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Abstract

Background: The sleep disorder narcolepsy is caused by a vast reduction in neurons producing the hypocretin (orexin)
neuropeptides. Based on the tight association with HLA, narcolepsy is believed to result from an autoimmune attack, but
the cause of hypocretin cell loss is still unknown. We performed gene expression profiling in the hypothalamus to identify
novel genes dysregulated in narcolepsy, as these may be the target of autoimmune attack or modulate hypocretin gene
expression.

Methodology/Principal Findings: We used microarrays to compare the transcriptome in the posterior hypothalamus of (1)
narcoleptic versus control postmortem human brains and (2) transgenic mice lacking hypocretin neurons versus wild type
mice. Hypocretin was the most downregulated gene in human narcolepsy brains. Among many additional candidates, only
one, insulin-like growth factor binding protein 3 (IGFBP3), was downregulated in both human and mouse models and co-
expressed in hypocretin neurons. Functional analysis indicated decreased hypocretin messenger RNA and peptide content,
and increased sleep in transgenic mice overexpressing human IGFBP3, an effect possibly mediated through decreased
hypocretin promotor activity in the presence of excessive IGFBP3. Although we found no IGFBP3 autoantibodies nor a
genetic association with IGFBP3 polymorphisms in human narcolepsy, we found that an IGFBP3 polymorphism known to
increase serum IGFBP3 levels was associated with lower CSF hypocretin-1 in normal individuals.

Conclusions/Significance: Comparison of the transcriptome in narcolepsy and narcolepsy model mouse brains revealed a
novel dysregulated gene which colocalized in hypocretin cells. Functional analysis indicated that the identified IGFBP3 is a
new regulator of hypocretin cell physiology that may be involved not only in the pathophysiology of narcolepsy, but also in
the regulation of sleep in normal individuals, most notably during adolescence. Further studies are required to address the
hypothesis that excessive IGFBP3 expression may initiate hypocretin cell death and cause narcolepsy.
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Introduction

Narcolepsy-cataplexy is a common sleep disorder affecting

0.02–0.16% of the general population in the United States,

Europe and Asia. Disease onset may be insidious or abrupt,

typically occurring around adolescence, and is characterized by

excessive daytime sleepiness, cataplexy (sudden loss of muscle tone

triggered by emotions) and other manifestations of abnormal

Rapid Eye Movement (REM) sleep.
Narcolepsy has characteristic biological markers including

Human Leukocyte Antigen (HLA) association and dysfunction of

hypocretin (also called orexin) neurotransmission. Almost all

patients with narcolepsy-cataplexy share a common HLA allele,

DQB1*0602 [1] suggesting an autoimmune basis for the disorder.

Over 90% of narcolepsy-cataplexy cases are associated with a

dramatic decrease in hypocretin-1 (HCRT1) in the cerebrospinal

fluid [2].

Hypocretin-1 is a neuropeptide produced by 50,000–70,000

hypothalamic neurons in the human brain. The HCRT peptides

are derived from a precursor, preprohypocretin, which is cleaved

into two homologous peptides HCRT1 and HCRT2 [3]. These

act on target sites through two receptors, HCRT receptor-1 and

HCRT receptor-2. Deficient HCRT neurotransmission is suffi-
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cient to produce narcolepsy, as animal models with dysregulated

HCRT transmission exhibit a narcolepsy-like phenotype [4,5]. Of

notable interest is a transgenic mouse model where the HCRT

promoter drives a form of ataxin-3 containing a large polygluta-

mine repeat, resulting in HCRT cell death and a narcolepsy-like

phenotype at 2–3 weeks of age [6].

Human neuropathological studies have extended on these

results. In situ hybridization (ISH) studies have shown disappear-

ance of HCRT mRNA in the perifornical area of narcoleptic

brains. Furthermore, the concentrations of HCRT1 and HCRT2

in the cortex and pons, two areas with HCRT projections, are

dramatically decreased [7]. Immunohistochemical studies also

revealed more than 90% decrease in HCRT cell counts in the

hypothalamus of narcoleptic subjects [8]. The loss of HCRT signal

is most likely not a simple failure in producing hypocretin peptides

alone. Hypocretin cells contain prodynorphin (PDYN) and

neuronal pentraxin II (NPTX2; Neuronal Activity-Regulated

Pentraxin) [9,10], and studies have shown that these two proteins

are missing in the perifornical area, but not in other regions, of

narcoleptic brains [11,12]. This could imply that HCRT

producing cells are quiescent and do not produce HCRT, PDYN

and NPTX2 or, more likely, that these cells are missing entirely.

Some authors have noted residual gliosis in the perifornical region

[13], which combined with the strong HLA association, favors the

hypothesis of autoimmune mediated destruction of HCRT

neurons. However, most attempts to prove the autoimmune

hypothesis, for example through the detection of HCRT-cell

specific autoantibodies, have been unsuccessful [14].

A deeper understanding of HCRT cell physiology is required,

including the identification of genes and proteins that may be the

target of an autoimmune attack or may modulate hypocretin

expression/metabolism to make this cell population more

susceptible to potential apoptosis. In this study, we have used

postmortem human brain samples to compare the transcriptome

of narcoleptic versus control subjects, with confirmation in animal

models of narcolepsy. Our primary goal was to identify other

genes and associated proteins that may be dysregulated in the

posterior hypothalamus of narcoleptic patients, potentially ex-

pressed in HCRT neurons, as such genes are likely to be novel

narcolepsy susceptibility genes.

Results

Identification of brain region specific transcripts
A total of 11 control and 6 narcolepsy brains were analyzed by

microarray (Table 1). To validate our methods, we first compared

transcript abundance across brain regions in control samples and

identified brain region specific transcripts (Table S1). Of the 7

identified genes with putative preferential expression in the

posterior hypothalamus, three are known to be restricted to this

region: prepromelanin concentrating hormone, preprohypocretin,

and histidine decarboxylase. Likewise, arginine vasopressin and

oxytocin are expressed in the anterior hypothalamus. In the locus

coeruleus (LC) where 14 genes were found to be region specific,

seven, including dopamine-b-hydroxylase and tyrosine hydroxy-

lase, are known to be expressed specifically in the LC. These

results offered a strong validation of sample selection, dissection,

array experiment procedure and the statistical analysis methods

used in this study. (Table S1)

Identification of transcripts dysregulated in human
narcolepsy

In the comparison of narcolepsy vs control posterior hypothal-

ami, a total of 35 downregulated and 11 upregulated genes were

identified by analysis of microarray expression data. Of these, only

nine genes were confirmed by Quantitative Reverse Transcrip-

tase-Polymerase Chain Reaction (QRT-PCR), all of which were

downregulated in narcolepsy. Hypocretin was the most signifi-

cantly decreased gene by Significance Analysis of Microarray

(SAM) [15] ranking, and was second in terms of mean fold change.

QRT-PCR confirmation indicated a dramatic 57.4 fold decrease

Table 1. Demographic and RNA quality data of human brain tissue used for analysis.

ID cause of death age sex PMI (h) brain pH 28S/18S DQB1 DQB1

C1 not available 77 F 6.0 6.76 0.62 0302 0502

C2 colon cancer 61 M 48.0 6.93 0.9 0301 0301

C5 prostate cancer 77 M 48.0 6.72 0.52 0201 0604

C7 cerebellum cancer meningitis 74 M 4.5 6.62 0.86 0301 0501

C8 kindey cancer; metabolic encephalopathy 75 F 8.0 6.74 0.77 0201 0303

C10 breast cancer 48 F 12.5 6.64 0.64 0503 0603

C12 chronic obstructive pulmonary disease 82 M 5.0 6.78 0.88 0602 0201

C13 dementia 92 M 7.0 6.91 0.65 0602 0602

C14 heart failure 90 M 6.0 6.6 0.53 0602 0602

C15 heart failure 61 F 8.2 6.66 0.5 0602 0301

C16 not available 77 M 2.0 6.63 0.54 0201 0301

N4 not available n/a F n/a 6.63 0.95 0602 0201

N5 lung cancer 68 F 2.5 6.76 1.48 0602 0603

N6 dementia 58 F 42.0 6.55 0.87 0602 0602

N7 dementia 89 F 20.0 6.53 1.12 0602 0201

N8 not available 60 M 3.5 6.7 1.21 0602 0303

N101 epidural hemmorage 69 M 10.5 6.75 0.76 0602 0502

Age and gender distribution, postmortem interval (PMI) and brain pH are not significantly different between narcoleptic subjects (N4–N101) and controls (C1–C16).
doi:10.1371/journal.pone.0004254.t001
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in preprohypocretin transcript abundance, identifying the known

central feature of narcolepsy. The eight other confirmed

candidates, leiomodin 1 (LMOD1), cold shock domain protein A

(CSDA), G protein-coupled receptor 4 (GPR4), endothelin 1

(EDN1), neuropeptide Y (NPY), growth arrest and DNA-damage-

inducible, beta (GADD45B), interleukin 1 recptor-like 1 (IL1RL1)

and insulin-like growth factor binding protein 3 (IGFBP3) were

downregulated 1.6 to 6.1 fold (Table 2).

