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Abstract: Listeria monocytogenes are the etiological factor of listeriosis, and their main source for
humans is food. The aim of the current study was to assess the contamination of various types of meat
and the drug susceptibility of isolated L. monocytogenes. Between 2016–2018, 6000 swabs were taken
(2000 annually) from the surface of pork, beef, and poultry. The analysis of intermediate and finished
product samples was carried out in accordance with ISO 11290-1 (International Organization for
Standardization). The genetic similarity assessment of the isolates obtained was based on the Pulsed
Field Gel Electrophoresis (PFGE) method, and drug-sensitivity assessment using the disc-diffusion
method. We found 2.1% of collected samples were L. monocytogenes positive. The level of meat
contamination varied depending on its matrix. Most L. monocytogenes were isolated from poultry. It was
shown that 39 (32.5%) strains were sensitive to all tested antibiotics and eight (6.7%) were resistant
to all five tested antimicrobials. Most strains tested were resistant to cotrimoxazole (55; 45.8%) and
meropenem (52; 43.3%), followed by erythromycin (48; 40.0%), penicillin (31; 25.8%), and ampicillin
(21; 17.5%). High prevalence of this pathogen may be a serious problem, especially when linked with
antibiotic resistance and high percentage of serotypes responsible for listeriosis outbreaks.
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1. Introduction

Listeria monocytogenes are Gram-positive, rod-shaped, facultatively anaerobic bacterium. It was
demonstrated that L. monocytogenes can be isolated from various environments including soil,
vegetation, surface water, sewage, animal feeds, farm environments, and food-processing environments.
L. monocytogenes are the etiological factor of human listeriosis. People particularly vulnerable to infection
are the elderly, pregnant women, newborns, and immunocompromised individuals. In adult males
and non-pregnant women listeriosis causes primary meningitis, encephalitis or septicaemia [1–4].
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Due to the high mortality rate (15.6%) listeriosis is considered one of the most serious foodborne
zoonoses in the European Union [5].

A wide range of foodstuffs are reported as the potential source of L. monocytogenes—soft cheese,
sausage, unpasteurized milk and dairy products, meats, smoked fish, vegetables, salads, and ready-to-eat
(RTE) products [3,4,6–8]. On the basis of the results of the Rapid Alert System for Food and Feed (RASFF)
investigation, it can be stated that the products of animal origin are mostly linked to L. monocytogenes
infections [9]. Raw poultry and meats, processed meat, and RTE meat products can be contaminated
with L. monocytogenes in the slaughterhouse or on different processing steps [6,10–13]. It is suggested
that most of the meat processing plants may be colonized by L. monocytogenes as soon as during
initial production cycles as an effect of raw meat contamination or improper hygienic conditions in
the food processing environment (FPE) [1,14]. According to European Food Safety Authority (EFSA),
L. monocytogenes was detected in 1.3%, 0.6%, and 3.1% of pig, poultry, and bovine meat product RTE
samples in 2018, respectively [5].

According to the RASFF report, three of six multi-country foodborne outbreaks reported in Europe
in 2018 were related to L. monocytogenes and all of them have led to a Rapid Outbreak Assessment
(ROA) [9]. In the largest L. monocytogenes outbreak caused by RTE meat products in South Africa
in 2017–2018, more than 1000 hospitalizations and 200 deaths were reported [15–17]. The causative
agent was the L. monocytogenes strain of serogroup 4b, multi-locus sequence type 6 (ST6). The same
serotype was identified as a cause of the multi-country (Austria, Denmark, Finland, Sweden, UK)
L. monocytogenes outbreak linked to frozen vegetables (corn) between 2015–2018, with 47 confirmed
listeriosis cases and nine lethal cases [18].

Since L. monocytogenes pathogenicity and persistence in FPE may be related to its serotype,
the serological identification of L. monocytogenes strain isolated from food is of major importance for
consumer safety [1]. About 90–95% of the strains isolated from contaminated food, animal, and human
samples belong to serotypes 1/2a, 1/2b, 1/2c, and 4b, among which mentioned serotype 4b is responsible for
the majority of human listeriosis cases and 1/2a serotype is the most prevalent in foods [1,4,6,7,10,17,19].

