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Long noncoding RNAs (lncRNAs) are emerging as important regulators of numerous

biological processes, especially in cancer development. Aberrantly expressed and

specifically located in tumor cells, they exert distinct functions in different cancers

via regulating multiple downstream targets such as chromatins, RNAs, and proteins.

Differentiation antagonizing non-protein coding RNA (DANCR) is a cytoplasmic lncRNA

that generally works as a tumor promoter. Mechanically, DANCR promotes the

functions of vital components in the oncogene network by sponging their corresponding

microRNAs or by interacting with various regulating proteins. DANCR’s distinct

expression in tumor cells and collective involvement in pro-tumor pathways make it

a promising therapeutic target for broad cancer treatment. Herein, we summarize the

functions and molecular mechanism of DANCR in human cancers. Furthermore, we

introduce the use of CRISPR/Cas9, antisense oligonucleotides and small interfering

RNAs as well as viral, lipid, or exosomal vectors for onco-lncRNA targeted treatment.

Conclusively, DANCR is a considerable promoter of cancers with a bright prospect in

targeted therapy.

Keywords: long non-coding RNA, cancer, DANCR, mechanism, therapy

INTRODUCTION

Approximately 75% of the human genome can be transcribed into RNAs, yet no more than 2%
encodes proteins (1). Non-coding RNAs occupy a large part of the human transcriptome and long
non-coding RNAs (lncRNAs) [transcripts over 200 nt in length and lack the potential of coding
protein (2)] are the major components (Figure 1A) (3). Extensive research on lncRNAs has been
conducted for several decades and considerable progress has been achieved in this field. H19 is the
first recognized lncRNA that can be transcribed from both protein coding and non-coding DNA
(4). Its deficit in open reading frame and inactive interaction with ribosomes distinguish it from
normal protein-coding mRNAs and extend human understanding of RNA transcriptome (5). X-
inactive specific transcript (Xist) is one of the most well-known lncRNAs which is associated with
the silencing of X chromosome (6).With the technical improvement of gene sequencing technology
(7), the past 30 years have led to the discovery of a wide spectrum of evolutionally conserved and
tissue-specific lncRNAs. They are located in cell nucleus and cytoplasm and play an important
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FIGURE 1 | Functions and mechanisms of long non-coding RNAs (lncRNAs). The schematic illustrates lncRNAs and their functions and mechanisms in tumor cells.

(A) Among the 75% actively transcribed sequences in the human genome, 98% are non-coding sequences where long non-coding sequences occupy the majority.

The quantity of miRNAs, lncRNAs and miRNAs mapped on the schematic are obtained from the respective databases. (B) LncRNAs’ functions on cancer

development contain viability, motility, angiogenesis, proliferation promotion, and suppression. (C) LncRNAs have distinct working compartments. They can assemble

with nucleus proteins and regulate transcription by interacting with the histone proteins or the promoter regions. They can also transmit to the cytoplasm and

participate in signaling transmission by mediating the modification of components in cellular pathways. They can be contained in exosomes and delivered for

intercellular communication. Mechanically, they can interact with protein/protein complex and form protein-RNA complex, serve as a scaffold and promote the

assembling of proteins or complementary bind to RNAs to exert their functions.

role in pathophysiological processes (8). Their various
functions (promote tumor proliferation, motility, viability,
and angiogenesis) in cancer regulation becomes a research focus
in recent years (9) (Figure 1B). Mechanically, by interacting
with proteins and RNAs, lncRNAs can regulate the transcription
and post-transcription of RNAs or mediate the modification
of proteins to adjust the cellular signaling pathways. LncRNAs
have also been involved in the clinical cancer treatment. For
example, prostate cancer antigen 3 has been approved by the
Food and Drug Administration (FDA) as a biomarker in urine
for prostate cancer diagnosis; it displays a better diagnostic
effect compared with traditional serum prostate-specific antigen
testing (10). Some lncRNAs, such as lncRNA Hox Transcript
Antisense Intergenic RNA (HOTAIR) in breast cancer, are

proven to enhance cells’ resistance to certain drugs, which can
guide drug selection in cancer chemotherapy (11). Onco-lncRNA
targeted therapy is a novel and promising therapeutic method
with collective efficacy, high specificity and few side effects (12).
Many synthetic therapeutic products have been constructed and
pre-clinical experiments have been conducted to promote the
clinical application of lncRNA-targeted therapy.

Due to the overwhelming quantity of lncRNAs in the
human genome and the lack of methods for predicting their
functions, massive work is still needed to better understand
the lncRNAs. LncRNA differentiation antagonizing non-protein
coding RNA (DANCR) can serve as a paradigm for lncRNA
investigation. DANCR is a typical oncogenic lncRNA which
exerts multiple functions in cancer development. It has also
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demonstrated its value in cancer therapy as a promising
target (12).