Previously known HCRT co-expressed genes were not reported

in our analysis either because they were not listed within the top

100 SAM ranked candidates (NPTX2, GAL (galanin), and CART

(cocaine and amphetamine regulated transcript), or expression was

classified as ‘‘absent’’ (PDYN) using the microarray suite software

(MAS) 5.0 algorithm. The array signals for these genes were

decreased (PDYN: 2.4 fold, p = 0.005; NPTX2: 1.3 fold, p = 0.5;

GAL: 2.3 fold, p = 0.06; CART: 1.2 fold, p = 0.36) as were the

QRT-PCR comparisons (PDYN: 1.8 fold, p = 0.03; NPTX2: 1.6

fold, p = 0.07; GAL: 1.9 fold, p = 0.09; CART: 1.3 fold, p = 0.24).

These results further validated our method.

IGFBP3 is co-localized in hypocretin producing cells in
mouse brains

In situ hybridization (ISH) of all human putative downregulated

genes was performed in mice (C57/BL/6J) (Table 2). Of the 8

candidates confirmed by QRT-PCR as downregulated in

narcolepsy brains, only one gene, Insulin-like Growth Factor

Binding Protein-3 (Igfbp 3), was clearly enriched in the perifornical

region where HCRT neurons are located (Table 2, Fig. 1). Among

the other genes, many did not appear to be expressed at all in the

studied brain regions or the expression was restricted to regions

other than the perifornical area (Table 2).

To determine if IGFPB3 is selectively expressed by HCRT

neurons in the perifornical area, we used Hcrt-ataxin-3 hemizygous

(HZ) transgenic [6], and Hcrt knock-out (KO) mice [4]. When we

performed ISH with 35S-probes and exposed X-ray film to these

slides, signal in the perifornical area was visible after 4 day

exposure in the littermate wild type (WT) mice, whereas this

region remained invisible after 40 days of exposure in ataxin-3

mice (Fig. 1). Loss of HCRT peptide in ataxin-3 mice could

potentially induce secondary changes in gene expression in

neighboring cells. Therefore we studied Hcrt KO mice and found

that Igfbp3 expression was similar to that of WT mice (Fig. 1)

indicating that loss of HCRT peptide itself did not induce changes

in Igfbp3 expression.

To investigate coexpression of HCRT and Igfbp3, we performed

Igfbp3 ISH followed by HCRT immunostaining. Colocalization of

both signals was seen in a majority (,80%) of hypocretin neurons

(Fig. 1). Using this technique, we also surveyed Igfbp3 expression

throughout the mouse brain. Significant Igfbp3 expression was

restricted to a few brain areas including posterior hypothalamus,

cerebellar Purkinje neurons, and a group of cells in the pons

localized in or close to the pedunculopontine nucleus. Weaker

signal was also seen in the ventromedial hypothalamus, granular

and pyramidal layers of the hippocampus, and endopiriform

nucleus. Expression in all regions other than posterior hypotha-

lamic area was unaffected in the Hcrt-ataxin-3 hemizygous (HZ)

mice.

IGFBP3 is localized in human hypocretin producing cells
IGFBP3 immunoreactivity was surveyed using various antibod-

ies (after screening selectivity by western blot) through an entire

human hypothalamic block. Blood vessels gave strong signal with

IGFBP3 antibody, possibly due to residual blood which has very

high IGFBP3 content. Other cells, mostly of non-neuronal origin

and negative for the NeuN neuronal marker were also stained.

Cellular IGFBP3 staining of NeuN positive large neurons was only

noted in the perifornical area. IGFBP3 and HCRT double

immunostaining detected colocalization in 10–20% of HCRT

neurons in the perifornical area (Fig. 2). All neurons showing

colocalization of IGFBP3 and HCRT appeared to have a reduced

hypocretin signal. Double-stained fibers were also observed in

multiple other hypothalamic areas. This colocalization was also

seen in some of the few remaining HCRT neurons in brains from

narcolepsy patients.

Identification of transcripts downregulated in the
hypocretin-ataxin-3 hemizygous transgenic mouse
model

Gene expression in perifornical posterior hypothalamus was

compared in Hcrt-ataxin-3 transgenic mice lacking most hypocre-

tin neurons versus wild type animals (two pools of 30 mice).

Transcripts with the highest fold changes are reported in Table 3.

Genes with known colocalization, such as NPTX2 and dynorphin,

were downregulated, validating the model. Other transcripts were

also found (Table 3), only one of which, IGFBP3, was

downregulated in human narcolepsy hypothalami. For this reason,

functional studies involving IGFBP3 and hypocretin were next

carried out.

Evaluation of IGFBP3 levels, genotype, and IGFBP3
antibodies in blood and CSF of narcoleptic patients

We investigated whether human narcolepsy is associated with

dysregulated IGFBP3 levels in the blood and CSF. Mean levels of

IGFBP3 in age and sex matched narcolepsy patients (all with low

CSF hypocretin-1) versus controls were 59.463.4 ng/ml (n = 11)

and 58.064.5 (n = 11) ng/ml in serum and 31.262.1 ng/ml

(n = 27) and 29.061.9 ng/ml (n = 35) in CSF respectively. As

previously reported [16], levels of IGFBP3 correlated with age but

not sex in adults. After controlling for these factors, there was no

significant difference in age of onset.

A single base polymorphism in the IGFBP3 promoter region (rs

2854744) strongly correlates with plasma IGFBP3 [17] levels. We

tested whether this IGFBP3 polymorphism is associated with

human narcolepsy-cataplexy by testing 130 trios using the

transmission disequilibrium test (TDT). No difference in trans-

mission was observed (53.5% versus 46.5% for the A allele; Chi

sq = 0.77, p = 0.38).

We also explored the possibility that autoantibodies directed

against IGFBP3 could be identified. We expressed human IGFBP3

in COS cells, and extracted proteins were western blotted. The

resulting membrane was incubated with sera from 22 human

narcoleptic and 20 control subjects and revealed with anti human

IgG. None of the patients (some with disease onset less than a year

prior to blood sampling) or controls had specific reactivity to

expressed IGFBP3.

IGFBP3 inhibits hypocretin production in vivo
To investigate whether IGFBP3 regulates hypocretin cell

physiology and sleep in vivo, we studied IGFBP3 knockout mice

(mIgfbp3 KO: C57BL/6J strain) [18] and two human IGFBP3

transgenic lines ( CD-1 strain) [19]: a transgenic mouse strain

overexpressing human IGFBP3 (hIGFBP3 transgenic), and a

transgenic strain overexpressing a mutated form of hIGFBP3 that

does not bind IGF (hmutIGFBP3 transgenic) [20]. These two lines

allowed us to distinguish IGF dependent and independent effects

of IGFBP3. Quantitative PCR analysis of human IGFBP3

transcripts in the hypothalamus of these models indicated that

IGFBP3 Regulates Hypocretin
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Table 2. Human narcolepsy susceptibility candidate genes analyzed by microarray, quantitative RT-PCR and distribution shown by
in situ hybridization in mice.

Microarray data Quantitative RT-PCR data In situ hybridization data

Affymetrix
Probe ID

Gene Name
(Gene Symbol) Chip

SAM
#

1/fold
change

P
(u-test)

Taqman
probe ID judgement 1/fc

P
(u-test) clone ID

Localization in
hyoocretin
area

206211_at selectin E (SELE) A 3 9.1 0.020 Hs00174057_m1 3.3 0.167 n/a n.t.

