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Abstract: IoT sensor networks have an inherent graph structure that can be used to extract graphical
features for improving performance in a variety of prediction tasks. We propose a framework that
represents IoT sensor network data as a graph, extracts graphical features, and applies feature
selection methods to identify the most useful features that are to be used by a classifier for prediction
tasks. We show that a set of generic graph-based features can improve performance of sensor network
predictions without the need for application-specific and task-specific feature engineering. We apply
this approach to three different prediction tasks: activity recognition from motion sensors in a smart
home, demographic prediction from GPS sensor data in a smart phone, and activity recognition from
GPS sensor data in a smart phone. Our approach produced comparable results with most of the
state-of-the-art methods, while maintaining the additional advantage of general applicability to IoT
sensor networks without using sophisticated and application-specific feature generation techniques or
background knowledge. We further investigate the impact of using edge-transition times, categorical
features, different sensor window sizes, and normalization in the smart home domain. We also
consider deep learning approaches, including the Graph Convolutional Network (GCN), for the
elimination of feature engineering in the smart home domain, but our approach provided better
performance in most cases. We conclude that the graphical feature-based framework that is based on
IoT sensor categorization, nodes and edges as features, and feature selection techniques provides
superior results when compared to the non-graph-based features.

Keywords: sensor networks; graph representation; graphical features; feature selection;
activity recognition

1. Introduction

We seek to leverage the inherent graph structure in IoT sensor networks to find a generic
graph representation of sensor network data. We can provide a tool to IoT application builders to
boost prediction task performance if we can build a generic graph-based framework and graphical
features to support different prediction tasks from different IoT sensor network data. Graph-based
approaches have been successful in several IoT applications. For example, George and Shekar [1]
used a graph representation for road navigation to efficiently find the shortest route that may change
with time. Graph-based methods that were applied to activity recognition by Long and Holder [2]
showed uncorrelated errors when compared to non-graph methods, which indicated the potential
for improved performance through the use of a graph representation. Salomon and Tirnauca [3]
learn users’ behavioral patterns while using weighted finite automata by building a time-aggregated
graph from the activity flow of a session (morning, afternoon, evening). They represent each activity
as a node and time spent for a particular activity or the time elapsed between different activities
as edge labels. George et al. [4] proposed Spatio-Temporal Sensor Graphs (STSG) to capture time
dependence of sensor network parameters. They generalized time-aggregated graphs and included
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the probability parameters to represent the stochastic nature of sensor graphs. They illustrated three
case studies of anomaly detection, basic hotspot detection and growing hotspot detection while
utilizing the STSG model. Based on these works, we hypothesize that representing the sensor data as
a graph and providing this graphical input to graph mining algorithms to identify new features in
the data can improve the performance of learning methods in recognition and prediction tasks that
are related to sensor networks. We develop a Graphical Feature-based Framework (GFF) to represent
and analyze IoT sensor network data. This framework collects data from sensor networks, uses graph
structure to represent movement-related data, and employs selected graphical features to improve the
corresponding prediction tasks. As part of this framework, the sensors are represented as nodes in
a graph, and consecutive triggering of sensors are represented as edges in the graph. Subsequently,
graphical features, such as existence of nodes, existence of edges, count of nodes, and count of edges,
are extracted from the graph to construct a feature set. This graphical feature set is added to the typical
feature set of the IoT application. This augmented feature set is supplied to a classifier to learn a model
to perform the prediction task for the IoT application.

We applied the GFF to three different IoT domains with different sensors and different prediction
tasks. The first domain is activity recognition from smart home motion sensors, the second domain is
demographic information prediction from smart phone GPS sensors, and the third domain is activity
recognition from smart phone GPS sensors. Our graphical feature-based approach improved the
classification accuracy for the first two domains as compared to most of the benchmarks in each
domain [5,6]. For the third domain, we use graphical features along with typical non-graphical features
that are based on sensor data, such as accelerometer and gyroscope, to predict activities. Experimental
results show that the inclusion of GPS data as node features significantly improves the performance
over other typical non-graphical features. Analyzing the confusion matrix shows that the addition of
edges may improve the performance for some activities. Using only selected features has the potential
to improve the performance with the addition of edges [7]. In this article, along with graphical features
used in our above-mentioned work, we propose and evaluate additional graphical features as part
of our framework. Here, we assess the use of different window sizes, adding edge transition time,
categorization of nodes and edges, normalization of nodes and edges, application of different classifiers,
and impact on different evaluation measures for the smart home domain. We also evaluate the use of
deep learning and Graph Convolutional Networks to classify activities in the smart home domain in
order to compare our framework with these deep learning approaches.

In Section 2, we describe related work that was conducted in the three domains of IoT applications
to which we applied our GFF. In Section 3, we describe details of each step in the graphical feature-based
method that was designed for IoT applications. In Section 4, we summarize the performance of
the GFF in three domains. Afterwards, we describe the implementation details of varying window
sizes, normalization of non-graphical and graphical features, using additional features, such as edge
transition time and categorical features, use of Linear Support Vector Machine (SVM) and Random
Forest as the classifier, and the application of deep learning approaches in the smart home domain. We
present the results and the impact of these experiments on the performance of the prediction task. In
Section 5, we conclude with a summary of our findings and suggest the best practices for applying
graphical features. In Section 6, we discuss the future directions for using graph-based representations
for IoT applications.

2. Related Work

In this section, we discuss previous work conducted in the three domains of activity recognition
from smart home sensors, demographic prediction from mobile phone sensors, and activity recognition
from smart phone sensors. Researchers have approached the problem of activity recognition from
motion sensors using various methods, such as Bayes Belief Networks, Artificial Neural Networks,
Sequential Minimal Optimization, LogitBoost Ensemble [8], Naive Bayes, Hidden Markov Models [9,10],
and Conditional Random Fields [11]. Extensive research has been conducted regarding improving
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activity recognition performance while using non-graphical features such as motion sensor triggering;
temporal information during the activity, such as time of day, day of week, whether the day is a
weekend or not; activity length in time; previous/next activity; number of kinds of motion sensors
involved; total number of times motion sensor events triggered; and, energy consumption for an
activity [8,11].