The risk of L. monocytogenes occurrence in FPE may increase due to the drug resistance of
pathogenic strains. Although L. monocytogenes is thought to maintain a relatively high susceptibility to
most of the clinically relevant antimicrobials, the anthropogenic activity (extensive use of antibiotics,
cross-resistance to molecules used as growth promoters in animal production) can result in spreading
antibiotic resistance among L. monocytogenes strains [4,20].

The aim of the current study was to assess the prevalence of Listeria monocytogenes in various types
of meat (pork, beef, and poultry) between 2016–2018. Identification of the serotypes and characteristics
of their profile of resistance to antibiotics were also investigated.

2. Materials and Methods

2.1. Material

The research material included 6000 swabs taken from the surface of pork, beef, and poultry in
2016–2018. Every year, 2000 samples were taken, respectively: (1) 610 from poultry, 685 from pork,
and 705 from beef in 2016; (2) 650 from poultry, 715 from pork, and 635 from beef in 2017; and (3) 690
from poultry, 684 from pork, and 626 from beef in 2018. All samples of a given meat-type were collected
from the same meat plant.

Samples for testing were collected by wet swab method with the use of a sterile, flexible template
limiting the swabbed area to 100 cm2. Samples were taken for the part of the carcass currently processed
in the plant (one sample per carcass part). A new sterile template was used for each part of the carcass.
A sterile 50 cm2 cellulose sponge (Environscreen, Technical Service Consultants Ltd., Heywood, UK)
soaked in 10 mL 0.9% NaCl sterile packed in a reinforced zip-bag was used for sampling.



Foods 2020, 9, 1293 3 of 17

2.2. Isolation of L. monocytogenes Strains

Analysis of the meat samples was based on the procedures of the PN-EN ISO 11290-1:1999/A1:2005 [21].
The sponges taken from meat samples were immersed in 100 mL of half-Fraser broth (Merck, Darmstadt,
Germany) and incubated at 30 ◦C for 24 h. The sampling sponge was then squeezed firmly several times
into the bag. Secondary selective enrichment was performed for 48 h at 37 ◦C after transferring 0.1 mL
of the culture into 9.9 mL of Fraser broth (Merck, Darmstadt, Germany). Next, a reductive inoculation
of the bacterial cultures was performed on the selective agar medium according to Ottaviani and
Agosti (ChromoCult® Listeria Selective Agar (ALOA®; Merck, Darmstadt, Germany). Cultures were
incubated for 24 h at 37 ◦C.

Bacterial colonies suspect to belong to Listeria spp. (one colony for each sample) were transferred
to Columbia Agar with 5% sheep blood (bioMérieux, Marcy-l’Étoile, France). The hemolysis type was
assessed and final identification using the PCR method, was performed. The identified L. monocytogenes
isolates were frozen in brain-heart infusion broth (BHI; Merck, Darmstadt, Germany) with 15% glycerol
(Avantor, Gliwice, Poland) and stored at −80 ◦C.

2.3. Isolation of Genomic DNA

In order to isolate L. monocytogenes genomic DNA, the column method with the Genomic Mini
AX Bacteria Spin Kit (A&A Biotechnology, Gdynia, Poland) was applied, according to the protocol
provided by the manufacturer.

2.4. Species Identification

The identification of L. monocytogenes isolates was confirmed by PCR reaction. Two pairs of
primers L1 (5′-CAG CAG CCG CGG TAA TAC-3′), L2 (5′-CTC CAT AAA GGT GAC CCT-3′),
LM1 (5′-CCT AAG ACG CCA ATC GAA-3′) and LM2 (5′-AAG CAC TTG CAA CTG CTC-3′;
Oligo.pl) were applied [22]. The PCR reaction mixture (25 µL) included 1× PCR buffer (Promega,
Madison, WI, USA), 2 mM MgCl2 (ABO, Gdańsk, Poland), 1.25 mmol dNTPs (Promega, Madison,
WI, USA), 0.5 µM of each primer (Oligo.pl), 1 unit of Taq DNA polymerase (Promega, Madison,
WI, USA), ultrapure water and DNA isolated from L. monocytogenes. The PCR program included:
initial denaturation 94 ◦C for 2 min; 30 cycles of denaturation 94 ◦C for 30 s, annealing 50 ◦C for 30 s
and primer elongation 72 ◦C for 1 min; extension 72 ◦C for 5 min.

