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Abstract

Background: Loiasis is caused by the filarial parasite Loa loa, which is widespread through Central and West Africa
and largely confined the tropical equatorial rainforests. The tabanid flies Chrysops silacea and Chrysops dimidiata are
the main vectors driving transmission. This study aimed to better define the spatial distribution and ecological
niche of the two vectors to help define spatial-temporal risk and target appropriate, timely intervention strategies
for filariasis control and elimination programmes.

Methods: Chrysops spp. distributions were determined by collating information from the published literature into a
database, detailing the year, country, locality, latitude/longitude and species collected. Environmental factors
including climate, elevation and tree canopy characteristics were summarised for each vector from data obtained
from satellite modelled data or imagery, which were also used to identify areas with overt landcover changes. The
presence of each Chrysops vector was predicted using a maximum entropy species distribution modelling (MaxEnt)
method.

Results: A total of 313 location-specific data points from 59 published articles were identified across seven loiasis
endemic countries. Of these, 186 sites were included in the climate and elevation analysis, and due to overt
landcover changes, 83 sites included in tree canopy analysis and MaxEnt model. Overall, C. silacea and C. dimidiata
were found to have similar ranges; annual mean temperature (24.6 °C and 24.1 °C, respectively), annual
precipitation (1848.6 mm and 1868.8 mm), elevation (368.8 m and 400.6 m), tree canopy cover (61.4% and 66.9%)
and tree canopy height (22.4 m and 25.1 m). MaxEnt models found tree canopy coverage was a significant
environmental variable for both vectors.

Conclusions: The Chrysops spp. database and large-scale environmental analysis provides insights into the spatial
and ecological parameters of the L. loa vectors driving transmission. These may be used to further delineate loiasis
risk, which will be important for implementing filariasis control and elimination programmes in the equatorial
rainforest region of Central and West Africa.
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Background
Loa loa (Cobbold, 1864) is a filarial nematode that causes
infection and disease commonly known as loiasis, or Af-
rican eye worm [1, 2]. Loa loa is mainly transmitted by
two tabanid flies of the genus Chrysops (Order Diptera:
Family Tabanidae): Chrysops silacea (Austen) and C.
dimidiata (Wulp), both rainforest canopy dwellers in
Central and West Africa [3, 4]. Loiasis distribution has
recently been mapped through large-scale community
surveys based on the presence of eye worm, and is en-
demic in 11 countries [2]. The current distribution over-
laps with historical maps, vector distributions [5–7] and
the tropical dense and mosaic savanna forest region of
Africa [8].
Loiasis is a major impediment for onchocerciasis and

lymphatic filariasis (LF) elimination programmes imple-
menting mass drug administration (MDA) with ivermectin,
due to the risk of severe adverse events (SAEs) in individ-
uals with high L. loa microfilariae (mf) levels [1, 9–12]. Lo-
iasis is not officially classified as a neglected tropical disease
(NTD), but there is increasing evidence that it is of public
health importance [13]. There is a need to understand the
factors driving high L. loa transmission as they may help to
define spatial-temporal risk and target appropriate, timely
intervention strategies. Environmental drivers may be par-
ticularly important given that vector-borne disease trans-
mission is influenced by a range of climatic and landscape
factors [14, 15].
Loiasis prevalence distributions have been associated with

forest cover, landcover, vegetation, rainfall, temperature, ele-
vation, humidity and soil types at different spatial scales
using different methods, including multi-country maps and
modelling [8, 16–18], comparisons between bio-ecological
zones [19], and micro-scale analysis within high-risk area
[20]. There is a paucity of information for Chrysops vectors;
however, a recent review of historical studies highlighted
that temperature, rainfall, ground water, tree height, forest
coverage and/or intensity of light were identified as import-
ant factors driving vector biting and infections rates [3].
Given that C. silacea and C. dimidiata are the domin-

ant L. loa vectors in Central and West Africa, this study
aimed to better define the spatial distribution and eco-
logical niche of the two vectors. The recent compilation
of Chrysops information [3], provided the opportunity to
retrospectively collate and geo-reference data, create
maps, examine environmental factors and develop
models associated with the presence of each vector,
using advanced satellite remote sensing data, GIS tech-
nologies and the species distribution modelling tools.

Methods
Vector data and distribution map
To develop a geo-referenced database of the main L. loa
vectors, all literature on C. silacea and C. dimidiata

available in Kelly-Hope et al. [3] was reviewed to identify
studies with location-specific data. For each study identi-
fied, the locations of all villages and/or entomological
collection sites were geo-referenced using latitude and
longitude coordinates obtained from the article directly
and cross-checked with Google Earth Pro (https://
www.google.com/earth/). Geo-localisation of the sites
without coordinates was carried out with data from
Google Maps (https://www.google.com/maps), Google
Earth Pro and GeoNames (http://www.geonames.org).
Villages or collection sites that were not found or where
the location was not precise were excluded from the
database, and any repeated sites of the same species
were excluded from the environmental analyses (de-
scribed below). All geo-referenced Chrysops spp. were
imported into the mapping software QGIS 2.14.20 [21],
and a map showing the village and/or entomological col-
lection sites of the two Chrysops spp. was created.