207642_at hypocretin (HCRT) A 1 8.7 0.001 Hs00533664_m1 validated 57.4 0.002 6974695 expressed

206346_at prolactin receptor (PRLR) A 2 6.1 0.013 Hs00168739_m1 1.0 1.000 5055400 n.c.

203766_s_at leiomodin1 (smooth muscle)
(LMOD1)

A 4 4.5 0.013 Hs00201704_m1 validated 2.2 0.014 3810437 n.e.

238018_at hypothetical protein
LOC285016

B 4 4.4 0.010 Hs01050040_g1 1.3 0.366 5060814 n.e.

235852_at stonin 2 (STN2) B 7 4.0 0.010 Hs00263833_m1 1.0 0.584 6475895 n.c.

201161_s_at cold shock domain protein A
(CSDA)

A 7 3.7 0.081 Hs01124963_m1 validated 2.0 0.014 6581631 n.c.

231044_at RP5-1065J22.5 (LOC127003) B 8 3.5 0.010 n/a n.t. 1746040 n.e.

241682_at kelch-like 23 (KLHL23) B 77 3.5 0.268 Hs00826289_m1 0.9 0.519 6818752 n.e.

222507_s_at TMEM9 domain family,
member B (TMEM9B)

B 15 3.5 0.106 Hs00221018_m1 0.8 0.465 5347159 n.c.

223333_s_at angiopoietin-like 4 (ANGPTL4) B 1 3.5 0.030 Hs00211522_m1 2.6 0.201 5148869 n.e.

226814_at ADAM metallopeptidase with
thrombospondin type 1 motif,
9 (ADAMTS9)

B 6 3.4 0.030 Hs00172025_m1 1.7 0.302 3999494 n.e.

206236_at G protein-coupled receptor 4
(GPR4)

A 5 3.4 0.001 Hs00270999_s1 validated 1.6 0.053 4038700 n.c.

227697_at suppressor of cytokine
signaling 3 (SOCS3)

B 5 3.2 0.030 Hs00269575_s1 2.1 0.121 6830087 n.c.

217414_x_at hemoglobin, alpha 2 (HBA2) A 16 3.2 0.043 Hs00361191_gl 3.0 0.068 5053650 n.e.

206512_at U2 small nuclear RNA
auxillary factor 1-like 1
(U2AF1L1)

A 100 3.2 0.282 Hs00428253_g1 0.9 0.465 6822265 n.c.

230828_at GRAM domain containing 2
(GRAMD2/LOC196996)

B 13 3.1 0.005 Hs01584657_m1 1.8 0.197 890859 n.e.

241534_at ATPase, class I, type 8B,
member 1 (ATP8B1)

B 91 3.1 0.149 Hs00194444_m1 1.4 0.121 6308651 n.e.

228766_at CD36 molecule
(thrombospondin receptor)
(CD36)

B 47 3.0 0.106 Hs00169627_m1 2.1 1.000 3481681 n.e.

211699_x_at chromosome 11 open
reading frame 70
(C11orf70/MGC13040)

B 2 3.0 0.048 Hs00262911_m1 1.6 0.366 6334520 n.e.

222802_at endothelin 1 (EDN1) B 25 2.8 0.005 Hs00174961_m1 validated 3.0 0.010 6824438 n.e.

206001_at neuropeptide Y (NPY) A 15 2.7 0.020 Hs00173470_m1 validated 3.5 0.039 5683102 n.c.

207896_s_at deleted in lung and
eshophageal cancer 1 (DLEC1)

A 70 2.7 0.181 Hs00201098_m1 1.7 0.366 872087 n.c.

231830_x_at RAB11 family interacting
protein 1 (class I) (RAB11FIP1)

B 19 2.7 0.048 Hs00368787_m1 1.0 0.914 4945175 n.e.

209304_x_at growht arrestand DNA-
damage-inducible, beta
(GADD45B)

A 21 2.6 0.005 Hs00169587_m1 validated 2.2 0.020 5032648 n.c.

236894_at LINE-1 type transposase
domain containing 1
(L1TD1/ECAT11)

B 11 2.6 0.034 Hs00219458_m1 undet 962927 n.e.

236034_at microcephaly, primary
autosomal recessive 1
(MCPH1)

B 83 2.6 0.030 Hs00226253_m1 0.8 0.361 6416651 n.e.

203548_s_at lipoprotein lipase (LPL) A 68 2.6 0.081 Hs00173425_m1 1.1 0.584 6315514 n.e.

211775_x_at hypothetical MGC13053 A 41 2.6 0.043 Hs00707696_s1 1.5 0.273 2937689 n.c.

206091_at matrilin 3 (MATN3) A 19 2.5 0.020 Hs00159081_m1 4.7 0.302 6306229 n.e.
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IGFBP3 is overexpressed approximately twice in hIGFBP3

transgenic animals and 10 times in hmutIGFBP3 transgenic

animals, but is absent in IGFBP3 knockout animals (data not

shown), validating these models. Immunocytochemistry did not

reveal hypocretin cell defects nor decrease in cell number in Igfbp3

knockout or transgenic animals (data not shown). We next

measured hypocretin-1 peptide content and hypothalamic pre-

prohypocretin expression (Fig. 3A–C) and found that preprohy-

pocretin mRNA expression was significantly decreased in hIGFBP3

transgenic animals compared to controls, but unaltered in the

other models (including hmutIGFBP3 transgenic and Igfbp3 KO

mice)(Fig 3A, C). Hypocretin-1 peptide contents were significantly

decreased primarily in hIGFBP3 transgenic and less so in

humtIGFBP3 transgenic mice compared to controls, indicating

both IGF dependent and less prominently independent properties

of IGFBP3 affect hypocretin production (Fig 3B). Hypocretin cell

Microarray data Quantitative RT-PCR data In situ hybridization data

Affymetrix
Probe ID

Gene Name
(Gene Symbol) Chip

SAM
#

1/fold
change

P
(u-test)

Taqman
probe ID judgement 1/fc

P
(u-test) clone ID

Localization in
hyoocretin
area

239151_at hypothetical protein
LOC255326

B 41 2.5 0.015 n/a n.t. n/a n.t.

212143_s_at insulin-like growth factor
binding protein 3 (IGFBP3)

A 11 2.5 0.001 Hs00181211_m1 validated 2.0 0.010 6437611 expressed

207526_s_at interleukin 1 receptor-like 1
(IL1RL1)

A 40 2.5 0.081 Hs00545033_m1 validated 6.1 0.028 MGC
30073421

n.e.

218775_s_at WW, C2 and coiled-coil
domain containing 2
(WWC2/BOMB)

A 65 2.5 0.181 Hs00227904_m1 1.2 0.273 5142576 n.c.

231728_at calcyphosine (CAPS) B 65 2.5 0.268 Hs00362033_g1 1.1 1.000 not expr. in
rodents

n.t.

n.t.; not tested, n.e.; no expression, n.c.; no coexpression in perifornical hypocretin area.
probe set ID is from aAffymetrix, QRT-PCR probe ID is from Applied Biosystems, and All clones for in situ hybridization are IMAGE clones except where noted.
Gene expression was compared between 6 narcolepsy and 8 control postmortem posterior hyptothalami (A and B Genechip). Narcolepsy candidate genes selected by
statistical analysis of microarray data are listed at left, quantitative RT-PCR results are in the center, and results of in situ hybridization in mouse hypothalamus are at the
right. As only downregulated genes were confirmed by RT-PCR studies, upregulated candidates are not shown. Genes labeled with ‘‘validated’’ were confirmed as
narcolepsy related genes. Note that IGFBP3 is the only gene validated by QRT-PCR and showing a hypocretin-like distribution pattern. Some candidates showed uniform
signal over the whole brain section, potentially indicating ubiquitous expression, but we regarded the staining as background and classified the gene as not expressed if
no anatomical variation in staining level was observed.
doi:10.1371/journal.pone.0004254.t002

Table 2. cont.