This article summarized the functional properties and
mechanisms of DANCR in tumor progression. The general
targeted therapies against onco-lncRNAs were introduced
and the specific methods to target DANCR were discussed.
This article can provide referential value for latter onco-
lncRNA investigations and insights into the clinical treatment
against cancers caused by aberrant expression and regulation
of lncRNAs.

DANCR: A CRITICAL ONCO-LNCRNA

DANCR also named as Anti-Differentiation Non-coding RNA
(ANCR), Small nucleolar RNA host gene protein 13(SNHG13),
upregulating transcripts 2 (AGU2) is an oncogenic lncRNA
located on chromosome 4 (13, 14). It was first identified
as a transcript of unknown function whose expression is
dramatically upregulated during adipogenesis of pluripotent
human mesenchymal stem cells (hMSCs) (13). Later it was
recognized as an anti-differentiation non-coding RNA as it
promoted epidermal progenitor cell maintenance and prevented
differentiation in osteoblasts (15, 16). Extensive data have
shown that DANCR correlates with the prognosis of various
human cancers, and exerts diverse oncogenic functions via
multiple downstream targets. It will serve as a novel target for
targeted therapy.

DANCR: A Biomarker of Tumor
Progression and Prognosis
The discovery that DANCR over-expressed in colorectal cancer
promoted tumor progression and predicted poor prognosis
introduced the study of DANCR into the field of cancer (17).
DANCR can serve as a novel biomarker of CRC progression, and
its high expression is correlated with TNM stage, histologic grade,
and lymph node metastasis (17). In addition, a recent meta-
analysis and systemic review illustrated that DANCR expression
is of significant prognostic value in various cancers (18). It is
discovered that high lncRNA DANCR expression is associated
with shorter overall survival and disease-free survival, predicting
worse prognosis (18).

In the wake of the deepening of the research, DANCR
was found to be aberrantly expressed in numerous cancers
and exerted multiple regulating functions. The underlying
mechanisms were also being constantly elucidated.

Multiple Functions of DANCR in Cancers
DANCR is a typical oncogenic lncRNA, overexpressed in various
tumor cells. It can regulate the progression of numerous cancers
by modulating the expression or activity of downstream targets
and consequently promoting hallmarks of cancer including cell
proliferation, cell motility, tumor angiogenesis, and cell viability.

Cell Proliferation
In hepatocellular carcinoma, it is observed that down-regulated
DANCR expression can boost cell apoptosis and cell cycle block
in G1 which underlies that DANCR can promote tumor cell

proliferation by inhibiting cell apoptosis and facilitating growth
inhibition evasion (19). DANCR overexpressed in endometrial
carcinoma can alleviate the inhibitory effect of miR-214 on target
mRNAs and inhibit cell apoptosis and promote proliferation (20).
In MYC-induced lymphoma, DANCR limits the transcription of
Cell-cycle inhibitor p21 (CDKN1A) which can cause cell cycle
arrest by restricting the activity of cyclin-dependent kinases.
Inhibition of CDKN1A leads to accelerated G1/S shift and
promote the proliferation of lymphoma cells (21, 22).

Cell Motility
Cell motility refers to the metastasis and invasion properties of
cells and malignant cells to vital organs and it is the major cause
of cancer deaths (23). DANCR can promote tumor cell motility
in various ways.

DANCR promotes the motility of nasopharyngeal carcinoma
cells by stabilizing hypoxia inducible factor-1α, the subunit of
Hypoxia inducible factor 1 (HIF-1) which are transcription
factors that can activate several hypoxia-responsive genes
in response to hypoxia microenvironment and promote the
metastasis and invasion of cancer cells (24, 25). Matrix
Metallopeptidase 16(MMP16) is one of the extracellular matrix
(ECM) enzymes which can decompose the ECMphysical barriers
and promote the metastasis of cells (26). MMP16 can activate
MMP2 for collagen degradation (27). DANCR can upregulate
MMP16 protein and lead to enhanced motility of pancreatic
cancer cells (28). Another promoting factor of carcinoma
metastasis is Epithelial-mesenchymal transition (EMT), during
which epithelial cells lose their epithelial characteristics and cell-
cell contact, thus increasing their invasive potential and the
migratory capacity and invasive potential of tumor cells (29).
DANCR can modulate the EMT progression by upregulating
Rho-associated coiled-coil containing protein kinase 1 (ROCK1)
and promote metastasis in cervical cancer (30).