Environmental data and analysis
To examine environmental factors associated with the
presence of C. silacea and C. dimidiata, nine climatic,
topographical and forest-related variables, which are
considered to affect the development and survival of
vectors, were examined. First, long-term climate, and
elevation data were obtained from the WorldClim 1.4 -
Global Climate Data (http://www.worldclim.org) at 1 km
resolution, which used interpolations of observed data,
representative of 1960–1990 [22]. The bioclimatic vari-
ables available are frequently used for species distribu-
tions and related ecological modelling. For this study,
annual mean temperature (Bio1), mean temperature of
the warmest quarter (Bio10), mean temperature of the
coldest quarter (Bio11), annual precipitation (Bio12),
precipitation of the wettest quarter (Bio16), precipitation
of the driest quarter (Bio17) and elevation data were ex-
amined. The temperature measures were measured in
degree Celsius (°C), precipitation in millimetres (mm)
and elevation in metres (m).
Secondly, as both Chrysops spp. are forest canopy

dwellers, data on tree canopy height and tree canopy
coverage were examined. The tree canopy coverage data,
defined as canopy closure for all vegetation taller than 5
metres (m) in height at a 30 m resolution and encoded
as percentage (%), were generated for the year 2000, and
obtained from the Global Forest Change 2000–2016,
version 1.4 (https://earthenginepartners.appspot.com/
science-2013-global-forest/download_v1.4.html) [23].
The tree canopy height (m) data were obtained from the
Global 1 km Forest Canopy Height modelled data gener-
ated in 2005 available from ORNL DAAC 2017 [24].
To account for the historical nature of the Chrysops spp.

data and identify potential anthropogenic changes to vec-
tor habitats such as deforestation and/or urbanization, the

Badia-Rius et al. Parasites & Vectors           (2019) 12:72 Page 2 of 11

https://www.google.com/earth/
https://www.google.com/earth/
https://www.google.com/maps
http://www.geonames.org
http://www.worldclim.org
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html


levels of tree canopy coverage over time were examined.
Satellite images available in Google Earth taken since the
1980s were visually compared at three-time points: 1984,
the first image available; 2000, year of the tree canopy
cover variable; 2018, current. Villages and/or entomo-
logical collection sites that had overt visual changes in for-
est coverage were excluded from canopy height and
canopy coverage analyses.
All geo-referenced Chrysops spp. and environmental

data were imported into QGIS 2.14.20 [21]. First, at each
village and/or entomological site a 3 km buffer using
geoprocessing spatial tool was created. Secondly, envir-
onmental data within the buffers were extracted, and
exported for descriptive and statistical analyses using
IBM SPSS Statistics 24. Data were summarised, and
comparisons between C. silacea and C. dimidiata con-
ducted using the Mann-Whitney non-parametric test,
with a significance level of P ≤ 0.05.

MaxEnt model and probability maps
To predict the presence of C. silacea and C. dimidiata
using environmental data, a maximum entropy species
distribution modelling (MaxEnt) method was used [25].
The MaxEnt software (version 3.4.1), is a general-purpose
learning method, which uses presence-only (i.e. occur-
rence) data and environmental variables to help define the
distribution of the maximum entropy (i.e. closest to uni-
form) [25–27].
Data points where tree cover had changed over time, i.e.

between 1984–2018, were excluded from the analysis. En-
vironmental data included one main temperature and pre-
cipitation variable to account for collinearity between the
related sub-variables. Elevation was excluded as it was
used as a covariate in the WorldClim data production. To
account for the different spatial resolutions between
WorldClim (1 km), tree canopy coverage (30 m) data and
tree canopy height (1 km), re-sampling of the tree cover
variable to 1 × 1 km using a bilinear interpolation was
conducted in QGIS 2.14.20 [28, 29]. All layers were con-
verted to ASCII (American Standard Code for Informa-
tion Interchange) format for MaxEnt model use [26].
Thirty replicates of each model for each Chrysops spp.

were generated by bootstrapping [29, 30]. To evaluate
model performance, the data was randomly split in two
parts: 75% of the occurrence data was selected as train-
ing data to fit the model and 25% as validation data to
evaluate model prediction. The maximum number of
background points was set to 10,000 and continuous
maps of Chrysops spp. suitability were obtained by logis-
tic output, which illustrates an estimated probability of
presence in terms of probability values ranging from 0
(unsuitable) to 1 (highest suitability) [30].
Threshold independent area under the curve (AUC)

was used to interpret the performance of the model.