Figure 1. IGFBP3 signals in wild type, ataxin-3 hemizygous, and hypocretin KO mice. The upper panel shows IGFBP3 ISH staining in wild
type (A: WT), ataxin-3 hemizygous (B:HZ) and HCRT knockout (C: KO) mice. HCRT staining in neurons (arrowheads) is markedly reduced or absent in
the ataxin-3 mouse. The lower panel shows IGFPB3 ISH signal (D: purple; digoxigenin staining with BCIP/NBT), HCRT fluorescence (E: red; Alexa Fluor)
immunostaining, and a composite picture (F), indicating that many hypocretin neurons (asterisks) are positive for IGFBP3 in a WT mouse. Scale bar
20 mm.
doi:10.1371/journal.pone.0004254.g001
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counts were nonetheless normal in the hIGFBP3 transgenic model

(3269699 in HZ versus32306140 in WT, n = 4 each, age 8

weeks, mean6SEM). As a control, Melanin Concentrating

Hormone (MCH) expression was also studied and found to be

unaffected by hIGFBP3 overexpression or Igfbp3 absence (Fig. 3D).

IGFBP3 overexpression increases sleep at the end of the
active period

To assess whether IGFBP3 overexpression could modulate cell

death, hIGFBP3 transgenic mice were crossed with Hcrt-ataxin-3

transgenic mice known to develop hypocretin cell loss at 3–6 weeks

of age. Hypocretin cell counts were carried out at 8 weeks of age,

and no effect of the hIGFBP3 transgene was noted (595636 in

double HZ (hemizygous) versus 610667 in Hcrt-ataxin-3/hIGFBP3

HZ/WT, n = 5 each). We next characterized whether overex-

pression of IGFBP3 and resulting effects on hypocretin transmis-

sion affect sleep and wakefulness by conducting sleep studies on

hIGFBP3 transgenic mice and their littermates. Although no

overall significant difference in sleep amounts were observed

(Table S2), we found that these animals exhibit more sleep at the

end of the dark period. Sleep deprivation was also performed, and

revealed a very similar recovery profile, although more sleep was

again observed in transgenic animals prior to light onset (Fig. 4).

Sleep studies were not performed on mIgfbp3 KO mice considering

the absence of significant differences in Hypocretin mRNA and

peptide content in these animals (Fig. 3).

IGFBP3 reduces promotor activity of hypocretin in neural
cell lines

As IGFBP3 is known to have modulatory effects on transcrip-

tion, for example through its binding to nur 77 [21], a possible

explanation for IGFBP3 effects on sleep could be transcriptional

modulation of the preprohypocretin gene. To test this hypothesis,

prepro-hypocretin promotor activity was examined in several cell

lines of various origins in the presence of a transfected IGFBP3

construct (Fig. 3E). We found that IGFBP3 reduced promotor

activity of preprohypocretin in vitro. This effect was only observed

in the neural (neuroblastoma-derived) cell line SH-SY5Y,

suggesting the need for neural-specific cofactors.

An IGFBP3 polymorphism known to increase IGFBP3
serum levels is associated with reduced CSF hypocretin
levels

To test whether IGFBP3 activity regulates hypocretin levels in

vivo, DNA samples of 262 Caucasian subjects with normal CSF

hypocretin-1 levels (.200 pg/ml), either drawn from healthy

control subjects or from subjects with a complaint of sleepiness

unexplained by hypocretin deficiency, were typed for rs2854744

(2202A/C IGFBP3 promoter polymorphism). As previously

reported, no relationship between sleepiness/disease status, age

or sex and hypocretin levels were found. Interestingly however, a

significant dose dependent increase in hypocretin-1 level was

found with increasing doses of rs2854744 C, the allele associated

with decreased IGFBP3 levels (Fig. 3F). These results suggest that

this IGFBP3 polymorphism modulates hypocretin production in

vivo in humans.

Discussion

Gene expression profiling in postmortem human brain samples

using microarrays is a difficult and controversial area [22]. To

validate our technique, we compared transcript abundance in

regions known to contain specific neurotransmitters of importance

in sleep regulation. After filtering out genes with inconsistent

expression, a combination of a permutation method (SAM) and

Figure 2. Colocalization of IGFBP3 in HCRT cells in control and narcolepsy human brain. Upper panel: Distribution of hypocretin cells and
fibers in the perifornical area of human hypothalamus. (A) In control brains, HCRT cells and fibers were densely stained by an anti-HCRT monoclonal
antibody (red fluorescence: VectorRed), while in narcolepsy brains, staining was markedly reduced (B) Lower panel: HCRT immunoreactivity (C: red
fluorescence) and IGFBP3 immunoreactivity (D: green fluorescene; Q-dot525) and a composite picture (E) arrows indicate HCRT cells colocalized with
IGFBP3). Note non-neuronal autofluorescent elements. Scale bar: 500 mm in A and B, 100 mm in C, D and E.
doi:10.1371/journal.pone.0004254.g002
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descriptive quantitative ranking of fold changes was found to be

the most appropriate statistical analysis. The anterior and

posterior hypothalami are known to promote sleep and wake

respectively. The LC area was selected as a prototypical HCRT

receptor-1 bearing adrenergic cell group, while the diagonal band

was selected as an HCRT receptor-2 rich area containing

cholinergic neurons.

The comparison of regions showed a remarkably high

expression of genes characteristic for these regions (Table S1). In

the LC, for example, enriched genes included the presynaptically

Table 3. Mouse transcripts most differentially dysregulated in the perifornical area of ataxin-3 transgenic animals versus control
mice.

Affymetrix Probe ID Gene name (Gene symbol) Chip 1/Fold change

Decreased in Hz

448821_at Tyrosinase (Tyr) A 34.3

452022_at BAALC isoform 1-6-8 (Baalc) A 27.9

422411_s_at Eosinophil-associated ribonuclease 3 (Ear3) A 16.0

418353_at CD5 antigen (Cd5) A 9.2

416128_at Tubulin, alpha 6 (Tuba6) A 9.2

426003_at Neurotrophin-3 receptor non-catalytic isoform 1 (trkC) A 8.6

451014_at Receptor tyrosine kinase-like orphan receptor 1 (Ror1) A 8.0

450772_at Wingless-related MMTV integration site 11 (Wnt11) A 7.5

416266_at Prodynorphin (Pdyn) A 5.7

418035_a_at DNA primase, p58 subunit (Prim2) A 5.3

420471_at Hypocretin (Hcrt) A 5.3

439199_at Protein phosphatase 2a, catalytic subunit, alpha isoform (Ppp2ca) A 5.3

437618_x_at G protein-coupled receptor 85 (Gpr85) A 4.9

421767_at Adenosine kinase (Adk) A 4.6

450091_at Immunoglobulin mu binding protein 2 (Ighmbp2) A 4.0

427168_a_at Collagen type XIV (Col14a1) A 4.0

437502_x_at CD24a antigen (Cd24a) A 3.7

432129_a_at Paired related homeobox 1 (Prrx1) A 3.7

450315_at Pheromone receptor V3R8 (V3R8) A 3.5

455639_at Rap2 interacting protein (Rap2ip) A 3.5

423062_at Insulin-like growth factor binding protein 3 (Igfbp3) A 3.2

435950_at Periplakin (Ppl) A 3.2

421516_at Orphan receptor RTR (Nr6a1) A 3.2

419628_at Ceh-10 homeo domain containing homolog (Ch610) A 3.0

450533_a_at Zinc finger protein regulator of apoptosis and cell cycle arrest (Zac1) A 3.0