Tumor Angiogenesis
Tumor angiogenesis is one of the hallmarks of cancer which
provide essential nutrients and oxygen to proliferating cancer
cells (31). DANCR can increase vascular endothelial growth
factor A (VEGF-A) expression, mediate vascular permeability as
well as the multiplication and motion of endothelial cells and
promote the neovascularization in ovarian cancer cell (32, 33).

Cell Viability
The innate or acquired chemo-resistance of tumor cells is a main
problem in the clinical cancer therapy. DANCR promotes the
docetaxel resistance in prostate cancer cells by mediating the
upregulation of multidrug resistance associated protein (MDR)
and p-glycoprotein (P-gp), which bump many chemotherapeutic
drugs out of the cells and limit the intracellular drug dosage
to sub-therapeutic levels (34, 35). DANCR can also reduce
the sensitivity of glioma cells to cisplatin through PI3K/Akt
signaling pathway activation and mediate the recruitment of
NF-κB protein to drug resistance genes for their enhanced
transcription (36).

Generally, DANCR exerts multiple regulatory functions on
tumor progression of numerous cancers, revealing its role as an
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TABLE 1 | Functions of DANCR in human cancers.

Cancer type DANCR

expression

Functional properties

(validated)

References

Retinoblastoma ↑ Tumor proliferation, motility (37)

Nasopharyngeal

carcinoma

↑ Tumor proliferation, motility (25, 38)

Esophageal squamous

cell carcinoma

↑ Tumor proliferation, motility (39)

Non-small-cell lung

cancer

↑ Tumor proliferation, motility (22, 40, 41)

Triple negative breast

cancer

↑ Tumor proliferation, motility (42, 43)

Hepatocellular carcinoma ↑ Tumor proliferation, motility (44)

Cholangiocarcinoma ↑ Tumor proliferation, motility (45)

Pancreatic ductal

adenocarcinoma

↑ Tumor proliferation, motility (46)

Pancreatic cancer ↑ Tumor proliferation, motility (28, 47)

Cervical cancer ↑ Tumor proliferation, motility (30, 48)

Ovarian cancer ↑ Tumor proliferation, motility,

angiogenesis

(33, 49)

Colorectal cancer ↑ Tumor proliferation, motility (50)

Bladder cancer ↑ Tumor proliferation, motility (51)

Osteosarcoma. ↑ Tumor proliferation, motility (52)

Gastric cancer cells ↑ Tumor proliferation, motility,

viability

(53, 54)

Glioma ↑ Tumor proliferation, motility,

viability

(36, 55, 56)

Endometrial carcinoma ↑ Tumor proliferation (20)

Lymphocyte carcinoma ↑ Tumor proliferation (57)

Prostate cancer ↑ Tumor motility, viability (34, 58, 59)

Papillary thyroid cancer ↓ Tumor suppression (60)

Renal cell carcinoma ↓ Tumor suppression (61)

important pro-tumor regulator (Table 1). And notably, DANCR,
an oncogenic lncRNA in most cases, suppresses proliferation and
motility and promotes apoptosis in renal carcinoma cells (RCCs),
its mechanism remains unclear (61).

Common Downstream Targets of DANCR
LncRNAs perform their multiple regulatory functions on tumors
by interacting with numerous downstream targets (Figure 1C).
The downstream targets include proteins and RNAs. LncRNAs
can bind with histone-regulating proteins [such as Enhancer of
zeste homolog 2 (EZH2), histone deacetylase (HDAC)], which
catalyze the histone protein in chromatins, and the promoter-
binding proteins, which can bind to the promoters or enhancers
of certain genes, and guide the silencing of certain genes (34,
62, 63). They can interact with cytoplasm proteins, mRNAs and
miRNAs and thus modulate the cells via stabilizing, regulating
and modifying the components within signaling pathways (64).
LncRNAs can also bind with integrated proteins and mediate
the transmission of the signaling received from the extracellular
environment (64). DANCR, as a typical lncRNA, exerts its
regulatory functions mainly via protein-DANCR and miRNA-
DANCR interaction (Table 2). Herein, we review some common

targets of DANCR which are discovered to interact with DANCR
in multiple cancers and further discuss the role of DANCR in
particular cancers to better understand the regulatorymechanism
of DANCR.