The PCR products were analyzed by agarose gel electrophoresis (1.5% agarose) stained with
Midori Green (NIPPON Genetics EUROPE GmbH, Düren, Germany) in 1× TBE (Tris-boran-EDTA)
buffer (BioRad, Hercules, CA, USA) using a DNA size standard (GeneRuler™ 1000 bp DNA Ladder;
Fermentas, Waltham, MA, USA)—conditions 90 V, 1 h.

2.5. Evaluation of Pulsotypes Similarity (PFGE)

The pulsotypes similarity analysis of the confirmed L. monocytogenes strains was performed with
the pulsed-field gel electrophoresis (PFGE). The procedure was carried out according to the standard
operating procedure for PulseNet PFGE of L. monocytogenes [23].

The degree of pulsotypes similarity between analyzed L. monocytogenes isolates was evaluated
using a phylogenetic dendrogram drawn in the CLIQS 1D Pro program (TotalLab, Newcastle upon
Tyne, UK). Clustering analysis was performed using hierarchical clustering with the Unweighted
Pair-Group Method Using Arithmetic Averages (UPGMA) technique and Dice’s coefficient.

2.6. Molecular Serotyping of L. monocytogenes Strains

In order to identify the main L. monocytogenes serogroups (1/2a-3a, 1/2b-3b, 1/2c-3c, 4b-4d-4e)
multiplex PCR was applied in accordance to Doumith et al. [24]. For serogroups identification
the L. monocytogenes reference strains tested by Wałecka-Zacharska et al. [25] were used.
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2.7. Drug Susceptibility Analysis

The disk-diffusion method was applied to determine antibiotic susceptibility of L. monocytogenes strains
tested. For this purpose, 24 h bacterial cultures diluted in 0.9% saline solution (Avantor, Gliwice, Poand) were
plated on MHF medium (Mueller Hinton Agar with 5.0% horse blood and 20 mg/L β-NAD; bioMérieux,
Marcy-l’Étoile, France). Next, following antibiotic discs were added: penicillin (1 IU), ampicillin (2 µg),
meropenem (10 µg), erythromycin (15 µg), and cotrimoxazole (1.25–23.75 µg). The antibiotics for
the studies were selected in accordance with the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) v. 8.0 [26] recommendations. The antibiotics used in the study are the only ones
that can be used in Europe to treat listeriosis and for which the interpretation of the results is possible.
After 20 h of incubation at 35 ◦C, growth inhibition zones around the antibiotic discs were measured
and analyzed in accordance with the EUCAST v. 8.0 [26].

2.8. Statistical Analysis

The obtained results were subjected to statistical analysis in the Statistica 13 PL program
(StatSoft, Round Rock, TX, USA). The normality of the distribution of the obtained results was
assessed with the Shapiro-Wilko test. ANOVA with the Tukey post-hoc test was used to determine
significant differences between strains number in particular groups.

3. Results

The research showed that L. monocytogenes was isolated from 127 (2.1%) of 6000 swabs taken from
all kind of meat. The level of contamination of all meat samples, regardless of their type, in particular
years was similar and ranged from 1.8% (35 positive samples) in 2018 to 2.5% (50 positive samples) in
2017. These differences were not statistically significant. In each year, the largest number of positive
samples was obtained from poultry (1.9–4.2%), and in 2016–2017 the differences were statistically
significant (Figure 1). In turn, the lowest L. monocytogenes contamination was noted in pork samples
(0.3–1.6%; Figure 1). In 2016–2017, the percentage of contaminated pork samples was statistically
significantly lower compared to other types of meat (Figure 1).
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3.1. Evaluation of Pulsotypes Similarity (PFGE)