AUC values range from 0 to 1 where 0.5 represents ran-
dom prediction. For instance, a value of 0.8 indicates
that there is a 0.8 probability that a random selected oc-
currence point has greater predicted suitability value
than a random background point [30]. Jackknife test and
variable contribution table assessed the importance of
each environmental variable in isolation as well as when
it was omitted. Finally, the response curves of how the
probability of presence changed along different values of
each variable was examined [26].
A spatial distribution map was produced representing

the probability of occurrence in form of percentages for
both vectors C. silacea and C. dimidiata. The data were
obtained from MaxEnt model results and the maps were
created using QGIS 2.14.20 [21].

Results
Chrysops spp. points distribution
In total, 59 articles published between 1912 and 2013
with 313 location-specific data points across Central and
West Africa were identified (Fig. 1). Of these, 28 data
points were excluded due to lack of a precise location,
and 99 data points excluded as they were repeats, i.e.
vector collections conducted in the same place at differ-
ent times. The remaining 186 data points were in
Cameroon (n = 65), Nigeria (n = 48), Equatorial Guinea

Fig. 1 Diagram of methodology used in Chrysops data points
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(n = 10), South Sudan (n = 2), Democratic Republic of
Congo (DRC; n = 43), Republic of Congo (Congo; n =
16) and Gabon (n = 2) (Additional file 1: Table S1). The
vector C. silacea was recorded in 115 sites and C. dimi-
diata in 71 sites. The distribution of both vectors was
similar, and they overlapped in many regions, particu-
larly in Cameroon as shown in Fig. 2.

Climatic and topographical associations
The summary of the different long-term climate and ele-
vation variables for each species in each country are
shown in Table 1. Overall, the environmental parameters
for C. silacea and C. dimidiata were similar and within
defined ranges; annual mean temperature (24.6 °C and
24.1 °C, respectively), mean temperature of the warmest
quarter (25.7 °C and 25.1 °C), mean temperature of the
coldest quarter (23.3 °C and 22.8 °C), annual precipitation
(1848.6 mm and 1868.8 mm), precipitation in the wettest
quarter (778.3 mm and 789.9 mm), precipitation in the
driest quarter (94.5 mm and 100.5 mm) and elevation
(368.8 m and 400.6 m). However, C. silacea was found to
have a significantly higher annual mean temperature,
mean temperature of the warmest quarter, mean
temperature of the coldest quarter than C. dimidiata (U =
-2.460; P = 0.014; U = -2.694; P = 0.007; and U = -1.999; P
= 0.046, respectively). Overall, there were no significant
differences between the vectors for the precipitation and
elevation parameters. Interestingly, the country means
range for the variables mean temperature of the warmest

quarter and coldest quarter was 28 °C and 17 °C,
respectively.
Comparisons between countries found that the C. sila-

cea and C. dimidiata sites in Nigeria had a higher mean
annual temperature (26.4 °C and 26.5 °C, respectively),
higher annual precipitation (2063.5 mm and 2448.4 mm)
and lower elevation (127.0 m and 39.4 m) than all other
countries; however, only a few data points were available
for Equatorial Guinea, Gabon and South Sudan (Table 1).

Tree canopy associations
Examination of satellite images available in Google Earth
found that 103 of the 186 sites (55.4%) had overt land-
cover changes and were excluded from tree canopy ana-
lysis. Two examples of sites with minimal landcover
changes and two with overt landcover changes are pre-
sented in Additional file 2: Figure S1. The exclusion of
the sites with overt changes resulted in 48 sites for C.
silacea and 35 sites for C. dimidiata available for ana-
lyses and their distribution is shown in Fig. 1.
Overall the mean tree canopy height and canopy

coverage for C. silacea sites were lower (22.4 m and
61.4%, respectively) than those for C. dimidiata sites
(25.1 m and 66.9%) (Table 2); however, the differences
were not statistically significant.
Comparisons between countries found that C. silacea

highest mean canopy height was in Cameroon (29.0 m)
and Equatorial Guinea (26.0 m), and the highest canopy
coverage was in DRC (72.3%) and Congo (74.3%); how-
ever, only a few data points were available for Equatorial

Fig. 2 Map of Chrysops locations in the Central African countries
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Guinea and South Sudan. For the C. dimidiata sites, the
highest canopy height was found in DRC (28.0 m) and
Equatorial Guinea (29.4 m), and the highest canopy cover-
age in DRC (73.2%) and Congo (74.3%); however, only a
few data points were available for Nigeria (Table 2).