EZH2 is a common target protein of DANCR. Mechanically,
EZH2 enables the silencing of gene expression by catalyzing
histone H3 trimethylation at lysine 27 (H3K27me3) in target
gene promoters (73). DANCR can bind with EZH2, guide
it to silence the specific gene and thus regulate the cells.
EZH2-DANCR interaction was first discovered in human fetal
osteoblastic cell where the lncRNA-protein complex inhibited
Runt-related transcription factor-2 expression and pursuant
osteoblast differentiation (16). EZH2-DANCR mechanism can
also be found in many cancers: In non-small-cell lung cancer
cells, it promotes cell proliferation, migration, and invasion
by inhibiting p21 expression (22). In gastric cancer cells it
enhances cell migration and invasion through suppression of
lncRNA-LET (Low Expression in Tumor) (72). In prostate
cancer cells it boosts cell invasion by epigenetically silencing
expression of tissue inhibitors of metalloproteinase 2/3 (58).
In cholangiocarcinoma it regulates proliferation and migration
by epigenetically silencing fructose-1,6-bisphosphatase 1. By
silencing the tumor inhibitory gene via EZH2 recruitment,
DANCR manages to promote cancer progression (45).

MicroRNAs are small regulating RNAs (−22 nt in length)
derived from the short hairpin regions of RNA transcripts
and they induce cleavage and suppression of translation via
complementary binding to target RNAs (74). DANCR can acts
as competitive endogenous RNA (ceRNA) and competitively
bind tumor suppressive miRNAs to restore the functions
of target oncogenic mRNAs. miR-216a is a common tumor
suppressive miRNA and downstream target of DANCR. In lung
cancer, DANCR induces cell proliferation and colony formation
via sequestering miR-216a-5p (75). In breast cancer, DANCR
targets miR-216a-5p, increases Nanog, SOX2, and OCT4 and
promotes cell proliferation and invasion (42). In glioma, DANCR
can restore LGR5 (Leucine-rich repeat-containing G protein-
coupled receptor 5), PI3K, AKT, and p-AKT accumulation
reduced by miR-216a, facilitating proliferation, migration,
invasion, and angiogenesis and inhibited apoptosis (65). The
massive targets of miR-216a complicate the functions of
DANCR in cancer cells. In some cases, a novel DANCR-
mRNA-miRNA interacting pathway is observed. For instance,
DANCR competitively sponges the 3′UTR of transforming
growth factor beta receptor 1 (TGFBR1) mRNA in cervical
cancer cells, which blocks miR-665 from binding to and
degrading TGFBR1 and promotes the TGFBR1-mediated
oncogenic ERK (extracellular regulated protein kinases)/SMAD
pathway (48).

Detailed Roles and Molecular Mechanisms
of DANCR in Different Cancers
In this section, the role of DANCR in particular cancers is
discussed so as to clarify the molecular mechanisms of DANCR
in a more specific way and instruct the therapy of DANCR
aberrantly-expressed cancers (Figure 2).
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TABLE 2 | The putative molecular mechanisms of DANCR.

Cancer type DANCR-binding miRNA Downstream target of miRNA (validated) References

DANCR INTERACTS WITH miRNAs

Glioma miR-634 RAB1 (56)

miR-216a LGR5 (65)

Esophageal squamous cell

carcinoma

miR-33a-5p ZEB1 (39)

Non-small cell lung cancer miR-758-3p – (22, 50)

miR-216a EIF4B, JAK2, MALAT1

Breast cancer miR-216a-5p Nanog, OCT4 and SOX (42)

Hepatocellular carcinoma miR-216a-5p KLF12 (19)

miR-27a-3p LIMK1 (66)

Pancreatic ductal

adenocarcinoma

miR-33a-5p AXL (46)

miR-214-5p E2F2 (47)

Pancreatic cancer miR-33b MMP16 (28)

miR-135a NLRP3 (67)

Cervical cancer miR-665 TGFBR1 (48)

miR-335-5p ROCK1 (30)

Endometrial carcinoma miR-214 – (20)

Ovarian cancer miR-145 VEGF (33)

Colorectal cancer miR-577 HSP27 (68)

Bladder cancer miR-149 MSI2 (69)

Prostate cancer miR-135a – (59)

miR-34a-5p JAG1 (34)

miR-214-5p E2F2 (47)

Osteosarcoma miR-33a-5p AXL (54)

miR-1972p

Cancer type DANCR-interacting mRNA Competitive miRNA References

DANCR INTERACTS WITH mRNAs

Retinoblastoma MMP-9 miR-34c and miR-613 (37)

Hepatocellular carcinoma CTNNB1 miR-214, miR-320a, miR-199a (70)

Cervical cancer TGFBR1 miR-665 (30)

Cancer type DANCR-interacting protein Consequence References

DANCR INTERACTS WITH proteins

Nasopharyngeal Carcinoma NF90/NF45 Stabilizing HIF-1-α (25)

STAT3 Enhancing IL-6/JAK1/STAT3 signaling. (38)

Lymphatic carcinoma CDKN1A Limited expression of p21 (57)