The analysis of pulsotypes similarity (PFGE) distinguished the L. monocytogenes isolates into
127 patterns, among which seven pairs of isolates represent the identical pulsotypes (Figure 2). In most
cases, strains with identical pulsotypes were obtained from the same material. The exception was a pair
of strains 07/16 and 17/16, which were isolated from pork and beef, respectively. Moreover, all strains
with identical pulsotypes were always isolated in the same year. The cut-off value was set at 80%
similarity. The comparison of pulsotypes allowed us to assign 62 (48.8%) of the tested strains to
20 clusters. Apart from genetically identical strains, the highest degree of similarity (95.0%) was shown
by three pairs of isolates: no. 08/16 and 21/16 (isolated in the same year from pork); 23/17 and 27/17
(isolated in the same year from beef and pork, respectively); 06/18 and 23/16 (isolated in 2018 and
2016, respectively from pork). However, the analysis of pulsotypes showed that strains from pairs:
08/16, 21/16 and 06/18, 23/16 were the least similar with strains 09/16 (isolated from beef in 2016) and
05/18 (isolated from pork in 2018), respectively. The remaining 65 (51.2%) strains created unique PFGE
patterns and were not classified into any of the clusters at the adopted cut-off value.Foods 2020, 9, x FOR PEER REVIEW 6 of 18 
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3.2. Drug Susceptibility Evaluation

Among 120 L. monocytogenes strains isolated from all types of meat 22 antimicrobial resistance
patterns were defined (Table 1). Profile I included 39 (32.5%) strains susceptible to all antibiotics
tested. Statistically the highest number (11, 29.7%) of all antibiotic-susceptible strains was reported
in poultry meat in 2016 (Table 1 and Figure 3). On the other hand, eight L. monocytogenes strains,
classified to profile III, showed resistance to all antibiotics used in the research—six were isolated
from poultry and beef meat (four and two, respectively) in 2017 and two from poultry meat in 2018.
L. monocytogenes strains resistant to all antibiotics has not been isolated from pork (Table 1 and Figure 4).
Resistance to cotrimoxazole only (profile II) was confirmed in 14 strains (11.67%). Seven strains
(5.8%) were ampicillin-susceptible only (profile IV). Profiles XVII–XXII were represented by single
L. monocytogenes strains. In 2017 and 2018, the statistically significantly largest number of strains
resistant to all tested antibiotics were isolated from poultry (Figure 4).
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Table 1. Drug susceptibility profiles of the tested L. monocytogenes strains (n = 120) continuation.

Profile
Number

Drug-Resistance Profile

Number

2016 2017 2018
Total

n = 120Poultry
n = 21

Beef
n = 14

Pork
n = 2

Total in 2016
n = 37

Poultry
n = 27

Beef
n = 14

Pork
n = 7

Total in 2017
n = 48

Poultry
n = 13

Beef
n = 11

Pork
n = 11

Total in 2018
n = 35

I
R: - 11 7 2 20 3 3 1 7 5 1 6 12 39

S: P, AM, MEM, E, SXT (52.4%) (50.0%) (100.0%) (54.1%) (11.1%) (21.4%) (14.3%) (14.6%) (38.5%) (9.0%) (54.6%) (32.4%) (32.5%)

II
R: SXT 5 1 0 6 4 0 1 5 0 2 1 3 14

S: P, AM, MEM, E (23.8%) (7.1%) (0.0%) (16.2%) (11.1%) (0.0%) (14.3%) (10.4%) (0.0%) (18.2%) (9.1%) (8.1%) (11.7%)

III
R: P, AM, MEM, E, SXT, 0 0 0 0 4 2 0 6 2 0 0 2 8

S: - (0.0%) (0.0%) (0.0%) (0.0%) (11.1%) (14.3%) (0.0%) (12.5%) (15.4%) (0.0%) (0.0%) (5.4%) (6.7%)

IV
R: P, MEM, E, SXT 1 0 0 1 1 0 0 1 2 3 0 5 7

S: AM (4.8%) (0.0%) (0.0%) (2.7%) (3.7%) (0.0%) (0.0%) (2.1%) (15.4%) (27.3%) (0.0%) (13.5%) (5.8%)

V
R: MEM, E, SXT 1 0 0 1 4 1 0 5 0 0 0 0 6

S: P, AM (4.8%) (0.0%) (0.0%) (2.7%) (11.1%) (7.1%) (0.0%) (10.4%) (0.0%) (0.0%) (0.0%) (0.0%) (5.0%)

VI
R: MEM 0 1 0 1 2 1 2 5 0 0 0 0 6

S: P, AM, E, SXT (0.0%) (7.1%) (0.0%) (2.7%) (7.4%) (7.1%) (28.6%) (10.4%) (0.0%) (0.0%) (0.0%) (0.0%) (5.0%)