Aicha et al. [12] detected the presence of multiple people or visits while using the number of
sensor transitions that are not topologically connected. Two sensors are considered to be topologically
connected if one person can activate those two sensors consecutively without activating another sensor.
They also considered the number of sensor transitions where at least one of the sensors is a door sensor.
To handle these two heterogeneous information streams with Markov Modulated Poison Process
(MMPP), the authors introduced a variant of the process, called Markov Modulated Multidimensional
Poison Process (M3P2), which performed better than MMPP. Their features are similar to our graphical
features in regard to using sensor transitions. The difference is that we are considering any sensor
transitions that occur in the data, regardless of topological connection and the types of sensors involved.
Our model is applicable to multiple applications while using different kinds of sensors and prediction
tasks. The model that was proposed by Aicha et al. [12] needs to be evaluated for its ability to generalize
to other sensor applications and other prediction tasks. In their model, two variables representing the
counts of two kinds of sensor transitions are represented as states of time. In our approach, we used
the sensor transition times as additional edge features and directly feed these features to classifiers.

Mo et al. [13] used both raw data from all available sensors and applications in the mobile phone,
computed tens of thousands of features through a complicated feature engineering process, designed
specific features for specific tasks, and used background information, such as task-interdependency, to
obtain a high performance. Nadeem et al. [14] used SVM and Random Forest with a bagging scheme
over mean, variance, frequency, and many other measures to produce thousands of features that employ
call log, visited GSM cells, visited Bluetooth devices, visited wireless LAN devices, accelerometer
data, and other information. Brdar et al. [15] represented the data as a graph, where each node is a
user, and used k-nearest-neighbor with feature selection to achieve better performance for predicting
job-types. Dong et al. [16] predict the gender and age-group from call log and SMS data based on
the relationship among populations of different genders and age groups. Ying et al. [17] address
the imbalance class problem in the data through the use of multi-level classification and compute
features that are related to users’ behavior and environment. Demographics predictions also have
been done while using blogger’s writing style [18] and web-page click through data [19]. In “Limits of
Predictability in Human Mobility” [20], the findings show that users’ daily mobility has a regularity
and it has 93% predictability on average. Hence, it might be possible to build accurate predictive
models that are dependent on human mobility. Montjoye et al. [21] emphasize the privacy concerns of
an individual’s mobility due to the evidence that the uniqueness of human mobility traces is high and
that mobility datasets can be re-identified while only using a few outside locations. Our GFF uses
more generalized information of location categories, avoids complicated feature engineering, and uses
graphical features that are only derived from GPS sensor data. We discuss more detailed comparisons
to related works in the Results section.

Bouchard et al. [22] used raw latitude and longitude as the features to improve activity recognition
performance and also discussed the potential of distance, position, shape, and gesture as features.
Aminikhanghahi et al. [23] developed an approach, called Thyme, for adapting prompt timing that
is based on the context of the user’s activity. Liao et al. [24] attempted to recognize activities from
GPS traces through training a conditional random field to iteratively re-estimate significant places
and activity labels. In our work, we add graphical features to the typical features that are used in
this area and evaluate the potential of obtaining improved performance, along with having a general
framework for IoT applications.

Recently, combining symbolic representations of domain knowledge and data-driven learning
approaches has approached the activity recognition task. Yordanova et al. [25] proposed a Computational
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Causal Behaviour Model (CCBM) that is based on the principle of Computational State Space Models
(CSSMs). They developed these models to address noisy sensor observations and the complications
caused by behavior complexity and variability that are observed in real settings. They applied this
approach to a sensor dataset that was collected by monitoring unscripted kitchen activities in order to
detect eating behavior and provide indicators of health status. The performance was comparable to
Hidden Markov Models and decision tree models. Olaru and Florea [26] used context graphs, context
patterns, and continuous, persistent context matching to recognize context in ambient assisted living
situations viewed as a set of associations between different concepts. Hao et al. [27] proposed a real-time
inference engine while using formal concept analysis to graphically represent the concepts that can be
used to improve the recognition of sequential, interleaved, and concurrent human activity patterns.
Chen et al. [28] proposed an approach to address the cold-start, reusability, and incompleteness of
data-driven activity modeling. They applied an ontology-based hybrid approach in three phases.
In the first phase, the cold-start problem is resolved by creating seed activity models that are based on
the domain knowledge that most activities of daily living (ADLs) are daily routines and normally take
place at a specific time, location, and space. In the second phase, activity models are created in two
levels of abstraction starting with generic coarse-grained activity models that are applicable for all
users and then iteratively creating individual activity models, thus solving the reusability problem.
In the third phase, the incompleteness problem is resolved by using learned activity patterns to update
the activity models. Ye et al. [29] conducted similar work of applying a hybrid approach, who first use
a general ontology model to represent domain knowledge across different environments and users.
They then combine learning techniques with ontological semantics for unsupervised discovery of
patterns for each individual’s daily activities.

In previous work, we proposed a graph-based representation of sensor data from which we
extract graphical features that can improve the performance of prediction tasks for sensor networks,
regardless of prediction tasks and domains [5–7]. We applied this concept to three different domains.
Our graphical feature-based approach outperformed four previously explored graph-based approaches
for activity recognition from motion sensor data in smart homes in [2]: Graph SVM, Subgraph SVM,
Nearest Neighbor, and an ensemble of these three. The graphical features also outperformed three
widely used baseline approaches in this domain: Naïve Bayes, Hidden Markov Model, and Conditional
Random Field for the Cairo, Aruba, and Tulum smart home datasets [5]. In the second domain on
demographic prediction, we used GPS location data from the Nokia Mobile Data Challenge 2012
dataset [30] to perform the classification task of demographic attributes, in particular classifying gender
(two classes), age group (eight classes), and job type (eight classes). Graphical features or a combination
of graphical and non-graphical features performed significantly better than only non-graphical features
for all of the prediction tasks. In the third domain, activity prediction from smart phone data, the
addition of GPS location category features to typical smart phone sensor-based features provided the
best performance.