Non-small lung cancer EZH2 Silencing promoter of p21 (22)

Triple negative breast cancer RXRA Activating serine phosphorylation of RXRA and

upregulates PI3K/AKT

(71)

EZH2 Promote transcription of CD44 and ABCG2 (43)

Cholangiocarcinoma EZH2 Silencing promoter of FBP1 (45)

Gastric cancer EZH2, HDAC3 Silencing lncRNA-LET (72)

Prostate cancer EZH2 Silencing TIMP2/3-promoter (58)

Colorectal Cancer
DANCR acts as amiRNA sponge in colorectal cancer (CRC) cells,
which is the most common role that DANCR plays in cancer
development. Harboring the samemiR-577 binding site, DANCR
and heat shock protein 27 (HSP27) mRNA competitively bind to
miR-577. The overexpression of DANCR in CRC cells alleviates

the degradation impact of miR-577 on HSP27, which contributes
to cell proliferation and metastasis (50).

Gastric Cancer
DANCR activated by SALL-4 (Sal-like protein 4) (53)
mediates the EZH2-HDAC3 (histone deacetylase 3)
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FIGURE 2 | Functional properties and molecular mechanisms of DANCR in different cancers. The schematic illustrates the mechanisms of DANCR in different cancers.

complex to regulate the transcription of lncRNA-LET.
It binds to the protein complex and directs it to the
promoter of LET (Low Expression in Tumor), thereby
silencing the tumor suppressive RNA and promoting tumor
metastasis (72).

Nasopharyngeal Carcinoma
HIF-1α, generally known as the core regulator of the hypoxic
response, has been validated as a critical positive regulator of
nasopharyngeal carcinoma (NPC) cell metastasis. DANCR can
combine the NF90 (nuclear factor 90)/NF45 (nuclear factor 45)
complex with its AU-rich elements (AREs) in 3′ region, which
stabilizes HIF-1α mRNA and upgrades the motility of NPC
cells (25).

Triple Negative Breast Cancer
In triple-negative breast cancer (TNBC), DANCR functions
by mediating protein assembly and modification. DANCR
can bind with the phosphorylation site of RXRA, recurring
glycogen synthase kinase 3 beta (GSK3β) to sponge
RXRA and promote RXRA ser phosphorylation. The

structural change in RXRA suppresses its interaction with
the promoter of phosphatidylinositol-4,5-biophosphate
3-kinase catalytic subunit alpha (PIK3CA), thereby
enhancing PIK3CA in both mRNA and protein levels.
Consequently, protein PIK3CA activates the P13K/AKT
pathway, leading to the proliferation and tumor growth of
TNBC (71).

Bladder Cancer
Bladder cancer (BC) whose proper diagnosis and efficient
treatment are current challenges in urology, is the most
frequent malignancy of the urinary tract (76). The following
two mechanisms of DANCR are discovered in BC cells:
DANCR can combine with the miRNA-149 in BC cell
cytoplasm, positively regulating the expression of Musashi RNA
binding protein 2 (MSI2). Elevated MSI2 protein enhances the
transcription and translation of the essential components in
the oncogenic signaling pathways, such as NUMB/Notch, PTEN
(Phosphatase and tensin homolog)/mTOR, TGF-β (transforming
growth factor-β)/SMAD3, MYC, and cMET (77). DANCR can
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also direct a leucine-rich pentatricopeptide repeat containing
(LRPPRC) to stabilize mRNA, thereby increasing cyclin D1 and
PLAU (Plasminogen Activator, Urokinase) expression levels and
activating IL-11 (Interleukin 11)-STAT3 (Signal Transducer and
Activator of Transcription 3) signaling. Through themechanisms
above, DANCR facilitates the proliferation and invasion of BC
cells (51).

Hepatocellular Carcinoma
Similar to CRC, oncogenic DANCR within hepatocellular
carcinoma (HC) has also been found to have multiple regulating
targets. KLF12 (Krueppel-like factor 12) can be positively
regulated by DANCR through miR-216a-5p sponging, leading to
malignant progression (19). DANCR can also competitively bind
to the 3′UTR of Catenin beta-1 (CTNNB1) to block miRNA-
mediated CTNNB1 suppression, leading to the initiation and
progression of HC (78).

We can conclude that DANCR can regulate the signaling
pathways by alleviating miRNA’s inhibitory functions on target
RNA, combining with proteins and guiding them to modulate
the expression or the stability of RNAs or facilitating the
integration and subsequent modifying of proteins. Moreover,
DANCR can manipulate more than one target in cancer and
join in multiple pathways. As we can see, due to the diverse
mechanisms of DANCR and limited research on it, it is hard
to foresee the unknown mechanisms and functions of DANCR
in cancers. However, lncRNA’s collective involvement in the
pathways of numerous cancers does make it a promising target
for cancer therapy.