VII
R: AM, MEM, E, SXT 0 1 0 1 2 0 1 3 0 1 0 1 5

S: P (0.0%) (7.1%) (0.0%) (2.7%) (7.4%) (0.0%) (14.3%) (6.3%) (0.0%) (9.1%) (0.0%) (2.7%) (4.2%)

VIII
R: MEM, SXT 0 0 0 0 2 2 0 4 0 0 1 1 5

S: P, AM, E (0.0%) (0.0%) (0.0%) (0.0%) (7.4%) (14.3%) (0.0%) (8.3%) (0.0%) (0.0%) (9.1%) (2.7%) (4.2%)

IX
R: E, SXT 1 2 0 3 1 1 0 2 0 0 0 0 5

S: P, AM, MEM (4.8%) (14.3%) (0.0%) (8.1%) (3.7%) (7.1%) (0.0%) (4.2%) (0.0%) (0.0%) (0.0%) (0.0%) (4.2%)

X
R: MEM, E 0 0 0 0 1 2 0 3 1 0 0 1 4

S: P, AM, SXT (0.0%) (0.0%) (0.0%) (0.0%) (3.7%) (14.3%) (0.0%) (6.3%) (7.7%) (0.0%) (0.0%) (2.7%) (3.3%)

XI
R: P 0 0 0 0 0 0 0 0 0 2 1 3 3

S: AM, E, MEM, STX (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (18.2%) (9.1%) (8.1%) (2.5%)

XII
R: AM, E, MEM 0 1 0 1 1 0 1 2 0 0 0 0 3

S: P, SXT (0.0%) (7.1%) (0.0%) (2.7%) (3.7%) (0.0%) (14.3%) (4.2%) (0.0%) (0.0%) (0.0%) (0.0%) (2.5%)

XIII
R: P, E, MEM 1 0 0 1 1 0 1 2 0 0 0 0 3
S: AM, SXT (4.8%) (0.0%) (0.0%) (2.7%) (3.7%) (0.0%) (14.3%) (4.2%) (0.0%) (0.0%) (0.0%) (0.0%) (2.5%)

XIV
R: P, E, SXT 0 0 0 0 0 0 0 0 1 0 1 2 2

S: AM, MEM (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (7.7%) (0.0%) (9.1%) (5.4%) (1.7%)
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Table 1. Cont.

XV
R: E 1 0 0 1 0 1 0 1 0 0 0 0 2

S: P, AM, MEM, STX (4.8%) (0.0%) (0.0%) (2.7%) (0.0%) (7.1%) (0.0%) (2.1%) (0.0%) (0.0%) (0.0%) (0.0%) (1.7%)

XVI
R: P, MEM 0 0 0 0 0 0 1 1 1 0 0 1 2

S: AM, E, SXT (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (14.3%) (2.1%) (7.7%) (0.0%) (0.0%) (2.7%) (1.7%)

XVII
R: P, AM, E, MEM 0 1 0 1 0 0 0 0 0 0 0 0 1

S: SXT (0.0%) (7.1%) (0.0%) (2.7%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.8%)

XVIII
R: P, AM, E 0 0 0 0 0 0 0 0 1 0 0 1 1

S: MEM, SXT (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (7.8%) (0.0%) (0.0%) (2.7%) (0.8%)

XIX
R: P, AM, E, SXT 0 0 0 0 0 0 0 0 0 1 0 1 1

S: MEM (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (9.0%) (0.0%) (2.7%) (0.8%)

XX
R: P, MEM, SXT 0 0 0 0 0 0 0 0 0 1 0 1 1

S: AM, E (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (9.0%) (0.0%) (2.7%) (0.8%)

XXI
R: P, AM, SXT 0 0 0 0 0 0 0 0 0 0 1 1 1

S: MEM, E (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (9.1%) (2.7%) (0.8%)

XXII
R: P, AM, MEM, SXT 0 0 0 0 1 0 0 1 0 0 0 0 1

S: E (0.0%) (0.0%) (0.0%) (0.0%) (3.7%) (0.0%) (0.0%) (2.1%) (0.0%) (0.0%) (0.0%) (0.0%) (0.8%)