More recently, deep learning has been applied to the activity recognition task that is based on
sensor data [31]. Like our approach, deep learning avoids the need for manual feature engineering.
However, deep learning approaches can be overconfident in their classification, even for incorrect
classifications, and information regarding the user’s context is not easily extracted from the learned
network. To address these issues, Rueda et al. [32] proposed a hybrid activity recognition architecture,
called Hybrid Computational Causal Behaviour Model (HCCBM), which combines deep learning with
symbolic models, namely, CSSMs. However, deep learning has not been applied to our graph-based
representation of sensor data. The Graph Convolutional Network (GCN) [33] is a deep learning
approach to classification of graphs, and so it can be applied to our setting to evaluate a deep learning
alternative to our GFF. The Results section presents an empirical comparison of the approaches.



Sensors 2019, 19, 3250 5 of 21

3. Graphical Features-Based Framework

We propose a Graphical Feature-based Framework (GFF), where we represent one type of
sensor data in a graph, extract graphical features, apply feature selection techniques, and then apply
classification methods for a prediction task. Figure 1 shows the workflow for a particular prediction
task from an IoT sensor network that is based on the GFF. We describe the details of each step of the
GFF in Sections 3.1–3.3. The main contribution of this article is proposing and evaluating additional
graphical features as part of the GFF. We describe these additional features in Section 3.4. In Sections 3.5
and 3.6, we briefly discuss the deep learning approach and the GCN to compare with our graphical
feature-based approach.
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Figure 1. The Graphical Feature-based Framework (GFF) for IoT sensor network prediction tasks.

3.1. Sensor Categorization and Graph Representation

We consider each sensor in the IoT application, map the sensor to a sensor category if that is
provided and available, and represent it as a node in the graph for representing IoT sensor network
data as a graph. We construct a graph for each labeled instance of the IoT application. When two
consecutive sensors are turned on during a labeled task, an undirected edge is added between the two
corresponding nodes in the graph. Two sensors can be consecutively triggered multiple times, that is,
an edge can be triggered multiple times. We store this count of multiple edges being triggered as edge
attributes. The same sensor can be consecutively triggered in some applications, and hence we allow
self-loops in our graph representation to capture this information.

We consider motion sensors as nodes for the task of activity recognition in the smart home. Each
motion sensor can be mapped to a room type such as bedroom, kitchen, dining room, and living room,
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which are used as the sensor’s category [5]. For the tasks of demographic prediction [6] and activity
recognition from smart phone sensors [7], we consider location data from the GPS of mobile phones
and categorize the locations visited. We represent each location category as a node in the graph. We
find the nodes in the graph for the corresponding location categories and add an undirected edge
between the two nodes whenever the participant moves from one location to another location. In this
way, we create a graph for each user in the demographic prediction task and a graph for each activity
in the activity recognition task. We show examples of graph representations generated from motion
sensor data and from GPS data in Figure 2.
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Figure 2. Example graph representations: (a) graph representation for activity ‘Breakfast’ in testbed
‘Cairo’; and, (b) selected edges that are triggered for a participant of age 22–27 in the Nokia
smartphone dataset.

3.2. Graphical Feature Extraction

We construct one graph for each labeled instance in the sensor network data. We construct one
instance per user where we extract the existence of nodes and edges from the user’s graph as features
for the demographic prediction problem. For the activity recognition problem, we construct one graph
instance per activity. We use the list of all the nodes and edges triggered in all graphs as the feature set.
Initially, three different kinds of graphical features have been used: existence of nodes, existence of
edges, and existence of both nodes and edges. For the existence of nodes experiment, our feature set
consists of all unique sensor categories that are represented as nodes in the graphs across all instances.
If a node is present in the graph for a user, we set the value to ‘ON’ for that feature in the corresponding
instance; otherwise, we set the value to ‘OFF’. For the existence of edge experiment, we compute all
the unique edges triggered by all instances in their sensor-trajectory graph. We use this list of all edges
as the feature set for the existence of edge experiment. To construct an instance, we consider the graph
for each instance and check the existence of the edges. If the edge exists, then we mark the value as
‘ON’; otherwise, ‘OFF’. In the third experiment, we combined existence of both nodes and edges that
we used as features in the previous two experiments as the combined feature set. We also computed
how many times each node has been turned on during an activity and used these counts as features.
We store the number of times that each edge is triggered as edge attributes and use these edge counts
as graphical features. We attempted to introduce additional transitional features for the demographic
prediction problem. We save the types of sensors as node attributes, and we denote the time used to
move from one sensor to another sensor as the edge transition time and save it as an edge attribute.
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We use these node and edge attributes as additional graphical features and assess their impact on
prediction task performance.

3.3. Feature Selection and Classification

The number of features may be large when compared to the number of instances since we are
using nodes and edges triggered across all graphs as our feature set. Feature selection is employed
for reducing the number of features to avoid overfitting in this condition. In the literature, there are
two main approaches for choosing useful and relevant attributes: filtering and wrapper [34]. The
filtering approach ranks each individual feature based on different measures, such as information gain,
correlation, gain ratio, and symmetrical uncertainty. In the wrapper approach, subsets of the feature
set are checked with a classification algorithm, and the subset that performs the best is provided as the
optimal and selected feature subset. When the size of the feature set is large with thousands of features,
the wrapper approach might be computationally expensive. For a large number of features, a hybrid
approach is used, where a feature set of reduced size is constructed based on the filtering approach,
and then the wrapper approach is applied to the reduced feature set to find an optimal feature subset.
We then apply an appropriate classification technique on this optimally selected set of features. For the
classifiers, we considered the Support Vector Machine and different tree-based classifiers. We describe
the details of the feature selection algorithms and the classification techniques that provided the best
result for each application in the Results section.