MaxEnt model and probability maps
The MaxEnt model included 83 sites (48 for C. silacea
and 35 for C. dimidiata) and the mean annual tempera-
ture, annual precipitation, tree canopy height and tree
canopy coverage variables. For C. silacea, the model had
a mean training AUC of 0.911 ± 0.015 of 30 bootstrap-
ping replications, and for C. dimidiata, the model had a

mean training AUC of 0.941 ± 0.014, which demon-
strated that both models had a robust prediction of the
distribution of Chrysops vectors. The AUC plot for C.
silacea and C. dimidiata are shown in Fig. 3a and b, re-
spectively. The jackknife test for both species had similar
variable contributions. For C. silacea, the annual precipi-
tation was the most important variable if considered in
isolation. However, if a multivariate model was consid-
ered, tree canopy coverage was the variable which when
omitted reduced the fit of the model the most (Fig. 3c).
For C. dimidiata, tree canopy coverage was the most
important variable if considered in isolation. Further-
more, it was also the variable which reduced the fit of

Table 1 Descriptive statistics of the different environmental variables by vector species and country

Species Country n Statistic Annual mean
temperature
(°C)

Mean
temperature
warmest quarter
(°C)

Mean
temperature
coldest quarter
(°C)

Annual
precipitation
(mm)

Precipitation
wettest
quarter (mm)

Precipitation
driest quarter
(mm)

Elevation
(m)

C. silacea Cameroon 33 Mean 23.4 24.3 22.4 1939.0 854.8 103.0 550.1

SD 2.7 2.8 2.7 474.3 269.8 38.0 313.7

DRC 30 Mean 24.9 25.9 23.4 1596.4 591.4 123.2 448.3

SD 0.8 1.0 1.1 324.3 57.7 108.6 216.6

Equatorial
Guinea

4 Mean 18.0 18.6 17.3 1832.2 772.8 114.0 201.4

SD 2.7 2.8 2.6 431.4 190.2 25.3 206.5

Gabon 1 Mean 24.0 24.9 22.4 1646.1 668.6 93.1 493.6

SD – – – – – – –

Nigeria 37 Mean 26.4 27.8 25.0 2063.5 901.0 81.7 127.0

SD 0.7 0.7 0.8 597.5 253.4 44.5 137.0

Congo 8 Mean 23.9 25.1 21.8 1559.8 657.2 13.0 428.6

SD 0.9 0.7 1.3 85.7 53.5 13.5 55.1

South
Sudan

2 Mean 24.7 26.0 23.5 1454.3 597.8 46.1 687.7

SD 0.3 0.6 0.0 3.4 19.4 2.5 49.8

Overall 115 Mean 24.6 25.7 23.3 1848.6 778.3 94.5 368.8

SD 2.4 2.6 2.3 501.0 245.3 69.8 283.1

C.
dimidiata

Cameroon 32 Mean 23.7 24.6 22.7 1849.5 794.9 103.8 540.1

SD 2.5 2.6 2.4 435.4 229.1 35.6 275.6

DRC 13 Mean 24.6 25.6 23.0 1505.2 572.2 123.8 415.0

SD 0.7 0.9 1.3 359.2 64.8 128.8 230.2

Equatorial
Guinea

6 Mean 21.0 21.6 20.1 2145.8 906.6 127.2 235.1

SD 3.4 3.5 3.3 385.5 159.5 23.3 150.9

Gabon 1 Mean 24.0 24.9 22.4 1646.1 668.6 93.1 493.6

SD – – – – – – –

Nigeria 11 Mean 26.5 27.6 25.3 2448.4 1076.2 113.2 39.4

SD 0.4 0.5 0.3 447.5 165.1 27.4 35.9

Congo 8 Mean 23.9 25.1 21.8 1559.8 657.2 13.0 428.6

SD 0.9 0.7 1.3 85.7 53.5 13.5 55.1

Overall 71 Mean 24.1 25.1 22.8 1868.8 789.9 100.5 400.6

SD 2.4 2.5 2.3 491.7 234.6 68.1 277.2

Abbreviation: DRC Democratic Republic of the Congo, SD standard deviation
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the model the most when it was omitted in a multivari-
ate model (Fig. 3d). The permutation of the environmen-
tal variables in the model indicated that annual
precipitation contributed the most for both C. silacea
and C. dimidiata as shown in Table 3.
The response curves highlighted how prediction is af-

fected by each variable. Both species had similar response
curve distributions as shown in Fig. 4 a-h. The mean
temperature for C. silacea indicated a broader tempera-
ture niche (Fig. 4a) than for C. dimidiata (Fig. 4b). The
annual precipitation was similar for both species at 2700
mm; however, the likelihood of C. silacea presence was re-
duced when precipitation was higher than 2700 mm (Fig.
4c), but this reduction was not observed for C. dimidiata
(Fig. 4d). For both species, tree canopy coverage higher
than 80% was not suitable (Fig. 4 e, f ). Canopy height re-
sponse curve was found to have high variation due to its
low importance in the prediction (Fig. 4g, h).
The predicted distribution of both Chrysops vectors

from MaxEnt model is shown in Fig. 5a, b. Overall, the

distributions were similar; however, C. silacea had higher
probabilities of occurrence than C. dimidiata. The areas
with the highest suitability were in southern Nigeria, in
southern-central and western Cameroon, in Bioko Island
of Equatorial Guinea, all of Gabon, in southern-central
Congo, in western and north-eastern DRC, in central
CAR and northern Angola.

