟎𝟏 𝟑 𝟎.𝟗𝟑𝟑 𝟑 𝟎.𝟗𝟒𝟓 𝟑

Fruit dataset

RLDA 0.904 20 0.909 18 0.930 20
SDFS 0.894 20 0.907 19 0.921 19
𝑙2,1-LDA 0.932 19 0.941 20 0.946 18
3E-LDA 0.873 20 0.872 20 0.902 19
RSLDA 0.905 12 0.911 11 0.925 13
En-LPPLSDA 0.931 3 0.942 1 0.943 1
LPPLSDAMSD 𝟎.𝟗𝟓𝟓 𝟏 𝟎.𝟗𝟔𝟎 𝟏 𝟎.𝟗𝟔𝟔 𝟏

classification methods for such datasets. A proficient dimensionality reduction technique should be capable of capturing the most 
discriminative features of the data within a low-dimensional subspace designed for classification tasks. LPPLS-DA method stands as 
a promising candidate for this purpose. However, the numerical characteristics of the eigenvalue problem associated with LPPLS-DA 
can occasionally lead to suboptimal performance.

In this paper, we introduce two techniques designed to ameliorate the numerical properties of LPPLS-DA. The first technique, 
termed En-LPPLSDA, brings stability to both the PLS-DA between-class scatter matrix and the locality-preserving within-class scat-

ter matrix. The second approach reformulates the multi-objective optimization of LPPLS-DA using the maximum scatter-difference 
criterion, yielding the LPPLSDAMSD method.

We analyze the numerical properties of LPPLS-DA, En-LPPLSDA, and LPPLSDAMSD using specially crafted synthetic datasets, 
emphasizing the impact of ill-conditioning and numerical instabilities on dimension reduction and discrimination. En-LPPLSDA and 
LPPLSDAMSD outperform LPPLS-DA and PLS-DA in terms of optimal discrimination among various classes in the datasets, while 
preserving essential class information.

Furthermore, classification experiments are carried out on four spectral datasets, demonstrating that the numerical properties of 
dimensionality reduction methods have a direct bearing on the accuracy of classification in the lower-dimensional space. Numerically 
stable dimension reduction yields two favorable outcomes: improved class separability and a more robust projection of test samples 
into the lower-dimensional embedding, leading to enhanced classification accuracy.

Based on our analysis, the maximum scatter difference approach emerges as the more effective means to enhance numerical 
stability. Notably, our classification experiments with spectral datasets reveal that En-LPPLSDA and LPPLSDAMSD achieve peak 
performance with only a few components, surpassing other state-of-the-art dimension reduction methods. These results provide 
compelling evidence of the capabilities of En-LPPLSDA and LPPLSDAMSD in capturing crucial discriminative features within spectral 
data in a lower-dimensional space, thereby paving the way for more efficient dataset classification.

It is noteworthy that the effectiveness of En-LPPLSDA relies on the choice of the regularization parameters, namely 𝜎𝑤 and 𝜎𝑏, 
while the performance of LPPLSDAMSD depends on the scatter-difference parameter 𝜃 and the regularization parameter 𝜎𝜃 . Empirical 
22

analysis conducted on the datasets employed in this study proved sufficient for determining optimal values of these parameters, 
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Fig. 17. Comparison of average runtime of LPPLSDAMSD and En-LPPLSDA with state-of-the-art dimension reduction methods.

leading to the highest average classification accuracy. Interestingly, it was observed that the optimal values for each dataset exhibit 
minimal variance. Nevertheless, it is imperative to highlight that these observations may not universally apply to other datasets. To 
ensure optimal performance, a comprehensive assessment of these parameters is essential. A more in-depth mathematical analysis is 
warranted to ascertain the optimal values of regularization parameters from training data. This aspect will be investigated in future 
studies.
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