427835_at Transcription factor Oct-1 isoform 7 (Pou2f1) A 2.8

423026_at Rad51 homolog c (Rad51c) A 2.8

425175_at Gliacolin (C1ql3) A 2.8

425886_at ETS-domain transcription factor (Fev) A 2.6

418494_at Early B-cell factor 2 (Ebf2) A 2.6

426180_a_at MSG2alpha salivary protein (Vcs2) A 2.6

452380_at Ephrin receptor A7 (Epha7) A 2.6

419221_a_at Regulator of G-protein signaling 14 (Rgs14) A 2.5

449960_at Neuronal pentraxin 2 (Nptx2) A 2.5

421109_at Camello-like 2 (Cml2) A 2.5

460354_a_at Mitochondrial ribosomal protein L13 (L13mt) A 2.5

427832_at Testicular alpha tubulin (Tuba-rs1) A 2.5

Increased in Hz

418162_at Toll-like receptor 4 (Tlr4) A 19.7

The perifornical area of 30 wild type and 30 ataxin-3 transgenic mice lacking hypocretin cells were punched (see Fig. S1) and samples pooled to perform microarray
experiments. Hcrt-ataxin-3 transgenic mouse dysregulated genes are listed by order of transcript abundance (fold change). Most transcripts were decreased in Hcrt-
ataxin-3 mice, some of which are known to be colocalized with hypocretin (NPTX2, dynorphin). Note that IGFBP3, which was identified by expression profiling using
human hypothalami, was also decreased in this experiment.
doi:10.1371/journal.pone.0004254.t003
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Figure 3. IGFBP3 inhibits HCRT production in vivo and in vitro. (A, B) Hypocretin-1 peptide content is significantly decreased in both
hypothalamus and brainstem of IGFBP3 overexpressing transgenic mice (hIGFBP3 TG). In mutant IGFBP3 overexpressing mice (hmutIGFBP3 TG), the
hypocretin-1 peptide shows slight but significant decrease only in brainstem, not in hypothalamus (A, B). Hypocretin mRNA is also significantly
decreased in IGFBP3 (hIGFBP3 TG) mice but not in hmutIGFBP3 TG mice. (C) MCH mRNA level is not affected in hIGFBP3 TG or hmutIGFBP3 TG TG
mice.(D) IGFBP3 expression reduces preprohypocretin promotor activity in the SH-SY5Y neuroblastoma cell line, but not in non-neural cell lines (HeLa,
HEK, SF126, Becker). (F). In human subjects, rs2854744, 2202 C, a promotor polymorphism allele known to be associated with reduced IGFBP3
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located a2A- receptors and adrenergic transporters, catecholamine

synthesizing enzymes (tyrosine hydroxylase, DOPA decarboxylase

and dopamine-b-hydroxylase) and the transcription factors

PHOX2A and PHOX2B which are involved in the development

of this nucleus [23]. Additional work is indicated to validate and

study these genes, as they are potentially important in the

neurobiology of these regions. It is notable that our study

compared only four regions but was sufficient to effectively

identify a large number of region-specific genes.

These promising results led us to compare narcolepsy and

control posterior hypothalamus, the primary site of the biochem-

ical defect in narcolepsy (Table 2). In this comparison we used

slightly less stringent criteria with inclusion of the top 100 SAM

dysregulated genes followed by QRT-PCR validation using the

same brain sample sets. No genes were confirmed to be

upregulated, whereas 9 of 35 candidates were confirmed as

downregulated in the posterior hypothalamus of narcolepsy

patients. As expected, preprohypocretin was the top candidate in

this analysis, displaying a 9-fold change in expression through the

array comparison and a more than 50 fold change when verified

by RT-PCR (Table 2). This striking result suggests that if this

precise neuroanatomical region had been targeted, it would have

been possible to discover the central feature of narcolepsy -HCRT

deficiency- without a preconceived hypothesis. A recent micro-

array analysis in Parkinson’s disease also yielded excellent results

after careful dissection of the substantia nigra [24]. Our work thus

validates the use of postmortem samples for finding the cause of

certain neuropsychiatric disorders, a nascent field, provided that

careful selection of neuroanatomical regions is performed, as in

these studies.

The posterior hypothalamic candidates were also subjected to

neuroanatomical screening in mouse brain. The primary goal of

this analysis was to identify genes that are coexpressed with HCRT

and therefore lost in narcoleptic brains in association with death of

these cells. Very few such candidates are currently known, and

none is specific for HCRT neurons. Known coexpressed genes in

various species include NTPX2, GAL, PDYN, ENTPD3 (extonucleo-

side triphosphate diphosphohydrolase 3) and CART. These

transcripts were not identified in our human array analysis as

they either were expressed in other areas of the brain, leading to a

low SAM ranking (NPTX2, GAL, CART) or because the expression

was classified as absent in most samples (PDYN, ENTPD3),

although the QRT-PCR analysis indicated moderately decreased

expression of these genes in narcolepsy (see results).

A combination of QRT-PCR confirmation in human hypo-

thalamus and neuroanatomical screening in the mouse brain

identified a single factor, IGFBP3 that is coexpressed with HCRT

in both humans and mice and present in only a few other brain

areas. Confirmation of the colocalization was performed using

multiple techniques in both mouse (Fig. 1) and human (Fig. 2). A

combination of ISH and immunostaining showed Igfbp3 expres-

sion in a majority (,80%) of HCRT neurons in mice. One of the

most striking findings was the observation that Igfbp3 signal

decreased dramatically in the perifornical hypocretin cell region of

Hcrt-ataxin-3 transgenic mouse lacking most hypocretin producing

cells.

Although the other 7 QRT-PCR confirmed genes in the human

study were not found to be expressed in HCRT neurons,

additional work will be needed to explore the importance of these

genes in the pathophysiology of narcolepsy. In some cases,

expression was not detected by in situ hybridization in mice but

may still be present at low levels. Further, hypocretin cell loss in

narcolepsy might be triggered by yet unknown changes in

surrounding cells or structures. These factors would not be

identified in animal models with disrupted hypocretin neurotrans-

production, is dose dependently associated with increased CSF hypocretin-1 levels. A, B: *: p,0.05; **, p,0.01; ***:p,0.001; C: *: p,0.001 versus
without 3.2 kb promotor activity, #:p,0.001 versus promotor activity without IGFBP3; F: *: p,0.05 using ANOVA with genotype as a grouping factor.
Sample numbers were indicated in parentheses.
doi:10.1371/journal.pone.0004254.g003

Figure 4. Decreased wakfeluness in human IGFBP3 transgenic
mice. (A) Wakefulness is decreased in the second half of the dark/active
period in human IGFBP3 transgenic mouse (hIGFBP3 TG) versus wild
type littermates (WT). Reduced sleep rebound is also observed at the
same Zeitgeber times (ZT) after sleep deprivation. (B) Cumulative NREM
plots at baseline and during recovery after 6 hours of sleep deprivation.
Note increased sleep in IGFBP3 transgenic mice in the second half of
the active period, ZT17-24. **: p,0.01 versus WT; ***: p,0.001 versus
WT. Temperature and locomotion were also affected, see Fig. S2.
doi:10.1371/journal.pone.0004254.g004
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mission but would be downregulated in human brains. In this

respect, IL1RL1 may be of special interest as we found a 6.1 fold

difference by QRT-PCR, and this orphan receptor has a role in

immune regulation [25]. The other downregulated genes that

were found, or previously known to express elsewhere (eg NPY,

GPR4), may reflect physiologically important network remodeling

in narcolepsy.

Double immunostaining also revealed additional IGFBP3

immunoreactive, hypocretin negative cells in human hypothala-

mus (both neurons and glial cells). The IGFBP3 protein is

primarily produced and secreted by the liver and is the major

carrier of insulin-like growth factors 1 and 2 (IGF1, IGF2) in the

blood. The resulting IGFBP3-IGF complex is typically taken up by

cells through IGF receptor 1 to produce intracellular effects [26].

In this context, uptake of IGFBP3 by brain cells could render them

immunoreactive without accompanying gene expression. We

found that CSF levels of IGFBP3 were high, suggesting significant

translocation from serum into brain extracellular fluid. Other

explanations could involve antibody specificity issues and relative

differences in abundance between protein and mRNA in different

cells. Induction of IGFBP3 expression can occur in neurons and

glial cells under various conditions, for example hypoxia [27], and

this might also cause differences between humans and mice.

What function could IGFBP3 have in hypocretin producing

cells with regard to narcolepsy? As the protein is co-localized with

HCRT, IGFBP3 could have been an autoantigen involved in the

hypothesized autoimmune attack directed against the HCRT

neurons. We found no evidence for such autoantibodies in human

sera and CSF, however. IGFBP3 levels were similar in CSF and

serum of narcolepsy versus controls, and it is abundant in various

human brain cells, possibly reflecting cellular uptake of circulating

IGFBP3. These make it an unlikely candidate in directing an

autoimmune process specifically toward HCRT neurons.

Even if not directly involved as an autoantigen in causing

narcolepsy, IGFBP3 is still an interesting candidate as it plays key

roles in regulating cell proliferation and apoptosis [28]. The

interaction of IGFBP3 with IGFs is generally believed to have

primarily pro-growth effects by favoring target availability of IGF,

but growth-inhibiting effects have also been noted. IGFBP3 is also

reported to have proapoptotic properties independent of IGF-

binding. For example, IGFBP3 expression in cancer cells and in

the circulation is associated with less malignant growth and

decreased cancer risk in breast [29], prostate [30] and other

cancers [31]. Of note, the proapoptotic effects commence with

IGFBP3 translocation into the nucleus and binding of the retinoid-

X-receptor-a (RXRa), with subsequent mobilization of the RXRa
binding partner Nur77 from the nucleus to mitochondria, an event

followed by caspase activation and apoptosis [21]. We found no

intranuclear IGFBP3 staining in human hypocretin cells (Fig 2

D,E), suggesting no proapoptotic effects in surviving hypocretin

cells.