Discussion
To our knowledge, this is the first study to collate, geo-
locate and analyse environmental factors related to the
two main vectors responsible for L. loa transmission in
Central and West Africa. The study highlights the need
for more current data on the spatial distribution and
ecology of C. silacea and C. dimidiata, which is funda-
mental todelineating the risk of filariasis for control and
elimination programmes. While there were limitations
with using historical vector data, the examination of
long-term satellite-derived climate data and landcover
changes helped to address these limitations. The results

Table 2 Descriptive statistics of canopy height and tree canopy cover variables by species and country

Species Country n Statistic Canopy height (m) Tree cover (% canopy > 5 m)

C. silacea Cameroon 12 Mean 29.0 65.0

SD 5.4 13.3

DRC 14 Mean 20.7 72.3

SD 10.7 19.2

Equatorial Guinea 3 Mean 26.0 56.2

SD 5.0 18.1

Nigeria 10 Mean 17.3 34.0

SD 9.8 21.4

Congo 8 Mean 21.1 74.3

SD 6.2 21.3

South Sudan 1 Mean 15.7 51.9

SD – –

Overall 48 Mean 22.4 61.4

SD 9.1 23.3

C. dimidiata Cameroon 12 Mean 28.0 62.3

SD 5.9 12.6

DRC 7 Mean 20.2 73.2

SD 12.6 23.1

Equatorial Guinea 6 Mean 29.4 63.2

SD 5.9 16.8

Nigeria 2 Mean 27.0 53.0

SD 8.1 27.1

Congo 8 Mean 21.1 74.3

SD 6.2 21.3

Overall 35 Mean 25.1 66.9

SD 8.3 18.5

Abbreviation: DRC Democratic Republic of the Congo, SD standard deviation
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provide several insights into the ecological niche or
bio-climate envelope of the two Chrysops vectors, and
help to define a range of key climatic, topographic and
tree canopy parameters using advanced satellite remote
sensing data, GIS technologies and the species distribu-
tion modelling tools.
Overall, no major differences between the two species

were found, apart from temperature where C. silacea
was found in warmer locations than C. dimidiata. His-
torical studies highlight that temperature is an important
factor influencing transmission. For C. silacea, vector
monthly and/or daily temperatures around 20–28 °C
have been shown to be optimal for larvae development,

adult density, biting and infection rates [31, 32]. Tem-
peratures lower than 20 °C either in laboratory or very
shaded field conditions have shown to delay larvae de-
velopment in the fly. Noireau et al. [33] reported
monthly temperatures, and Crewe & O’Rourke [34] ex-
amined hourly temperature fluctuations and found the
highest biting activity occurred when temperatures were
around 24–27 °C. Interestingly, these finer scale spatial
and temporal observations correlate with our large-scale
environmental analysis and models, which identify
temperature in the mid-20s °C as an important climatic
measure.
The level of precipitation in different tropical forest

settings may influence the amount of nutrient rich
leaves decaying in wet mud available for Chrysops lar-
val breeding habitats [3]. Annual precipitation was
found to be at least 1500 mm across all countries for
both vectors, with the mean rainy season measures
(wettest quarter) ranging between 572–1076 mm and
mean dry season measures (driest quarter) between
13–127 mm. This study did not examine Chrysops
temporal conditions; however, several studies have
shown that the highest vector biting densities and/or
infectivity rates occur during or after the rainy season
when ground water and soil moisture may be optimal
for breeding [33, 35–37]. Determining the relationship
between transmission and precipitation may help to

Fig. 3 MaxEnt model results plots. a, b Area under the curve (AUC) plots of both species models. Red line shows the mean of the 30 replicate
MaxEnt runs and blue area the mean ± one standard deviation. c, d Jackknife test of regularized training gain. Dark blue columns show how
would be the model gain using each variable in isolation. Light blue columns show how would change the model gain if the variable was
excluded. The longest dark blue column turns to be the variable to have the most useful information by itself. The shortest light blue column
appears to be the variable which has the most information that is not present in other variables

Table 3 Permutation importance of the environmental variables
in the MaxEnt model

Variable Permutation importance (%)

C. silacea C. dimidiata

Annual mean temperature 13.1 35

Annual precipitation 48.8 25.4

Tree cover 23.3 22.9

Canopy height 14.8 16.6

Note. Permutation importance depends only on the final MaxEnt model. The
contribution for each variable is determined by randomly permuting the
values of that variable among the training points (both presence and
background) and measuring the resulting decrease in training AUC. Values are
normalized to give percentages
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develop a ‘L. loa transmission calendar’ highlighting
high-risk times [14].
Historical studies also suggest that the extent of forest

cover and intensity of light influence transmission [31,
38–40]. In general, Chrysops have shown to avoid ex-
treme conditions, including bright sunlight in cleared
areas and deep shade in heavily forested areas, with only
certain levels of forest and illumination associated with

high biting rates. Differences between species have also
been found with C. silacea being more dominant in
cleared forested areas, particularly in villages and their
immediate vicinity, and C. dimidiata being more closely
associated with forested areas [41]. This broadly corre-
lates with our results, which found mean tree canopy
coverage was not less than 34% (i.e. cleared areas) or
more than 74% (i.e. heavily forested or shaded areas),