3.4. Additional Features

We experimented with additional features: normalized node counts and edge counts, edge
transition times. We present the results of applying these additional features to the smart home domain.
We also show the result of using sensor type and room type as categorical information for smart home
sensors. We performed an experiment in the smart home domain to evaluate the impact of different
window sizes on the use of graphical features while classifying activities. The results from these
experiments are presented in the Results section.

3.5. Deep Learning Approach

We explore Deep Learning (DL) approaches as alternatives to the GFF, due to DL’s ability to
construct relevant features without user intervention. The advantage of using a DL network as a
classifier is that it automatically identifies relevant features and avoids the need for users to construct
handcrafted features. Using DL as a classifier may also avoid the need for adding graphical features if
the DL classifier can internally construct these features. We provide raw sensor data and graphical
features to a DL classifier to experiment with this. Afterwards, we compare the results with our GFF.

3.6. Graph Convolutional Network (GCN) Approach

We also explore applying a Graph Convolutional Network (GCN) to activity prediction in the
smart home. Under the umbrella of GCNs, a large number of methods have been developed to re-define
convolution for graph data with the first prominent research that was presented in Bruna et al. [35].
Graph based neural networks (GNNs) have been applied in the areas of computer vision, recommender
systems, forecasting in traffic networks, and molecular chemistry [33]. We follow the method that
was developed by Zhang et al. [36], called Deep Graph Convolutional Neural Network (DGCNN),
which directly takes a graph as input to learn a classification function and thus avoids the need of
transforming the graphs to vectors. This method performed better than the existing methods on many
benchmark datasets. We apply DGCNN to the graphs generated from sensor data in the smart home
domain. Subsequently, we compare the results with our GFF.
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4. Results

Here, we present results on several variations of the Graphical Feature-based Framework (GFF).
These variations include using different window sizes over the sensor data, normalizing feature values,
adding additional features, and using different classifiers. We also show the results on using deep
learning for activity prediction mainly to compare the feature generation strengths of deep learning
networks for graphs to our graph-based features.

4.1. Window-Based Approach with Graphical Features

In previous experiments, we used an activity as an instance for constructing graphs and extracting
nodes and edges. Here, we segment the duration of an activity into smaller time windows to see the
effect of window size on the accuracy of activity recognition. In a real-world scenario, we may not
know when an activity instance begins and ends, so we are more likely to collect sensor data over a
fixed-size time window. We divide each activity into segments based on a fixed window size and then
use these smaller segments as instances to construct graphs. We compute the minimum, maximum,
and average window size for each activity for each dataset to decide the range of window sizes to be
varied. These statistics are presented in Tables 1–3.

Table 1. Aruba Dataset: minimum, maximum, and average window length of each activity.

Activity Minimum Maximum Average

Respirate 97 1493 512
Enter home 1 54 5

Work 50 7016 1024
Eating 14 4167 608

Housekeeping 92 5399 1216
Relax 56 15,303 2009

Wash dishes 34 2200 428
Sleeping 30 38,783 14,417

Leave home 1 109 3
Bed to toilet 22 520 163

Meal preparation 7 19,573 469

Table 2. Cairo Dataset: minimum, maximum, and average window length of each activity.

Activity Minimum Maximum Average

Night wandering 79 1701 298
Medicine 27 398 82
Laundry 225 807 468

Work 421 5613 2029
Bed 3 2517 659

Lunch 611 5152 1920
Dinner 1000 6236 2757

Bed to toilet 91 703 238
Leave home 3 201 20

Breakfast 551 2887 1735
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Table 3. Tulum Dataset: minimum, maximum, and average window length of each activity.

Activity Minimum Maximum Average

Bathing 1 53,360 270
Wash dishes 1 828 119

Personal hygiene 1 2343 138
Leave home 1 1348 21
Enter home 1 54,099 477

R1 sleeping in bed 202 123,772 32,463
R2 sleeping in bed 1000 123,776 34,490
Work bedroom 1 1 14,011 548

Work table 1 5100 147
Watch TV 1 10,100 362

Meal preparation 1 64,968 169
Yoga 26 3302 827

Eating 2 11,156 404
Bed toilet transition 1 800 79

Work bedroom 2 1 27,328 550
Work living room 1 12,728 584

We vary the window sizes for each dataset from five seconds to the average window size for all
activities (Aruba 1895 seconds, Cairo 1020 seconds, Tulum 4478 seconds). We apply linear support
vector machine classification (LinearSVC from Scikit Learn [37]) with 10-fold cross validation and the
one-vs-rest method for this multi-class classification task. Accuracy for activity recognition is shown
for increasing the window sizes for dataset ‘Aruba’ in Figure 3, for dataset ‘Cairo’ in Figure 4, and
for dataset ‘Tulum’ in Figure 5. In these figures, ‘full activity’ indicates the use of the entire activity
for computation of graphical features instead of segmenting the activities into windows of specific
time duration. ‘Full Activity’ is depicted using a horizontal line for each case of nodes, edges, and
nodes+edges.
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Figure 3. Accuracy of activity recognition for varying window sizes for testbed ‘Aruba’. ‘nodes’, ‘edges’
and ‘nodes+edges’ indicate the types of features extracted from the graph: node-based features only,
edge-based features only, and both node and edge-based features, respectively. ‘full activity’ means the
window size is set to the whole duration for an activity for building the graph.
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From these plots we observe that accuracy increases with increasing window size for all types
of features for Tulum and Cairo. For Aruba, the highest accuracy is observed at window size 500,
and accuracy decreases with larger window sizes until full activity. For Aruba and Tulum datasets,
node features performed better than edge features, but the combination of nodes and edges performed
the best for all of the window sizes. Edge features performed low for small window sizes near five
seconds, but the performance increased faster with the increase in window size. This indicates that
larger window sizes will contain more edge transitions that help to improve prediction performance.
For the Cairo dataset, accuracy in general increases with window size for all types of features, but
for node and edge features, accuracy sometimes decreases with increasing window size. For some
window sizes, edges performed better, and for some window sizes, nodes performed better, as depicted
in Figure 4. However, the combination of nodes and edges performed better than nodes and edges
separately as features. Cairo accuracies using the combination of nodes and edges are increasing for all
increasing window sizes, with one exception at window size of 900 s. We can conclude from the plots
in Figures 3–5 that either edge counts or the combination of node and edge counts always provides
better performance than node and edge separately, regardless of window size.