Recently however, proapoptotic effects of IGFBP3 independent

of nuclear translocation and protein secretion have been

demonstrated, suggesting additional cytoplasmic pathways also

promote apoptosis [30]. It is thus possible that IGFBP3 produced

within hypocretin cells would not be bound to IGFs, potentially

increasing vulnerability to proapoptotic processes. Indeed, hypo-

cretin neurons in slice cultures are more sensitive than neighboring

cells to NMDA receptor-mediated injury [32]. To test the

hypothesis that excessive IGFBP3 in hypocretin cells contributes

to this cell death, we crossed Hcrt-ataxin-3 transgenic mice

(animals with targeted cell death 2–4 weeks after birth) with

transgenic mice overexpressing human IGFBP3 (hIGFBP3), but

found no effects on the speed of hypocretin cell death. The lack of

effects of IGFBP3 on cell death in this model might be due to the

differences in circulating vs hypocretin cell specific IGFBP3

overexpression, or to lack of an IGFBP3 effect in the context of

ataxin-induced cell degeneration, but is consistent with the notion

that IGFBP3 may be proapoptotic only in specific circumstances,

such as cancerous cells.

The results above do not support the involvement of IGFBP3 in

causing hypocretin cell death in narcolepsy. We therefore next

explored whether IGFBP3 modulates hypocretin transmission,

with complementary in vitro and in vivo functional studies using

hIGFBP3 transgenic mice. We found that increased IGFBP3

decreases both hypocretin mRNA, and hypocretin peptide content

in hypothalamus and target areas (Fig. 3A–C). Although these

effects could be indirectly mediated by minor endocrine

abnormalities in these animals, for example hyperglycemia [33],

the in vitro findings that IGFBP3 expression suppresses HCRT

promotor activity (Fig. 3E) and that the functional IGFBP3

polymorphism rs2854744 is associated with reduced hypocretin

transmission, observed as lower levels of Hcrt-1 in human CSF

(Fig. 3F), makes this hypothesis unlikely. Overexpression of

hmutIGFBP3, a mutant form that does not bind IGF, also reduces

hypocretin peptide content in brainstem but not in hypothalamus

suggesting both IGF dependent and independent effects on

hypocretin transmission. Hypocretin transmission was normal in

Igfbp3 knockout mice, potentially reflecting functional redundancy

among the 7 known IGFBP family members.

Increased IGFBP3 expression (which was stable across the

24 hrs) was shown to have functional effects on sleep, as hIGFBP3

transgenic mice slept significantly more prior to light onset. It is

notable that the effect was primarily observed at the end of the

active period. As hypocretin release is highest at this time of the

day (equivalent to the evening in humans), higher IGFBP3 levels

may affect hypocretin transmission only at times of highest

demand, through the reduction of releasable peptide stores in

terminals.

IGFBP3 and IGF serum levels are highest around puberty, and

drop thereafter [16,34]. It is thus interesting to speculate that

increased sleepiness during puberty could coincide with peak

IGFBP3 levels. Most work to date has focused on the studies of

Growth Hormone, the primary determinant of IGF, while the

effects of IGF on sleep seem complex [35,36]. Additional

investigations of the chronic effects of IGFs and IGFBP3 on sleep

changes around puberty are needed [34]. IGFBP3, together with

IGF, is to be added to the growing list of metabolic indicators that

have been reported to regulate hypocretin activity.

In summary, this study exemplifies the successful use of human

postmortem brain for microarray analysis of human neuropathol-

ogy. The analysis not only confirmed known genes colocalized

with hypocretin cells but also identified a new candidate with

functional relevance to hypocretin cell physiology and sleep

regulation. This factor, IGFBP3, is only expressed at high levels in

a few neuronal cell groups besides hypocretin cells, and regulates

hypocretin transcription. We hypothesize that increased IGFBP3

amount in HCRT cells decreases HCRT production and reduces

wake under physiological conditions. When expression exceeds a

specific threshold however, it may initiate hypocretin cell death

and cause narcolepsy.

Materials and Methods

Human studies
Human samples. All blood and DNA samples were of

Caucasian origin. Narcolepsy and control brain donors were

primarily recruited through the Stanford narcolepsy brain
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donation program and the Stanford Brain Bank. Samples from 9

narcoleptic patients (89% Caucasian) and 14 Caucasian controls

were dissected. Six narcolepsy and 11 control samples were

analyzed after passing quality control (Table 1). Patients were all

HLA DQB1*0602 positive with cataplexy. Sera from 11

narcolepsy and 11 controls, CSF from 27 narcolepsy and 35

controls were also used for IGFBP3 measurements. DNA samples

from 130 parent-child trios (proband and parents), and 252

individuals with available CSF hypocretin level values in the

control range, were obtained and used. Informed consent was

obtained in accordance with Stanford human subjects policy and

the principles of the Declaration of Helsinki.

Brain dissection. Four brain regions were dissected:

posterior and anterior hypothalamus, LC and diagonal band of

Broca. Coronal sections (0.9 mm) of hypothalamus and diagonal

band, and transaxial brainstem sections were cut from frozen

blocks, mounted, and stored at 280uC. Digital photographs of the

blocks were used for orientation and identification of target

regions. The location of hypothalamic structures and the diagonal

band were determined using human atlas coordinates [37]. The

LC was identified by atlas location [38] and coloration.

Posterior hypothalamic samples were collected from the mam-

millary body (atlas fig.32, optic chiasm +13 mm) to the level where

the fornix enters the hypothalamus (fig. 25, optic chiasm +4 mm).

Anterior hypothalamic samples were collected from this level (fig. 24,

optic chiasm +3 mm) to the optic chiasm (fig. 19, optic chiasm

22 mm). Diagonal band areas closely surrounded the anterior

hypothalamus in the same planes. Hypothalamic and diagonal band

samples were dissected by scalpel, LC samples were collected with a

1.2 mm Palkovits punch (Stoelting Co., Wood Dale, IL).

RNA isolation and Array Hybridization. Biotinylated

cDNA synthesized from total RNA was hybridized to

microarrays (HG-U133 A and B, Affymetrix, Santa Clara, CA)

according to manufacturer protocols (Genechip manual,

Affymetrix). Fluorescent array images were scanned (Affymetrix

GeneArray 2500 or GeneChip 3000 scanner) and analyzed with

global scaling, adjusting mean target intensity to 500 for all probe

sets (Affymetrix MAS 5.0 software).

Quality control and sample comparisons. The pH of

each sample was measured (homogenate of a 106dilution of 0.5 g

of temporal cortex or striatum in water). Samples with pH#6.5

were excluded [39]. Integrity of extracted RNA was verified by

RNA nano LabChips on a 2100 Bioanalyzer (Agilent

Technologies, Palo Alto, CA). Samples with a 28S/18S ratio

below 0.5 were discarded (median ratio 0.81). Microarray data

was also used to estimate RNA quality (ratio of GAPDH 39 over 59

probe hybridization). Samples with a ratio over 8 were excluded

(median ratio 2.3). Postmortem interval had less effect on RNA

quality and subjects were included independent of interval

(median 7 hrs, all below 48 hrs).

We compared regional transcript abundance in 11 control

brains (74.0613.0 years old, PMI: 14.1617.0 hr, 63.6% male,

36.4% HLA DQB1*0602 positive). Sample size for brain regions

(varied due to availability and sample quality) included 8 posterior

hypothalami, 6 anterior hypothalami, 7 diagonal bands and 4

LCs. We compared posterior hypothalami of 6 narcoleptic

patients (68.8612.3 years old, PMI 15.7616.3 hr, 33.3% male,

all DQB1*0602 positive) and 8 controls (73.0613.0 years old, PMI

11.8615.0 hr, 62.5% male, 37.5% DQB1*0602 positive) for the A

chip, and 5 narcolepsy and 7 control samples for the B chip

(Table 1). Overall mean age, PMI and sex did not differ

significantly.