POTENTIAL THERAPEUTIC APPROACHES
TARGETING DANCR

The potency of lncRNA-based cancer therapy has been pointed
out in previous years. Targeting lncRNAs for cancer treatment is
a novel and promising therapy due to their collective therapeutic
efficacy, high specificity, and few side effects (12). The possible
molecular drugs against lncRNAs and nanoparticle vectors for
their delivery are as follows (Figure 3).

CRISPR/Cas9
The CRISPR/Cas9 technology can be used to target the
endogenous loci of lncRNAs and restrict their transcription (79).
The CRISPR system discovered in many bacteria as an immune
mechanism for invading nucleic acid elimination can produce
CRISPR RNAs (crRNAs) with certain “protospacer” regions
complementary to the foreign DNA site (80). The crRNAs
together with transactivating CRISPR RNAs (tracrRNAs) form
the RNA pairs which combine and direct Cas9 nuclease to
cleave complementary target-DNA sequences and cause DNA
double-stranded break (DSB) (80). The CRISPR/cas9 system
can be applied for target DNA cut and gene knockout
via a designed single-guide RNA (sgRNA) complementary
to the target gene (81). Progress has been made in the
field: Cas9 nickases can cut one strand rather than both
strands of the target DNA site (82). Catalytically inactive
Cas9 (dCas9) enables the transcription regulation of target
genes which may partly relieve the safety concern about

irreversible frameshift disruptions caused by DNA cut (83).
The dCas9 protein can be recruited to the coding region of
genes and sterically block their transcription (84). Moreover,
dCas9 can be fused to protein domains capable of recruiting
repressive chromatin-modifying complexes, and lead to the
silencing of particular genes determined by the engineered
sgRNA (84). Recently, by targeting Erb-B2 Receptor Tyrosine
Kinase 2(HER2) gene, CRISPR-Cas9 has managed to inhibit
cell proliferation and tumorigenicity in HER2-positive breast
cancer cells, demonstrating its potency in clinical application
(85). The CRISPR/Cas9 technology has also been experimented
for targeting oncogenic lncRNAs and further improvement is in
demand for better efficacy (86).

Antisense Oligonucleotides
Antisense oligonucleotides (ASOs) can be used in lncRNA-
targeted therapy. They are synthetic and modified
oligonucleotide single strands that can complementarily
bind to certain sequences of their target RNAs. ASOs exert
their inhibiting effect mainly by recruiting ribonuclease H
(Rnase H) to degrade the targets. They comprise complementary
DNA single strands to form DNA/RNA duplexes for Rnase
H recognition and later cleavage (87). Vulnerable to various
existing ribonucleases (88), ASOs are unstable in vivo. Combined
with their relatively high charge and hydrophilicity (89), all
these characteristics make crossing membranes of targeted cells
difficult. Similar to other RNA therapeutic products, ASOs
must be chemically modified to improve their pharmacological
properties. Phosphorylation is the most commonly employed
modification method (88) that involves substituting the
phosphodiester backbones of the oligonucleotide strands for
phosphonothioate (Ps) linkages (87). In this way, nucleotides
become more hydrophobic and have higher adhesion to
plasma proteins, enabling them to enter the targeted cells
(68). Additionally, their resistance against nucleuses is advanced,
making the products more stable (90). However, phosphorylation
can reduce ASO’s affinity to RNA and increase the likelihood of
non-specific protein binding (90), which is harmful to regulation.
In addition to phosphorylation, other widely used modifications
include 2′ sugar modifications [such as 2′-O-methyl, 2′-fluoro
(2′-F) and 2′- O-(2-methoxyethyl)(2′-MOE)],which all result in
high affinity to RNA along with their diminished or disappeared
ability to attract Rnase H (91). Uniformly modified ASOs are
ASOs that completely lose their ability to recruit Rnase H for
degradation, and they can sterically block certain domains
to inhibit further interaction (92). Among all these synthetic
products, locked nucleic acid (LNA), which is produced by
changing the 20-hydroxy (20-OH) for 20,40-O-methylene
bridge, exhibits the best affinity to RNAs (93). LNA can be
used as the flank of GAPMER, which is a widely-used artificial
complex for RNA targeting (88). The center of GAPMER is
a DNA monomer which can enable Rnase H cleavage of the
targeting mRNA, while LNA flanks increase its affinity to
RNA and resistance to nuclease (69). Both miRNA affinity and
nucleotide stability are achieved in this modification. Nusinersen,
a splicing switching ASO, is a successful application of ASO in
clinical treatment which was approved by the FDA in 2016 and
became the first drug to treat spinal muscular atrophy (94). And
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FIGURE 3 | The therapeutic approaches targeting onco-lncRNA—DANCR. The schematic illustrates several targeting methods against onco-lncRNAs by using LNAs