When we are using varying window sizes from five seconds to average activity duration, there
are cases when window sizes for some instances of some activities are smaller than the current window
size under evaluation. In this case, we used the whole activity as the training or test instance. In a
real-world scenario, the label of the test instances and their window length will be unknown. As a



Sensors 2019, 19, 3250 11 of 21

result, we have to use a window size W for all test instances. There is extra irrelevant data in the test
instance if the test instance we are trying to classify is an activity whose duration is D in the training
set, and D < W, which may confuse the learning model and may decrease performance. In the same
way, if D > W, then some relevant data is excluded from the test instance. This experiment of varying
window sizes can be re-designed using a fixed window size of W for all test instances to address these
possibilities. Afterwards, we can observe how the performance of basic features changes with the
change of window size and how adding graphical features to basic features improves for different
window sizes. This redesigned experiment will be pursued in future work.

4.2. Normalization

The number of nodes and edges triggered may vary with varying duration of different activities.
Thus, we considered normalizing the graphical features (node counts, edge counts, and total number of
nodes and edges) with respect to the total number of sensor events that occurred during each activity.
Table 4 and Figure 6 show the impact of normalized graphical features on the accuracy of activity
prediction. We used linear SVM from Scikit-Learn with default parameters, including one vs. rest
as the method for multi-class classification. The combination of nodes and edges performed the best
for all three testbeds. For Aruba, normalized features provide the best result; for Tulum and Cairo,
unnormalized features provide the best result. Node normalization significantly improved the accuracy
in Aruba and slightly in Tulum. Edge normalization improved accuracy in Aruba slightly and in
Tulum significantly. Node and edge normalization both decreased performance in Cairo. Normalizing
the combination of node-edge increased accuracy slightly in Aruba and decreased accuracy both in
Tulum and Cairo. In all tables the best performers are in bold.

Table 4. Accuracy with Normalized vs. Unnormalized Features.

Test Bed
Node Accuracy Edge Accuracy Node Edge Accuracy

Un-Norm Norm Un-Norm Norm Un-Norm Norm

Aruba 81.03 92.90 92.13 93.11 92.03 93.41
Tulum 71.51 72.62 67.95 71.40 76.34 73.74
Cairo 73.17 72.00 74.17 73.50 76.50 74.83
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According to a paired t-test with 95% confidence, all of the higher-accuracy results for Aruba
are statistically significant. For Tulum and Cairo, unnormalized nodes+edges perform significantly
better than the nodes and edges. Normalized node-edges perform significantly better than the nodes
and edges for both of these testbeds. However, the performance difference between unnormalized
nodes+edges and normalized nodes+edges is not significant in Cairo and Tulum.

Models that are based on counts of nodes and counts of edges may be susceptible to imbalanced
datasets. These counts may vary depending on the duration of activities. We experimented using
normalization to handle these cases. For an imbalanced dataset, the variance in the counts will be
lower for activities with higher frequency in the data when these features are discriminating. Variance
can be higher for activities with lower frequency in the data. Normalization of these two features may
help in reducing the difference in variances among different activities with varying frequencies, and
thus provide improved performance for imbalanced datasets.

4.3. Random Forest Classifier on Smart Home Domain

We also considered using a different classifier as the base classifier in the smart home domain.
Table 5 presents the performance comparisons between Support Vector Machine (SVM) and Random
Forest (RF) applied to three sets of unnormalized transitional features for each testbed. The best
performance is from RF with node-edge in Aruba, from SVM with node-edge in Tulum, and from RF
with node in Cairo.

Table 5. Accuracy (Unnormalized features) Support Vector Machine (SVM) vs. Random Forest (RF).

Test Bed
Node Accuracy Edge Accuracy Node Edge Accuracy

SVM RF SVM RF SVM RF

Aruba 81.03 92.91 92.13 93.06 92.03 93.07
Tulum 71.51 72.45 67.97 70.53 76.34 72.46
Cairo 73.17 79.17 74.17 75.33 76.5 77.67

We performed paired t-test for entries in Table 5 with 95% confidence. For Aruba, node-edge with
Random Forest performed significantly better than the node only and edge only with Random Forest.
Node-edge with Random Forest performance is significantly better than node-edge with Linear SVM.
For Tulum, the performance difference between Linear SVM with node-edge and Random Forest with
node-edge is not statistically significant. For Cairo, RF with nodes performs significantly better than
RF with edges or node-edges, and RF with nodes performs significantly better than the Linear SVM
with nodes.

4.4. Edge Transition Times as Additional Features

In this experiment, we consider the effect on performance by including the time that is taken
to traverse an edge. Edge transition time is the time that is spent to arrive at the second node of
an edge after triggering the first node. We compute this transition time for each edge, store it as an
edge attribute in the graph, and use this information as an additional feature, along with edge count
for each edge. Each edge can be triggered multiple times in an activity graph, resulting in a list of
varying transition times. We use the average of these transition times as the feature value for each
edge transition time. Table 6 shows the accuracy after adding transition time to the feature list for
the three testbeds: Aruba, Tulum, and Cairo. Node-edge features performed the best for Aruba and
Tulum. For Cairo, node is the best performer, indicating that adding edge transition times reduced the
performance of graphical features in the case of Cairo. Performing a paired t-test on the results of this
table show that edge and node-edge performance is significantly better than node performance for
Aruba. For Tulum, node-edge performance is significantly better than both node and edge. There are
no significant differences in the performance among the graphical features in Cairo. These results after
adding edge transition time did not improve upon our best result so far.
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Table 6. Accuracy with Edge Transition Time as Additional Feature.