Statistical analysis of array data. MAS 5.0 was used for

signal calculation and present/absent determination combined

with SAM ranking analysis to identify significantly up/down

regulated genes. Data from the A and B chips were analyzed

separately. Probes with an absent or marginal call in more than

90% of samples were omitted as were array tags linked to multiple

genes, and only the highest SAM ranked probe for a gene was

included. Filtering eliminated 41% and 53% of the transcripts

from the A and B chips in the narcolepsy vs control comparison.

Results were reported as SAM rankings, fold changes in average

expression levels, and Mann-Whitney U-test p-values. The top 15

SAM upregulated genes were used for comparisons across brain

regions. Genes upregulated in two of three comparisons were

reported. For the comparison of posterior hypothalamus between

narcolepsy and control, the top 100 SAM up or down regulated

candidates were selected and sorted based on fold changes: those

above 2.5 or below 0.4 fold change were studied further.

Quantitative Reverse Transcriptase PCR. Candidate

transcripts were studied by QRT-PCR (ABI 7300 system,

Applied Biosystems, Foster City, CA). cDNA was synthesized

from total RNA using Superscript III Reverse Transcriptase and

random hexamer.(Invitrogen, Carlsbad, CA). Geometric means of

b-actin and b2-microglobulin were used for normalization

(geNorm analysis) [40]. After performing QRT-PCR for selected

genes in parallel with b-actin and b2-microglobulin, relative

expression quantity was calculated. Genes were considered

validated when the mean fold change was more than 1.5 and

Mann-Whitney U-test indicated statistical significance (p,0.05).

Expression differences for CART [41], GAL [42], PDYN [9] and

NPTX2 [10] were also verified.

Human brain immunohistochemistry. Six hypothalami (4

control, 2 narcolepsy) were fixed in 4% paraformaldehyde (PFA,

pH 7.3), cryoprotected and sectioned coronally to obtain a series

of 24 sections (40 mm). The following steps were performed at 4uC
interspersed with washes. Sections were (I) treated with 0.3%

H2O2, (II) post-fixed with 4% PFA, (III) blocked in 1.5% horse

serum, (IV) incubated with mouse anti-HCRT monoclonal

antibody (1:250) [43] or a monoclonal anti-NeuN antibody

(1:50,000;Millipore, Billerica, MA) (V) incubated with

biotinylated horse anti-mouse IgG (1:200; Vector Laboratories,

Burlingame, CA), (VI) alkaline phosphatase (AP) conjugated ABC

(1:100; Vector), and (VII) VectaRed AP-substrate (1:50; Vector) in

0.1 M Tris-HCl (pH 8.4) until satisfactory staining was obtained.

Sections were then (VIII) incubated in 1.5% rabbit serum, (IX)

goat anti-IGFBP3 antiserum (1:250; AF675 R&D Systems,

Minneapolis, MN), (X) biotinylated rabbit anti-goat IgG (1:200,

Vector), (XI) ABC reagent (1:100; Vector), (XII) biotinyl-tyramide

(1:500; PerkinElmer) with 0.03% H2O2, and (XIII) Qdot 525

streptavidin conjugate (1:100;Invitrogen) in borate buffer (pH 8.5).

Sections were mounted and analyzed under a fluorescence

microscope equipped with a CCD camera: images were digitally

merged to visualize the colocalization of signals.

Evaluation of hypocretin and IGFBP3 levels, antibodies

and IGFBP3 genotyping. CSF and serum IGFBP3 levels were

measured in duplicate using a total ELISA kit (DSL-10-6600;

Diagnostic Systems Laboratories, Webster, TX) according to the

manufacturer’s protocol. Average intra-assay coefficients of

variation were 2.5%. CSF hypocretin-1 levels were measured

using a radioimmunoassay as reported previously [2]. We tested

CSF of 27 narcolepsy and 35 matched controls, and serum from

11 narcolepsy and 11 controls.

Full length IGFBP3 cDNA (EcoR1-ApaI fragment, clone

5287665, Invitrogen) was subcloned into pCMV-Tag3 and

transfected into COS-1 cells (Lipofectamine 2000, Invitrogen).

Protein was extracted from cells and culture medium by standard

methods (RIPA buffer, and protocol Sigma, St. Louis, MO).
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Protein extracts were run on 10% SDS-PAGE gels, transferred

onto nitrocellulose, and incubated with anti-human IGFBP3

polyclonal antiserum (1:200; Santa Cruz Biotechnology, Santa

Cruz, CA), followed by horseradish peroxidase (HRP)-conjugated

donkey anti-goat IgG (1:4000) and then detected with Supersignal

West Pico chemiluminescence reagent (ThermoFisher, Wyman,

MA), revealing the 42 kDa IGFBP3 band. Similar membranes

were used to detect anti IGFBP3 antibodies in human sera.

Membranes were incubated with serum (1:200) followed by HRP-

donkey anti-human antiserum (1:5000), and chemiluminescent

detection. Twenty two narcolepsy and 20 control samples were

tested.

The single base pair polymorphism in the IGFBP3 promoter

(rs2854744, 2202 A/C) was genotyped in 130 Caucasian

narcolepsy-cataplexy trios and 262 adult Caucasian subjects

(54% females; mean age 35.860.8 years) using established

methods [17].

Mouse studies
Animals and tissue preparation. Five different mouse lines

were used: hypocretin-ataxin-3 transgenic mice lacking hypocretin

neurons (Hcrt-ataxin-3: C57BL/6J background), preprohypocretin

knockout mice (Hcrt KO: C57BL/6J background), IGFBP3

knockout mice (mIgfbp3 KO: C57BL/6J background) (courtesy of

Dr JE Pintar, University of Medicine and Dentistry of New Jersey,

Piscataway, NJ) [18], transgenic mice overexpressing human

IGFBP3 cDNA (hIGFBP3 transgenic: CD1 background),

transgenic mice overexpressing the Gly56/Gly80/Gly81 mutated

form of human IGFBP3 which lacks IGF binding (hmutIGFBP3

transgenic: CD1 background) (courtesy of Dr. LJ Murphy,

University of Manitoba, Winnipeg, Canada) [19]. The latter two

mouse strains allow differentiation between IGF-bound and IGF-

independent effects of the protein. Two human IGFBP3 genes

were driven by the same mouse phosphoglycerate kinase I

promotor, and were used to distinguish the effect of IGF

binding. In all transgenic comparisons, age matched mice of the

corresponding genetic background, usually littermates, were used

at all times. Mice were maintained under controlled temperature

(2161uC) and 12 h:12 h light-dark cycle with free access to food

and water. The entire study was approved and conducted in

accordance with the guidelines of Stanford’s Administrative Panel

for Laboratory Animal Care.

For neuroanatomical studies, mice were euthanized (pentobar-

bital) and perfused transcardially with saline followed by 50 ml

10% formalin (pH 7.4). Brains were fixed in 10% formalin, and

equilibrated with 20% sucrose/0.5% formalin. Coronal slices

(30 mm) containing the whole hypothalamus were sectioned into a

1:5 series and mounted.

Mouse microarray experiments. Groups of 30 wild type

and 30 ataxin-3 transgenic mice were used. Perifornical

hypothalamic 0.5 mm Palkovits punches encompassing the

hypocretin field (Fig. S1) were collected at ZT 22. Biotinylated

cRNA was synthesized from total RNA and hybridized to

Affymetrix Mouse 430 microarrays and scanned fluorescent

array images were analyzed with GeneChip Operating Software

(Affymetrix)

In situ hybridization for candidate genes. In situ

hybridization was performed on 6–10 week male C57BL/6J

mice. Mouse cDNA IMAGE clones (Table 2; Invitrogen) were

sequence verified (Bionexus, Oakland, CA) and used. Plasmid

DNA was linearized and transcribed with T7, T3 or SP6

polymerases (Promega, Madison, WI) and 35S-UTP (Amersham

BioSciences, Piscataway, NJ) or digoxigenin-UTP (Roche

Diagnostics, Indianapolis, IN) by standard methods.

Probes were diluted in standard hybridization buffer to 36106

counts per 125 ml. Sections were pretreated in citrate buffer

(pH 6.0), and hybridized with probe at 54uC, followed by RNase

A treatment and stringent washes (26SSC at 50uC; 0.26SSC,

55uC; 0.26SSC, 65uC), dehydrated and exposed to films for 1–40

days.