or siRNAs for lncRNA silencing and degradation. (A) Antisense oligonucleotides can be chemically modified to have strengthened affinity and stability. The figure shows

four common modifications of ASOs. (B) SiRNAs are packaged in nanoparticle vectors for improved targeting. Lentiviral vectors can reverse and insert the siRNA

sequence into the genome of target cells and achieve stable transfection. After transcription, siRNAs complementarily bind the target onco-lncRNAs and suppress

their tumor promoter functions. Exosomal nanovectors can directly deliver the siRNAs to the target cell cytoplasm for onco-lncRNA inhibition through endocytosis.

to achieve better pharmaceutical effect, considerable work has to
be done to achieve specific transportation (95).

Small Interfering RNAs
We can also use small interfering RNAs (siRNAs) to target
lncRNAs. In 2018 patisiran became the first approved RNAi drug
to remedy hereditary transthyretin amyloidosis (70). SiRNAs
are usually chemically synthesized or evolved from DNA-
based small hairpin RNA (shRNA) (96). And compared to
chemically synthesized siRNAs, effective shRNA expression DNA
sequence could retain gene silencing for a longer period (97).
Mechanically, siRNAs induce gene silencing by complementing
with the target RNA and forming an RNA-induced silencing
complex to splice and degrade the target (98). SiRNAs can be
chemically modified to improve stability and prevent nuclease
degradation. For example, boranophosphate siRNAs were 10
times more nuclease resistant than unmodified siRNAs with
advanced silencing efficacy (99). Incorporation of a modest
number of LNA modifications significantly prolongs the half-life

of serum siRNAs (100). SiRNAs can also be packaged in synthetic
carriers to enter the cell membrane (101).

Lentiviral Vector
Viral vectors were one of the earliest engineered nanoscale
delivery systems used for transporting RNA products to targeted
tissues. Viral vectors are known for their efficient transfer
of codes to the cell interior and capability for escaping
immunosurveillance by infected cells (102). In tumor treatment,
lentiviral vectors have an advantage over other viral vectors.
As a retroviral vector, the lentiviral vector avoids the drawback
of transient transgene expression in the case of AdVs (102);
reagent RNAs can be reversely transcribed into DNA with the
help of reverse transcriptase and inserted into the genes of
the targeted cells, which enables the RNA reagent to exert
continual therapeutic effects on the fast-growing cell lines. It is
less likely to cause an intense inflammatory response and can be
processed in a relatively simple way (103). Moreover, LVs, with a
maximum capacity of 8 kb nucleic strands, boast a relatively high
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capacity compared to other viral vectors. Although problems
such as possible insertional mutagenesis (104), comparatively
high immunogenicity and difficult large-scale production persist
(102), the utilization of siRNA packaged in modified LVs for the
modulation of onco-lncRNAs and their molecular targets will be
a promising treatment for cancers.

Liposome Carrier
Compared to viral vectors, non-viral vectors are of lower
transfection efficiency (105). However, the low immunogenicity
and advanced safety, relative convenient and inexpensive
constructing process for large scale production make the latter
one attractive in clinical therapy (102). Notably, owing to the
hydrophobic nature of anchored lipids, lipid based vectors prevail
over other non-lipid vectors for the extremely high transfection
efficiency (106). Moreover, liposomes products comprise 70%
of submissions to the FDA, which also proves the safety and
effectiveness of liposomes (107). Generally, the liposome is
composed of neutral or cationic amphiphilic lipid units. Neutral
or positively charged polar group(s) makes up the hydrophilic
“head” and a hydrophobic “tail” comprise fatty acid(s) (102).
Compared to neutral ones, the cationic liposomes can integrate
with negatively charged RNA molecules to form electrostatic
lipoplexes, which can wrap and protect RNA from degradation
by serum nucleases and promote endocytosis for cellular uptake
(108). Better pharmacological properties can be achieved through
liposome modulation. Conjugating a poly-(ethylene glycol)
(PEG)-lipid within the lipid bilayer can extend circulating period
and reduce the uptake by phagocytes (109, 110).Specific ligands
and antibodies can be added to the lipid for enhanced delivery
specificity (111). For example, the conjugation of transferrin to
nanoparticles is demonstrated to be an efficient cancer targeted
strategy due to extremely higher expression level of transferrin
receptor on tumor cell surface (112).