Test Bed Node Edge Node Edge

Aruba 89.04 91.76 91.80
Tulum 72.01 67.99 73.38
Cairo 73.67 66.17 65.67

Table 7 shows the number of instances, nodes, edges, and combination of nodes and edges.
The number of edges doubled due to adding transition time for each edge. Accordingly, we next
considered the use of feature selection to see whether the use of only selected features improves
performance. We used the SelectKBest feature selection method to select the k most important features
based on the mutual information criteria [38–40]. We varied the value of k from 10 to the maximum
number of features for each testbed. We provide this range of possible values to GridSearchCV in
Scikit-Learn that conducts an exhaustive search over the specified parameter values of an estimator.
The parameters of the estimator are optimized by cross-validated grid-search over a parameter grid [37].
The parameters selected are those that maximize the score of the left-out data while using accuracy as
the score. We separate each testbed data into 67% training and 33% testing. Subsequently, we provide
the training set to GridSearchCV to select the best value for k and to find a fit with the Linear SVM
and Random Forest classifiers. We use the optimized k value and classifier to classify the testing data.
Table 8 presents accuracy for this prediction task while using Linear SVM as the classifier.

Table 7. Dimension of Feature Matrices with Edge Transition Time as Additional Features.

Test Bed Instances Nodes Edges Nodes + Edges

Aruba 6477 34 976 1010
Tulum 12635 31 972 1003
Cairo 600 27 722 749

We observe that Node-Edge provides the best performance for Aruba and Tulum with linear SVM
and with transition times as additional features. For Cairo, Node is the best performing features in this
case where edge transition times are used. We observe that a mix of node counts, edge counts, and
average edge transition times are selected as the best features for the three test beds.

Table 8. Accuracy with Selected Edge Transition Time and Linear SVM.

Test Bed Node Edge Node Edge

Aruba 89.71 91.16 91.39
Tulum 72.01 68.82 72.69
Cairo 74.75 69.19 61.62

With Random Forest as the classifier, Edge performed best for Aruba, and Node performed best
for Tulum and Cairo. Table 9 presents the results for accuracy.

Table 9. Accuracy with Selected Edge Transition Time and Random Forest.

Test Bed Node Edge Node Edge

Aruba 92.70 93.59 93.26
Tulum 72.13 69.21 71.56
Cairo 78.28 74.24 73.23

Table 5 shows the accuracies before adding edge transition time. Statistical significance testing
could not be easily done, given the difference in experimental settings, but comparing the above results
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with this previous result indicates that the best result is without using edge transition time for Tulum
and Cairo. However, for Aruba, adding edge transition time and using Random Forest as the classifier
provides slightly better accuracy.

4.5. Categorical Features

In this section, we add other types of sensors as nodes along with motion sensors. We add
transitions between these different types of sensors as edges. We assign a room type to each sensor,
add room types as node attributes, and use room types and transition between room types as the
features. Among the three testbeds, only Aruba has door sensors. After adding door sensors, accuracy
using nodes significantly improved, accuracy using edge and node-edge improved slightly. Table 10
presents this result.

Table 10. Accuracy Before and After Adding Door Sensors with Motion Sensors for “Aruba”.

Test Bed Node Edge Node Edge

Motion Sensors 81.03 92.13 92.03
Motion and Door Sensors (Linear SVM) 89.49 92.62 92.87

Motion and Door Sensors (Random Forest) 93.07 93.27 93.42

All of the sensors deployed in a smart home can be grouped according to their locations in the
residence. Motion and door sensors located in bedrooms, bathrooms, kitchen, dining room, hallways,
and living room can be mapped to the corresponding room type. We store room type as a node
attribute while constructing an activity graph. Instead of using individual sensors as nodes, we use
their room types as nodes and transitions between room types as edges. We manually create the
mapping between sensors and room types from the apartment layout and provide the map to the
feature extraction algorithm.

Table 11 shows the accuracy using room types to create an activity graph and nodes and edges
as features. We observe that the combination of nodes and edges provided the best accuracy for all
test beds.

Table 11. Accuracy after Mapping Sensors to Room Type.

Test Bed Node Edge Node Edge

Aruba 92.73 92.65 92.81
Tulum 60.42 60.81 61.98
Cairo 73.00 75.17 76.50

Next, we add nodes and edges that are related to room types as additional features to our previous
motion and door sensor-based graphical features. Tables 12 and 13 present accuracies while using
these additional features with Linear SVM and Random Forest as classifiers, respectively. Edge or
the combination of nodes and edges performed the best for all three testbeds and for both classifiers.
Performing a paired t-test with 95% confidence on the data for Table 12 shows that, for Aruba, both edge
and node-edges perform significantly better than only nodes. However, the performance difference
between edges and node-edges is not statistically significant. For Tulum, the node-edges perform
significantly better than only nodes and only edges. For Cairo, all results are statistically significant.
Conducting a paired t-test on the data for Table 13 demonstrates that node-edge performs significantly
better than only nodes or only edges for Aruba. For Cairo, the node-edge performs significantly better
than edges, but the performance difference between nodes and node-edge is not significant. For Tulum,
edges perform significantly better than node-edges, but the performance difference between nodes
and edges are not significant. When comparing with the previous best result shown in Table 5, for
Aruba, performance slightly improved after adding room type features; for Tulum, accuracy decreased
after adding room type; and for Cairo, adding room type did not affect accuracy.
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Table 12. Accuracy after Adding Mapped Room Type to Motion Sensors (Linear SVM).

Test Bed Node Edge Node Edge

Aruba 89.19 92.76 92.47
Tulum 71.95 68.25 75.56
Cairo 71.50 74.33 74.67

Table 13. Accuracy after Adding Mapped Room Type to Motion Sensors (RF).