P, penicillin; AM, ampicillin; MEM, meropenem; E, erythromycin; SXT, cotrimoxazole; -, lack of antibiotics.
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Overall analysis of L. monocytogenes drug susceptibility showed that the most numerous group
included strains resistant to cotrimoxazole (55; 45.8%) and meropenem (52; 43.3%). The remaining
antimicrobials—erythromycin, penicillin and ampicillin—showed no activity against 48 (40.0%),
31 (25.8%), and 21 (17.5%) strains, respectively (Table 1). The results of the first-year analyses (2016)
confirmed the presence of L. monocytogenes antibiotic resistant strains in poultry and beef only and
12 of these strains were resistant to cotrimoxazole (32.4%). On the contrary, for the next two years,
all the types of meat tested were contaminated with antibiotic resistant strains. Statistically, the highest
number of antibiotic-resistant strains was isolated from poultry meat in 2017—19 strains were resistant
to cotrimoxazole and the same number to meropenem. It was reported, that the lowest number
of L. monocytogenes antibiotic resistant strains was isolated from pork meat during each year of
the experiment (Figure 5).
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3.3. L. monocytogenes Serotypes Determination and Distribution in Meat

The serotype distribution of analyzed L. monocytogenes strains in meat samples was shown in
Figure 6. It was found that all four main serogroups were identified within tested L. monocytogenes strains.
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Figure 6. Frequency of L. monocytogenes serotypes in meat tested (n = 120; a, b, c, . . . —variables marked
with at least one different letter differ statistically significantly from the others (p < 0.05)); P, penicillin;
AM, ampicillin; MEM, meropenem; E, erythromycin; SXT, cotrimoxazole.

The most common serogroup isolated from all types of meat samples was 4b-4d-4e (51 strains,
42.5%), followed by 1/2a-3a (29 strains, 24.2%), 1/2b-3b (21 strains, 17.5%), and 1/2c-3c (19 strains,
15.8%). Almost 50% of all 4b-4d-4e strains originated from poultry (Figure 6), it was a statistically
significant value. In turn, the least numerous serotype in this type of meat was 1/2b-3b, represented by
eight strains only. The 1/2c-3c and 1/2a-3a serogroups were the least frequent within the strains isolated
from beef and pork, respectively; it was a statistically significant value (Figure 6).

Although the antibiotic resistance of the strains belonging to individual serogroups varied
depending on the year of their isolation, some common trends were also observed. Each year of
the research the highest number of cotrimoxazole-resistant strains was noted in 4b-4d-4e serotype.
Over 50% of strains resistant to cotrimoxazole and meropenem in 2017 (13, 27.1% and 12, 25.0%,
respectively) belonged to this serogroup, it was a statistically significant value. A high resistance to all
antibiotics tested was confirmed in strains of 1/2a-3a serotype in 2017–2018. On the contrary, isolates of
group 1/2c-3c presented a low resistance to penicillin and ampicillin, it was a statistically significant
value (Figure 7).
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4. Discussion

In recent years, the number of listeriosis outbreaks linked to the consumption of contaminated meat
food has increased. The presence of L. monocytogenes in raw meat may be an effect of various factors,
e.g., fecal contamination during evisceration or improper hygiene of employees [27]. Although raw meat
is usually cooked before eating, an insufficient thermal processing may not eliminate L. monocytogenes
from the food, posing a serious health threat for the consumer. Moreover, high incidence of
L. monocytogenes in raw material significantly increases the risk of secondary contamination of working
surfaces and equipment used in the processing plant. In turn, biofilms formed by L. monocytogenes
on working surfaces may contribute in final product contamination. In our studies the prevalence
of L. monocytogenes in tested meat samples was 2.1% (127/6000). The highest number of isolates was
obtained from poultry—64 per 1950 samples (3.3%) followed by beef and pork with 41 per 1966 samples
(2.1%) and 22 per 2084 samples (1.1%), respectively. Also, Pesavento et al. [27] observed higher level of
L. monocytogenes contamination in poultry (39.5%) than in beef (33.3%) and pork (27.3%). The general
meta-analysis of data from 21 European countries showed that L. monocytogenes was found to be
the third most incident pathogen in overall poultry meats [28]. Maung et al. [19] noted that prevalence
of L. monocytogenes in chicken depended on the year of samples analyses and was 53% and 24%, in 2012
and 2017, respectively. According to Filipello et al. [11] poultry and pork appear to be the second most
important source (after dairy products) of human listeriosis cases in Northern Italy. In Gamboa-Marin
et al.’s [29] study, pork meat cuts had high L. monocytogenes prevalence of 33.9%. On the other hand,
Wang et al. [30] found that only 5.5% of chilled pork samples positive for L. monocytogenes. Similar to
our results, Kuan et al. [31] reported the L. monocytogenes prevalence of 33.3% in beef offal from
different wet markets. In turn, from the total of 50 beef meat samples examined by Teixiera et al. [4],
six were confirmed as L. monocytogenes positive (12%). The differences reported in the L. monocytogenes
prevalence in different meats are affected by various factors, e.g., control measures implementation
during the stages of cleaning and disinfection [29].