Exosome
Notably, exosomes can also play a part in cancer treatment by
working as a novel and practical biological vector. Exosomes
are vesicles released by cells into serums containing proteins,
lipids and nucleic acids (113). They are involved in extracellular
communication and mediate tumor progression via the contents
within. As a biological vector, exosomes are less likely to
activate the immune response and are highly stable in vivo
(114), thereby prolonging their circulation duration. Their small
sizes (30–150 nm) also enable them to function inside dense
tissues such as osteoblasts. The general construction progress
comprises five steps (114): (a) find a suitable parental cell for
exosome vector production. For example, immature dendritic
cells can produce exosomes that are deficient in T-cell activating
factors so that they can cause minimal immune reaction (115).
HEK293T cells are credited for high transferring efficacy as
they can produce exosomes in large quantities. The produced
exosomes can easily diffuse with targeted cells and release the
inner therapeutic contents (116); (b) transfect the parental cells
with plasmid containing the gene code of ligand proteins which
can bind the receptor on targeted cells. In this way, exosomes
are engineered with the desired ligands on their surface and they
can specifically target the recipient cells. In previous practice,

HEK293T cells were transfected with pDisplay encoding GE11,
a ligand matching the receptors on recipient breast cancer cells,
for improved targeting efficacy (117); (c) isolate the exosomes by
ultracentrifugation or use of commercial kit, etc.; (d) package the
therapeutic reagents into exosome vectors via electroporation;
(e) inject the exosome vector into human internal environment,
and the exosome can circulate in vivo and find its way to the
target cells.

Alvarez-Erviti et al. pioneered the practice of applying
engineered exosomes to deliver siRNA. They build neuronal cell-
targeted exosomes and use them to pass through the blood-
brain barrier and treat Alzheimer’s disease (118). A recent trial
using exosome vector delivering siRNA was conducted in HER2
positive breast cancer cells and BC cells (119). Although methods
of exosome separation and exosomal carrier construction need
considerable improvement, all these successful practices remark
a bright prospect for therapeutic exosome vector.

To date, researches on targeting DANCR for cancer therapy
remains limited. A previous study presented that the relative
enrichment of the enzymes responsible for RNA degradation
vary between cellular compartments, so the location of lncRNA
can impact the suppressing efficacy of the molecular drugs
on it. Comparatively, ASO is more capable of clearing
the nuclear lncRNAs while RNAi have a better suppressive
effect on lncRNAs in cytoplasm (120). Referring to this,
the RNAi therapy is more suitable for the cytoplasmic
oncogenic lncRNA DANCR (120). Moreover, being effectively
suppressed by all 28 RNAi regents tested in the experiment
further demonstrated that DANCR can be an ideal therapeutic
target (120). Researchers should work on the construction
of superior vector of the RNAi regents for better targeting
effect. Remarkable progress has been made by Vaidya et al.
who successfully constructed a non-viral nanoparticle carrier
containing siDANCR and proved its repressive effect on the
invasion and proliferation of TNBC cells via null mice injection
(12). Overall, DANCR targeted therapy is of great promise and
must be investigated further.

CONCLUSIONS AND FURTHER
DIRECTIONS

The review has shown the vital research value of DANCR.
DANCR is also a critical oncogenic regulator which presents an
increasingly important status in cancer study. It can regulate
hallmarks of various cancers, indicate their progression and
clinical outcomes and serve as a novel target for cancer targeted
treatment. Researches on DANCR remain limited and there is an
urgent need for further study on this critical onco-lncRNA.

The recent progress on RNA interaction identification
method includes the refined variants of immunoprecipitation
techniques (such as PAR-CLIP, HITS-CLIP Maps, iCLIP, hiCLIP,
CLASH etc.) and new high-throughput RNA interactome
analysis methods [such as Psoralen analysis of RNA interactions
and structures (PARIS), sequencing of psoralen-crosslinked,
ligated, and selected hybrids (SPLASH), ligation of interacting
RNA followed by high-throughput sequencing (LIGR-seq), and
MARIO] (121). Without any form of crosslinking, proximity

Frontiers in Oncology | www.frontiersin.org 9 November 2019 | Volume 9 | Article 1225

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jin et al. DANCR in Cancer

proteomics is a novel method for RNA-protein interactions
studies (122). Wide application of these techniques and further
development of the new ones in the late future may bring
forward a new impetus for the understanding of the diverse and
complicated regulatory mechanisms of lncRNA in cancers. Also,
advanced techniques are in demand for the lncRNA targeted
therapy. Improved targeting methods and drug vectors are
needed to reduce untoward effect and improve the efficacy and
specificity of the therapy.
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