Test Bed Node Edge Node Edge

Aruba 93.05 93.22 93.53
Tulum 72.49 70.53 72.60
Cairo 78.00 79.17 77.50

Raw sensor information, such as GPS coordinates, can be too specific for learning algorithms in
sensor applications. Mapping raw sensor information to categories (e.g., mapping GPS to location
categories, such as coffee shop, office, home, etc.) improved the accuracy for prediction tasks compared
to raw sensor information. Mapping motion sensor data in a smart home to room type information,
such as bedroom, living room, kitchen, etc., and then computing graphical features on this categorized
sensor information, further improves the performance of prediction tasks for single resident apartments.
IoT practitioners who will use the GFF can supply mapping information from sensor id to sensor type.

We conclude that using the combination of nodes and edges as features improves the activity
recognition performance in most cases when compared to nodes or edges only. Adding sensor types
that are related to movement such as door sensors along with motion sensors improved the recognition
accuracy. For a single resident apartment, such as Aruba, feature extraction using an activity window
size of less than the average window size showed the best performance instead of using full activity
time. Graphical feature extraction using full-activity as the window size provided the best performance
for apartments with multiple residents, like Cairo and Tulum. In the case of single resident apartments,
like Aruba, adding edge transition time combined with a feature selection method improved the
accuracy of activity recognition. Adding edge transition time did not improve performance in the case
of multi-resident apartments, such as Cairo and Tulum.

4.6. Deep Learning Approach

In these experiments, we apply a deep learning approach to activity recognition in the smart
home domain. We used Keras [41], which is a high-level neural network API that is built on top of
TensorFlow [42], which is an open source platform for machine learning. We used Google Collaboratory
cloud service to create and train the neural net with GPU support. We created a basic sequential neural
network of three dense layers. ‘Dense’ indicates fully connected layers where each node in the next
layer is connected to all nodes in the previous layer. We conduct two experiments with existence of
graphical features and count of graphical features as inputs to the neural network. The input layer
contains 256 nodes and the hidden layer contains 128 nodes. The output layer contains one node
for each activity. The hidden layer uses ReLU as the activation function and the output layer uses
softmax as the activation function. We used ‘adam’ as the optimizer, ‘sparse categorical crossentropy’
as the loss function, and ‘accuracy’ as the metric. We conducted training for 30 epochs while using
the train-test separation as the evaluation method with 70% data in the training set. Table 14 shows
average accuracy on the test set for the three test-beds when we provide existence of nodes, edges, and
combination of nodes and edges as inputs to the three-layer neural network. We present the accuracies
in Table 15 resulting from the same neural network when we provide counts of nodes, edges, and
combination of nodes and edges as inputs.
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Table 14. Accuracy from Deep Learning (DL) approach with input of existence of graphical features.

Testbeds Nodes Edges Nodes + Edges

Aruba 91.87 92.74 92.49
Cairo 62.22 67.22 67.22
Tulum 69.18 69.82 71.35

Table 15. Accuracy from DL approach with input of count of graphical features.

Testbeds Nodes Edges Nodes + Edges

Aruba 93.52 93.36 92.49
Cairo 65.56 73.33 72.78
Tulum 73.8 74.09 72.66

We observe from the above results that edges or node-edge combination work better than only
nodes for the DL approach for most of the cases, except for the single-resident apartment Aruba with
count features. For Aruba, nodes performed the best with the DL approach. Count features performed
better when compared to existence features for the DL approach, similar to the non-DL approach with
graphical features. In Table 16, we present the best results from graphical features and the combination
of features and algorithm that provided the best result in our GFF approach. Statistical significance
testing could not be easily done, given the different in experimental settings, but comparing these
performances with the DL accuracies in Table 15, we observe that graphical features perform similar to
the DL network for single resident apartment Aruba. The graphical features performed better than the
DL network for the multi-resident apartments Cairo and Tulum.

Table 16. Best results from GFF.

Testbeds Accuracy Features + Algorithms for the Best Result

Aruba 93.53 Nodes + edges + doors-room types as additional features + Random Forest
Tulum 76.34 Nodes + edges + Linear SVM
Cairo 79.17 Nodes + Random Forest

4.7. Graph Convolutional Network (GCN) Approach

We used the Graph Convolutional Neural Network (GCNN) that was developed by Zhang et al.
in order to test the ability of deep learning to classify our graph representation of activities directly [36].
We generated the graphs for each test bed and provided those to the GCNN tool that trains the neural
net for 500 epochs. We use the train and test separation method as the evaluation method with 70%
data in the training set. We report the test set accuracy on the 500th epoch. The GCNN tool also has an
option to take continuous node attributes as inputs along with node and edge information. Here, we
conduct two different experiments: (1) provide input graphs with nodes and edges information and (2)
provide input graphs with nodes, edges, and node attributes indicating the count of how many times
each node is triggered. We present the results of these two experiments in Tables 17 and 18.

Table 17. Graph inputs with only existence of node and edges.

Test Beds Accuracy

Aruba 70.56
Cairo 33.33
Tulum 21.11
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Table 18. Graph inputs with nodes, edges and count of nodes triggered as node attributes.

Test Beds Accuracy

Aruba 35.00
Cairo 36.66
Tulum 22.32

We observe from Tables 17 and 18 that GCNN with node count as attributes performs better than
GCNN with existence of nodes and edges for multi-resident apartments Cairo and Tulum, but GCNN
with node count performs worse for single resident apartment Aruba. When comparing with the best
results from the GFF, as shown in Table 16, we observe that the GFF performs better than GCNN.

5. Conclusions

We studied and assessed the use of graph representations and graphical features in IoT sensor
networks to improve the performance on prediction tasks. We proposed a graphical feature-based
framework (GFF) to apply to sensor network data. The purpose of the construction and use of this kind
of framework is multi-fold. First, the framework leverages inherent graph structure of sensor networks
to represent sensor network data. Second, the framework offers a generic approach of applying
graphical features to improve the accuracy on prediction tasks across different sensor networks. Third,
the framework improves the predictions without using application-specific and prediction-task specific
feature crafting.