Fig. 4 Response curves of environmental variables in the two MaxEnt models for C. silacea (a, c, e, g) and C. dimidiata (b, d, f, h). The plots
represent a MaxEnt model created using only the corresponding variable. The curves show the mean response of the 30 replicate MaxEnt runs
(red line) and the mean ± one standard deviation (blue area)
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and specifically that C. silacea sites had lower mean pro-
portions of canopy coverage than C. dimidiata.
Further, landcover changes may significantly alter

transmission potential, especially deforestation as it de-
stroys Chrysops spp. habitats. Our retrospective analysis
of satellite imagery highlighted that around half of the
sites had overt environmental changes over the past few
decades, which appeared to be related to population
growth and urbanisation. This suggests that the risk of
L. loa has reduced in these areas, as commercial defor-
estation, forest clearings caused by population growth
with resultant town development and urbanisation, have
been associated with a reduction in prevalence [42]. For-
est clearings have also been suggested as a potential vec-
tor control intervention in certain settings in order to
distance the breeding habitats from the human popula-
tion [5]. This has implications for L. loa endemic coun-
tries in the Congo Basin region where there is
widespread evidence of deforestation and development,
which may change how risk is measured and the type of
interventions deployed in the future.
Defining spatial-temporal patterns of Chrysops spp.

and their ecological niches within communities could
help to direct interventions, which may include specific
vector control measures appropriate for outdoor
day-biting vectors, similar to those being developed for
other vector-borne diseases [43, 44]. Historical studies
highlight effective Chrysops defensive control methods
such as personal insecticide repellents on the skin or im-
pregnated on clothing to prevent vector biting [3, 5],
which may be a practical, cost-effective and scalable
intervention for ecologically defined high-risk communi-
ties. Aggressive control methods have also been sug-
gested, and indoor residual spraying (IRS) of insecticide
to houses or undergrown near breeding sites, or bespoke

trapping with or without insecticide, or by using wood
fire as an attractant [37, 45], could also be directed to
ecologically defined high-risk communities to help re-
duce the abundance and transmission potential of L. loa.
This will help filariasis control and elimination pro-
grammes overall by reducing the numbers of infective
larvae to which humans will be exposed, with the conse-
quence of fewer adult worms producing lower levels of
microfilariae, and hence the risk of SAEs.

Conclusion
The Chrysops spp. database and large-scale environmen-
tal analysis provides insights into the spatial and eco-
logical parameters of the L. loa vectors driving
transmission. These may be used to further delineate lo-
iasis risk, which will be important for implementing fil-
ariasis control and elimination programmes in the
equatorial rainforest region of Central and West Africa.
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Abbreviations
ASCII: American Standard Code for Information Interchange; AUC: Area under
the curve; DRC: Democratic Republic of the Congo; DEC: Diethylcarbamazine;
IRS: Indoor residual spraying; LF: Lymphatic filariasis; MaxEnt: Maximum
entropy species distribution modelling; mf: Microfilariae; MDA: Mass drug
administration; NTD: Neglected tropical diseases; WHO: World Health
Organization; RAPLOA: Rapid assessment procedure for loiasis; SAE: Severe
adverse events; SDAT: Spatial data access tool

Acknowledgements
Not applicable.

Fig. 5 Predicted distribution maps for C. silacea (a) and C. dimidiata (b) vectors obtained from MaxEnt model data. Probability of occurrence is
depicted in the form of percentages

Badia-Rius et al. Parasites & Vectors           (2019) 12:72 Page 9 of 11

https://doi.org/10.1186/s13071-019-3327-9
https://doi.org/10.1186/s13071-019-3327-9


Funding
XBR was supported by an Erasmus+ Training Programme funded by the
European Union. HB and LAKH were supported by the Centre for Neglected
Tropical Diseases, Department of Parasitology, Liverpool School of Tropical
Medicine (LSTM) through a grant from the Department for International
Development (DFID), UK for the elimination of lymphatic filariasis as a public
health problem.

Availability of data and materials
All data supporting the conclusions of this study are within the article and
additional file. The datasets used for the analysis are available from the
corresponding author upon reasonable request.

Authors’ contributions
LAKH and DHM conceived the idea of the study. XBR collated and
georeferenced all data. XBR and HB analysed the data, developed the maps
and models. XBR and LAKH drafted the manuscript. All authors contributed
to the interpretation of the results. All authors edited, read and approved the
final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 6 December 2018 Accepted: 29 January 2019

References
1. Boussinesq M. Loiasis. Ann Trop Med Parasitol. 2006;100:715–31.
2. Zouré HGM, Wanji S, Noma MM, Amazigo UV, Diggle PJ, Tekle AH, et al. The

geographic distribution of Loa loa in Africa: results of large-scale
implementation of the rapid assessment procedure for Loiasis (RAPLOA).
PLoS Negl Trop Dis. 2011;5:e1210.