Antibiotic-resistant (AR) strains of L. monocytogenes are serious health risk associated with food
consumption. Despite relatively high susceptibility to the antimicrobials commonly used in infection
treatment, L. monocytogenes has been recently observed to develop increased tolerance to antimicrobials.
L. monocytogenes antibiotic resistance can result from the acquisition of resistance genes from other
Gram-positive bacteria (e.g., plasmid-mediated transfer), however overuse of antimicrobials in
medicine and agriculture can also negatively affect the drug susceptibility of the pathogen [20,27,32,33].
Moreover, L. monocytogenes cell components and mechanisms involved in the adaptation to stress
conditions occurring in the food-chain (the alternative sigma factor B (σB), two-component signal
transduction systems, efflux pump activity) were suggested to contribute to the increased pathogen
resistance to ampicillin, penicillin, and cephalosporins [32,34]. On the other hand, high sensitivity of
L. monocytogenes to antimicrobials may be due to the origin of these bacteria in the natural environment
where they are not exposed to antibiotics [20].

The results of Maung et al. [19] showed that most L. monocytogenes strains isolated from chicken
meat displayed antimicrobial susceptibility. Also, Oliveira et al. [35] observed 100% of the isolates
were sensitive to most antibiotics tested (except for clindamycin). A high percentage (95%) of strains
sensitive to anti-microbials recommended in Listeria treatment were also reported by Khen et al. [36].
In Gómez et al.’s [37] research, all Listeria strains isolated from ready-to-eat (RTE) meat products and
food-processing environments were highly sensitive to the first-choice antibiotics used in listeriosis
treatment, such as ampicillin. Similarly, Jorgensen et al. [38] noted sensitivity to ampicillin in all (n = 52)
L. monocytogenes isolates obtained from produce handling and processing (PHP) facilities. In our studies
32.5% of strains (39/120) were susceptible to all antibiotics tested and 82.5% (99/120) displayed sensitivity
to ampicillin (Table 1). On the contrary, Carvalho et al. [10] and Sereno et al. [39] detected high level of
resistance to ampicillin in L. monocytogenes isolated from meat and meat processing environment.

A number of studies confirm antimicrobial resistance of L. monocytogenes strains isolated from
meat [19,27,36,37,40,41]. In our research 67.5% (81/120) of L. monocytogenes strains isolated from meat
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showed resistance to at least one of the antibiotics tested (Table 1). Barbuti et al. [42] reported resistance
to various antibiotics, including erythromycin and cotrimoxazole in meat-originating L. monocytogenes.
Cotrimoxazole, an antibiotic successfully used to treat infections caused by L. monocytogenes, proved to
be the least effective against strains isolated in our studies, with (56; 46.7%) isolates resistant (Figure 5).
Despite high sensitivity to cotrimoxazole observed in L. monocytogenes strains from different steps of
a pork production, Sereno et al. [39] found this phenomenon an important concern for public health.

Multi-resistance (multidrug-resistance (MDR); resistance to ≥3 antibiotics) in L. monocytogenes
strains is currently reported to increase. Maung et al. [19] observed MDR in 46.7% (35/75) and
82.6% (19/23) of L. monocytogenes strains isolated from poultry in 2012 and 2017, respectively.
Gómez et al. [37] reported multi-resistance of 2.9% of L. monocytogenes strains isolated from ready-to-eat
(RTE) meat products and food-processing environments. Pesavento et al. [27] found that 51 (30.4%)
of pork-originating strains were resistant to three or more antibiotics. Moreover, they observed
increasing of percentages L. monocytogenes multiresistance. In Wang et al. [30] research 11.5%, 3.85%,
and 3.85% L. monocytogenes isolated from chilled pork strains were resistant three, six, and nine different
antimicrobials, respectively. The results of our analyses showed that 33.3% (40/120) of L. monocytogenes
from different meat revealed MDR and 6.7% (8/120) were resistant to all antimicrobials (Table 1).