We evaluated this hypothesis on three application areas, activity recognition from motion sensors
in smart homes, demographic prediction from smart phone GPS, and activity recognition from smart
phone GPS. The GFF approach improved the accuracy of activity recognition from motion sensors in
most cases when compared with other widely used baseline methods for motion sensor data, such
as Hidden Markov Model, Naïve Bayes, and Conditional Random Field. For demographic attribute
prediction, the GFF outperformed most of the state-of-the-art methods while using no background
knowledge and while using no application-specific and task-specific feature construction. The results
for activity recognition from GPS data demonstrate that adding edges can increase the accuracy for
most activities.

We present the results of using graphical features from different window sizes, while using
normalized and categorized graphical features, applying edge transition times as graphical features
and comparing Random Forest with Linear SVM for motion sensor data in a smart home. We analyzed
the impact of graphical features on activity recognition accuracy from motion sensor data for varying
window sizes. For each window size, either the edges or the combination of nodes and edges as features
performed better than using only nodes. For the single-resident apartment, slight improvements in
accuracy were observed by each of normalizing graphical features, adding graphical features that
are based on room types, adding edge transition times as additional features, and using important
features with feature selection methods. For multi-resident apartments, these additional features,
along with feature selection, did not show improved accuracy. For activity recognition using smart
home motion sensor data, SVM worked better for some testbeds and Random Forest worked better for
other testbeds. We also presented a comparison between the GFF, a deep learning approach, and the
Graph Convolutional Network, with the initial results indicating that the GFF outperforms both of
these methods.

6. Future Directions

This study suggests several directions for future research. One research direction is to extract
multi-edge paths and small subgraphs along with nodes and edges as features and evaluate the effect of
these graphical features on prediction tasks for IoT sensor network applications. We extracted features
representing two-edge transitions for one testbed in activity recognition from motion sensors in the



Sensors 2019, 19, 3250 18 of 21

smart home, but the initial results showed decreased performance. Moreover, generating longer paths
and larger sub-graphs can be computationally expensive and time-consuming combined with higher
numbers of features. However, a more systematic exploration of multi-edge transitions with feature
selection methods, and evaluating these features on different testbeds and applications, is needed to
assess whether multi-edge-based features is a promising direction. We would also like to compare our
approach with symbolic representation-based approaches discussed in the related work section and
to assess the possibility to combine the methods for improving the performance of sensor network
prediction tasks. Symbolic approaches and hidden Markov models exploit the structure of high-level
activities, and our approach exploits the sensor’s topology. We can analyze whether there are similar
structures in both cases and if the combination of high-level activity structure with low-level sensor
structure improves the performance of the model.

We plan to try classifiers other than SVM and Random Forest for improving prediction task
performance and evaluate the GFF. We would like to investigate the reasoning behind why different
classifiers are working better for different datasets and applications. Based on that, we would like to
provide the best practices for classifier selection in the GFF.

For continuous features, like node and edge counts, we can transform them into nominal features.
Transforming a continuous variable to a binary variable is called dichotomization [43]. In our work,
the existence of nodes and edges can be considered a dichotomization of the counts of nodes and
edges. Using dichotomized features may result in information loss and decreased performance [44].
The choice of cut point to dichotomize the feature is another challenging issue as the amount of
information lost depends on the prior choice of cut points, with the optimal cut point depending upon
the unknown parameters [45]. This aligns with our result in the smart home environment, where we
obtained better performance with count features instead of existence features. However, many of
the feature selection algorithms provide better results with the discretized features. Discretization is
used as a pre-processing step for correlation-based feature selection approaches [46]. This aligns with
our result in demographic attribute prediction from GPS data, where selecting fewer and important
features from more than 7000 features is required to improve the performance. In this case, discretizing
the features before providing them to the feature selection algorithm was helpful. In the future, we
can experiment with discretizing counts of nodes and edges into several intervals with discretization
methods that were described in [46], so that information loss is minimal and at the same time feature
selection methods can effectively use the discretized features.

With time series data, forecasting practitioners usually want to predict future events that are based
on historical data. As a result, cross-validation with random subsets of the data is not a good choice,
because it will be easier to learn looking at the information both before and after the dates that we are
trying to predict, which is different than the real-life scenario, where we need to predict the events
that will happen in the future based on events that happened in the past [47]. Additionally, research
shows that performance on testing data closer-in-time to the training data will likely be better than
performance on testing data farther-in-time from the training data [48]. One way to address this issue
is to wait and see in real time. For example, Makridakis et al. [49] made forecasts in September 1987
and evaluated them at the conclusion of 1988. Instead of waiting a long time, we can use earlier data
to fit and estimate a model and reserve later data to evaluate the forecasting accuracy. This becomes
structurally similar to the real-world environment, where we are in the present and predict the future.
In our future work, we will evaluate based on test data that appear later in the dataset instead of a
randomly-selected subset of the data for time series forecasting from IoT sensor network data.

Generally, human activities follow a pattern of nodes visited and edge transitions. Over time,
activity patterns may change, and new transitions may appear in the test data that were not seen in the
training data. We can evaluate the effect of these new transitions on the activity recognition accuracy
by observing the performance drift of the models on new test data. Models exhibiting a significant
decrease in performance over time will need to be retrained.
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While deep learning approaches to activity recognition from sensor data have shown promise [31],
they performed worse in our setting than our non-deep learning approach. Deep learning approaches
can be improved by tuning hyper parameters, such as number of layers, learning rate, iterations,
number of units in hidden layers, choice of activation function, momentum term, mini batch size,
regularization parameters, and many others. However, significant network tuning would eventually
equate to the effort of feature-crafting in the traditional machine learning approach that our framework
was designed to avoid.

The usefulness of the GFF can be assessed in other IoT scenarios that are widely used for tracking
and monitoring. We built three different applications for data processing and modeling for three
different domains. In the future, we can build one single software application and define a general
interface for all IoT data, so that sensor information, sensor id to sensor category mappings, and other
inputs can be provided as part of this input interface. As a result, any IoT sensor network data can be
fit into this input format and easily tested to evaluate the performance improvement provided by the
use of graphical features.
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