3. Kelly-Hope LA, Paulo R, Thomas B, Brito M, Unnasch TR, Molyneux D. Loa
loa vectors Chrysops spp.: perspectives on research, distribution, bionomics,
and implications for elimination of lymphatic filariasis and onchocerciasis.
Parasit Vectors. 2017;10:172.

4. Molyneux DH, Mitre E, Bockarie MJ, Kelly-Hope LA. Filaria zoogeography in
Africa: ecology, competitive exclusion, and public health relevance. Trends
Parasitol. 2014;30:163–9.

5. Gordon RM, Kershaw WE, Crewe W, Oldroyd H. The problem of loiasis in
West Africa with special reference to recent investigations at Kumba in the
British Cameroons and at Sapele in southern Nigeria. Trans R Soc Trop Med
Hyg. 1950;44:11–47.

6. Fain A. Notes on the geographical distribution of the filaria L. loa and
Tabanids of the genus Chrysops in the Congo and in Rwanda. Ann Soc Belg
Med Trop. 1920;1969:499–530.

7. Crewe W. The bionomics of Chrysops silacea: its life history and role in the
transmission of filariasis. PhD Thesis, University of Liverpool; 1956.

8. Kelly-Hope LA, Bockarie MJ, Molyneux DH. Loa loa ecology in Central Africa:
role of the Congo River system. PLoS Negl Trop Dis. 2012;6:e1605.

9. Gardon J, Gardon-Wendel N, Demanga-Ngangue KJ, Chippaux JP,
Boussinesq M. Serious reactions after mass treatment of onchocerciasis with
ivermectin in an area endemic for Loa loa infection. Lancet. 1997;350:18–22.

10. Kelly-Hope LA, Cano J, Stanton MC, Bockarie MJ, Molyneux DH. Innovative
tools for assessing risks for severe adverse events in areas of overlapping
Loa loa and other filarial distributions: the application of micro-stratification
mapping. Parasit Vectors. 2014;7:307.

11. Hoerauf A, Pfarr K, Mand S, Debrah AY, Specht S. Filariasis in Africa -
treatment challenges and prospects. Clin Microbiol Infect. 2011;17:977–85.

12. Molyneux DH, Hopkins A, Bradley MH, Kelly-Hope LA. Multidimensional
complexities of filariasis control in an era of large-scale mass drug
administration programmes: a can of worms. Parasit Vectors. 2014;7:363.

13. Chesnais CB, Takougang I, Paguélé M, Pion SD, Boussinesq M. Excess
mortality associated with loiasis: a retrospective population-based cohort
study. Lancet Infect Dis. 2017;17:108–16.

14. Kelly-Hope L, Climate TMC. Infectious Diseases. In: Thomson MC, Garcia-
Herrera R, Beniston M, editors. Seasonal Forecasts, Climate Change and
Human Health. Dordrecht: Springer; 2008. p. 31–70. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.424.2946&rep=rep1&type=pdf.

15. Thomson MC, Muñoz ÁG, Cousin R, Shumake-Guillemot J. Climate drivers of
vector-borne diseases in Africa and their relevance to control programmes.
Infect Dis Poverty. 2018;7:81.

16. Thomson MC, Obsomer V, Dunne M, Connor SJ, Molyneux DH. Satellite
mapping of Loa loa prevalence in relation to ivermectin use in West and
Central Africa. Lancet. 2000;356:1077–8.

17. Diggle PJ, Thomson MC, Christensen OF, Rowlingson B, Obsomer V, Gardon
J, et al. Spatial modelling and the prediction of Loa loa risk: decision making
under uncertainty. Ann Trop Med Parasitol. 2007;101:499–509.

18. Kelly-Hope LA, Unnasch TR, Stanton MC, Molyneux DH. Hypo-endemic
onchocerciasis hotspots: defining areas of high risk through micro-mapping
and environmental delineation. Infect Dis Poverty. 2015;4:36.

19. Wanji S, Tendongfor N, Esum M, Atanga SN, Enyong P. Heterogeneity in the
prevalence and intensity of loiasis in five contrasting bioecological zones in
Cameroon. Trans R Soc Trop Med Hyg. 2003;97:183–7.

20. Brant TA, Okorie PN, Ogunmola O, Ojeyode NB, Fatunade SB, Davies E, et al.
Integrated risk mapping and landscape characterisation of lymphatic
filariasis and loiasis in South West Nigeria. Parasite Epidemiol Control. 2018;
3:21–35.

21. Development Team QGIS. QGIS Geographic Information System. Open
Source Geospatial Foundation Project; 2018. https://qgis.org.

22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution
interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:
1965–78.

23. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A,
et al. High-resolution global maps of 21st-century forest cover change.
Science. 2013;342:850–3.

24. Simard M, Pinto N, Fisher JB, Baccini A. Mapping forest canopy height
globally with spaceborne lidar. J Geophys Res Biogeosciences. 2011;116:1–12.

25. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of
species geographic distributions. Ecol Modell. 2006;190:231–59.

26. Acharya BK, Cao C, Xu M, Khanal L, Naeem S, Pandit S. Present and future of
dengue fever in Nepal: mapping climatic suitability by ecological niche
model. Int J Environ Res Public Health. 2018;15:187.

27. Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling
species’ distributions: what it does, and why inputs and settings matter.
Ecography. 2013;36:1058–69.

28. Hundessa S, Li S, Liu DL, Guo J, Guo Y, Zhang W, et al. Projecting
environmental suitable areas for malaria transmission in China under
climate change scenarios. Environ Res. 2018;162:203–10.

29. Ren Z, Wang D, Ma A, Hwang J, Bennett A, Sturrock HJW, et al. Predicting
malaria vector distribution under climate change scenarios in China:
challenges for malaria elimination. Sci Rep. 2016;6:20604.

30. Machado-Machado Elia Axinia EAA-M-M. Empirical mapping of suitability to
dengue fever in Mexico using species distribution modeling. Appl Geogr.
2012;33:82–93.

31. Connal A, Connal SLM. The Development of Loa loa (Guyot) in Chrysops
silacea (Austen) and in Chrysops dimidiata (Van Der Wulp). Trans R Soc Trop
Med Hyg. 1922;16:64–89.

32. Crewe W. The rate of development of larvae of Loa loa in Chrysops
silacea at Kumba, and the effect of temperature upon it. Ann Trop Med
Parasitol. 1961;55:211–6.

33. Noireau F, Nzoulani A, Sinda D, Caubère P. Chrysops silacea and C.
dimidiata seasonality and loiasis prevalence in the Chaillu mountains,
Congo. Med Vet Entomol. 1991;5:413–9.

34. Crewe W, O’Rourke FJ. The biting habits of Chrysops silacea in the forest at
Kumba, British Cameroons. Ann Trop Med Parasitol. 1951;45:38–50.

35. Connal A. Observations on filaria in Chrysops from West Africa. Trans R Soc
Trop Med Hyg. 1921;14:108–9.

36. Noireau F, Nzoulani A, Sinda D, Itoua A. Transmission indices of Loa loa in
the Chaillu Mountains, Congo. Am J Trop Med Hyg. 1990;43:282–8.

Badia-Rius et al. Parasites & Vectors           (2019) 12:72 Page 10 of 11

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.424.2946&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.424.2946&rep=rep1&type=pdf
https://qgis.org


37. Wanji S, Tendongfor N, Esum ME, Enyong P. Chrysops silacea biting densities
and transmission potential in an endemic area of human loiasis in south-
west Cameroon. Trop Med Int Health. 2002;7:371–7.

38. Kettle DS. The effect of light on the biting activity of Chrysops silacea
(Diptera: Tabanidae). Ann Trop Med Parasitol. 1953;47:335–9.

39. Crewe W. The effect of light on the biting activity of Chrysops silacea in the
forest at Kumba, British Cameroons. Ann Trop Med Parasitol. 1953;47:340–3.

40. Duke BO. Studies on the biting habits of Chrysops. I. The biting-cycle of
Chrysops silacea at various heights above the ground in the rain-forest at
Kumba, British Cameroons. Ann Trop Med Parasitol. 1955;49:193–202.

41. Noireau F, Nzoulani A, Sinda D, Itoua A. Chrysops silacea and C. dimidiata: fly
densities and infection rates with Loa loa in the Chaillu mountains, Congo
Republic. Trans R Soc Trop Med Hyg. 1990;84:153–5.

42. Duke BO. Studies on the biting habits of Chrysops. IV. The dispersal of
Chrysops silacea over cleared areas from the rain-forest at Kumba, British
Cameroons. Ann Trop Med Parasitol. 1955;49:368–75.

43. Govella NJ, Ogoma SB, Paliga J, Chaki PP, Killeen G. Impregnating hessian
strips with the volatile pyrethroid transfluthrin prevents outdoor exposure
to vectors of malaria and lymphatic filariasis in urban Dar es Salaam,
Tanzania. Parasit Vectors. 2015;8:322.

44. Lehane M, Alfaroukh I, Bucheton B, Camara M, Harris A, Kaba D, et al. Tsetse
control and the elimination of Gambian sleeping sickness. PLoS Negl Trop
Dis. 2016;10:e0004437.

45. Duke BO. Studies on the biting habits of Chrysops. II. The effect of wood
fires on the biting density of Chrysops silacea in the rain-forest at Kumba,
British Cameroons. Ann Trop Med Parasitol. 1955;49:260–72.

Badia-Rius et al. Parasites & Vectors           (2019) 12:72 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Vector data and distribution map
	Environmental data and analysis
	MaxEnt model and probability maps

	Results
	Chrysops spp. points distribution
	Climatic and topographical associations
	Tree canopy associations
	MaxEnt model and probability maps

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