Since L. monocytogenes serotypes display various epidemic potential, the analysis of strain serotype
may be important in the control and ensuring microbiological food safety [1]. Although there is no
conclusive evidence for a correlation between the virulence of L. monocytogenes strain and the serotype
they represent [43], some serotypes are much more frequently isolated form listeriosis cases than
others [44]. Among 14 serotypes determined for L. monocytogenes on the basis of 14 somatic (O) and four
flagellar (H) antigens, four of them is of special concern for human health and food industry. The most
of listeriosis are typically caused by 4b, 1/2b, and 1/2c serotypes and 1/2a serotype is the most common
in foods [1,6,45]. It was shown that these serotypes are responsible for over than 95% of the human
listeriosis cases [44]. The results of this work agree with those found by other researchers reporting
a high frequency of the serotype 4b-4d-4e of L. monocytogenes in food industries. Serotype analysis
is not very efficient method to differentiate L. monocytogenes strains isolated from foods and clinical
samples. Because of the genetically heterogeneous nature of L. monocytogenes, serotyping as the primary
characterization in epidemiological surveillance has been widely accepted [46]. Feng et al. [47]
developed a new multiplex PCR assay for rapid detection of new serotype 4h L. monocytogenes.
These results demonstrate that the multiplex PCR with high specificity and sensitivity is applicable for
the rapid detection of L. monocytogenes serotypes. Recently, numerous molecular subtyping techniques
have been developed for the surveillance or tracing the sources of L. monocytogenes, e.g., PFGE [44,48,49].

According to the results of most studies on meat-originating L. monocytogenes serotyping suggests
the dominance of serotype 1/2a. In Wang et al.’s [30] study, the highest percentage (53.8%) of
the L. monocytogenes isolated from pork strains belonged to these serogroups, followed by 1/2b (23.1%)
and 1/2c (23.1%). Similarly, the presence of these three serogroups within L. monocytogenes isolated
from chicken meat were reported by Oliveira et al. [35]. The majority of strains belonged to serovar 1/2a
(87%), while only 13% to remaining 1/2c and 1/2b. Serotype group 1/2a was also the most commonly
isolated (58%) in Khen et al. [36] study on L. monocytogenes in bovine hides and meat. Percentage of
serogroups 4b, 1/2b, and 1/2c were 12%, 10% and 6%, respectively. Maung et al. [19] conducted research
carried out five years apart (2012 and 2017). In 2012 L. monocytogenes strains of the four mostly recovered
from food, animal and human samples serogroups 1/2a (21.5%), 1/2b (73.9%), 1/2c (1.5%), and 4b/4e
(3.1%) were isolated, while in 2017 the presence of only two serotypes 1/2b (51.7%) and 1/2a (48.3%)
was confirmed. Contrary to the aforementioned, our results showed that isolates belonging to serotype
4b-4d-4e were the most numerous group 51 (42.5%). Serogroup 1/2a-3a included 29 strains (24.2%),
1/2b-3b 21 strains (17.5%), and 1/2c-3c 19 strains (15.8%; Figure 6). In Teixeira et al.’s [4] study serotype
4 (4b, 4d or 4e) was also the most prevalent among L. monocytogenes serogroups. Since the serotype 4b
presence in food was linked to serious listeriosis outbreaks, high prevalence in analyzed meat samples
should be considered an alarming epidemiological concern [17,50].
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The results of the research confirmed L. monocytogenes presence in raw poultry, beef, and pork meat.
High prevalence of this pathogen may be a serious problem, especially when linked with antibiotic
resistance and high percentage of serotypes responsible for listeriosis outbreaks. Although the sensitivity
of the L. monocytogenes strains tested in our study to penicillin and ampicillin is not so small, the presence
of ampicillin-resistant strains of serotype 4b-4d-4e in the analyzed samples is a reason for concern,
considering that this serotype is a cause for majority of human listeriosis and ampicillin is a first choice
antibiotic in Listeria-linked infections treatment. In order to the increase in antibiotic resistance in
L. monocytogenes emphasized by many studies and researches, the need for constant surveillance of this
trend is undisputed.
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