In situ hybridization of IGFBP3 and HCRT

immunostaining. Digoxigenin-labeled probe (1:500) was used

in hybridizations as described. Sections were treated with 3%

sheep serum/0.1% Triton X-100, and incubated overnight with

alkaline phosphatase-conjugated sheep anti-digoxigenin antibodies

(1:5000; Roche). Endogenous alkaline phosphatase was blocked

(levamisole) and hybridization was visualized by incubation in

0.3 mg/ml NBT(nitroblue tetrazolium) and 0.2 mg/ml BCIP(5-

bromo,4-choloro,3-indolylphosphate).

Sections with satisfactory IGFBP3 signal were immunostained

with highly specific rabbit anti-HCRT-1 antiserum (1:4000; made

with human HCRT-1 as immunogen). Slides were washed and

incubated with (I) biotinylated goat anti-rabbit IgG (1:500; Jackson

Immunoresearch, West Grove, PA), (II) ABC complex (1:1000;

Vector), (III) biotinylated tyramide diluted 1:50 in amplification

buffer (Perkin Elmer), (IV) Alexa Fluor-conjugated streptavidin

(1:200;Invitrogen).

To stain and count hypocretin cell populations, successive

sections encompassing the entire hypocretin field were stained

using an anti HCRT-1 antiserum as described above. Cells were

counted without corrections and blind of genotype status.

Hypocretin-1 radioimmunoassay. Frozen brain tissue of

animals sacrificed at Zeitbeger time ZT2–ZT3 were extracted with

1 mL of 0.5 M acetic acid and boiled in water bath for

15 minutes. Samples were cooled on ice and centrifuged at

50006g for 10 minutes. Protein concentration in the supernatant

was measured using the Bradford method (Bio-Rad Laboratories,

Hercules, CA). The supernatants were dried overnight at 50uC
and reconstituted in RIA buffer for radioimmunoassay using a

commercially available 125I RIA kit (Phoenix Pharmaceuticals,

Belmont, CA) as described [44]. The hypocretin contents were

corrected against protein concentrations.

Preprohypocretin, murine/human IGFBP3 and MCH

mRNA quantification. Total RNA from mice hypothalamic

regions with RNA extraction reagents (Qiagen, Valencia, CA) and

synthesized cDNA was subjected to TaqMan real time PCR

analysis to measure relative preprohypocretin, murine/human

IGFBP3, and MCH expression levels in parallel with ß-actin,

hypoxanthine-guanine phosphoribosyltransferase (HPRT) and

GAPDH as internal controls. HPRT was chosen for data

normalization due to its stable expression across the genotypes.

Mouse sleep recording and analysis. Nine wild type (WT)

and 13 transgenic (TG) mice (age 3–6 months) were implanted

under isofluorane anesthesia with telemetry transmitters (ETA-

F20, 3.9 g weight, Data Science International, St. Paul, MN)

capable of acquiring and sending electroencephalograph (EEG),

temperature, and movement data. The two EEG electrodes were

secured with dental cement at the following coordinates: anterior/

posterior from bregma (AP) 1.5 mm, lateral (ML) 1.5 mm and AP

23.5 mm, ML 23 mm. An analgesic (5 mg/kg Carprofen) and

antibiotics (5 mg/kg/day enrofloxacin) was given subcutaneously.

Mice were allowed to fully recover for a minimum of two weeks

before the experiments. Animals were recorded for a 48-hour

period, with the first 24 h undisturbed, followed by 6 h wake

extension by gentle handling, and 18 h undisturbed recovery.

EEG was sampled at 250 Hz, and the other parameters were

sampled at 50 Hz using DataQuest A.R.T. 3.1 (Data Science

International, St. Paul, MN). Recordings were scored manually in
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10 second epochs using SleepSign (Kissei America, Irvine, CA)

according to the method developed previously [45].

Hypocretin promoter studies
Cell culture. HeLa (human cervical carcinoma), SF126

(human glioblastoma), and Becker (human astrocytoma) cells

were grown in Dulbecco’s modified Eagle’s medium (DMEM;

GIBCO, Grand Island, NY) supplemented with 10% fetal bovine

serum (GIBCO),.and SH-SY5Y (human neuroblastoma) cells were

grown in DMEM/F12 supplemented with 5% horse serum

(GIBCO), at 37uC and 5% CO2.
Reporter plasmids. The pGL3-basic plasmid (Promega)

encoding the firefly luciferase gene was used for the promoter

activity assessment with introduced sequence and the pRL-TK

plasmid (Promega) encoding Renilla luciferase was used as internal

control for transfection efficiency. The plasmid 3.2 kb Hcrt/pGL3

was constructed by cloning the HCRT promoter sequence at

23278/+87 [46] into upstream of the firefly luciferase gene in

pGL3-Basic plasmid; 59- ccgctcgagGGTGTCTGGCGCTCAG

GGTG-39 (corresponds to the first exon sequence just before the

translation initiator ATG of human prepro-Hcrt gene, and 59-

CGACGCGTGGATCCAGATGCCTCTGAATAG-39 (23278)

were used.
Transient transfection. Cells were seeded at a 250,000 per

well in 24-well cell culture plate coated with collagen type I (BD

Biosciences, Bedford MA) one day before transfection. Cells were

co-transfected with three types of plasmid mixed in the following

amount per well with FuGENE 6 Transfection Reagent (Roche):

200 ng firefly luciferase-encoding reporter plasmid (pGL3-basic or

3.2 kb Hcrt/pGL3), 20 ng Renilla luciferase-encoding internal

control reporter plasmid (pRL-TK), and 200 ng expression vector

(pCMV-Tag3 as mock or IGFBP3/pCMV-Tag3).
Luciferase activity measurements. At 24 h after

transfection, cells were washed and lysed with 100 mL passive

lysis buffer (Promega). Activities of two luciferases encoded by

reporter plasmids and internal control plasmids were measured

sequentially twice using the Dual-Luciferase Reporter assay

reagents (Promega) and PLATE CHAMELEON multilabel

platereader (HIDEX, Finland) according to the manufacturer’s

protocol. Relative luciferase activity (RLA) was determined by

FLU value divided by RLU value. All RLA values were further

standardized by the reference RLA value for pGL3-basic plasmid

with pCMV-Tag3 vector (mock) as 1.0.

Supporting Information

Table S1 Cross-regional comparison of transcript abundance in

selected human brain regions. Comparison of microarray

expression data across 4 brain regions in control subjects The

listed genes have enriched expression in the indicated region, as

compared to the other regions. For example, PMCH gene

expression was increased 73.8 fold in the posterior hypothalamus

when compared to the anterior hypothalamus and ranked #1

using the SAM analysis. Similarly, PMCH gene expression in the

posterior hypothalamus ranked first versus the diagonal band

sample (3.3 fold change), and the LC (275.1 fold change). Only

genes enriched in one region versus at least two other regions are

listed (see methods).

Found at: doi:10.1371/journal.pone.0004254.s001 (0.13 MB

DOC)

Table S2 Overall sleep parameters in mice overexpressing

human IGFBP3 (TG) versus wild type littermates (WT)Although

total wake is decreased in TG mice, the difference is not

statistically significant. Hour by hour analysis revealed that

decreased wake occurred prior to light onset (see Fig. 4).

Found at: doi:10.1371/journal.pone.0004254.s002 (0.06 MB

DOC)

Figures S1 Perifornical hypothalamic region dissected for

microarray analysis in mice (A) and transcript abundance

distribution plots correlating abundance in wild type versus

ataxin-3 transgenic mice (B). (A) Immunocytochemistry of

hypocretin in wild type (WT, top) and Hcrt-ataxin-3 transgenic

mouse (bottom). The area collected using punches is outlined by a

circle in wild type versus transgenic mice lacking most hypocretin

cells. Transcript abundance distribution (B) in both genotypes is

highly correlated, and hypocretin is one of the outliers (circled

dot). For list of differentially regulated transcripts, see Table 3.

Found at: doi:10.1371/journal.pone.0004254.s003 (1.56 MB TIF)

Figure S2 Locomotion (A) and temperature (B) in wild type

(WT) versus hIGFBP3 transgenic mice (Tg). Note decreased

temperature and locomotion at the end of the active period in

hIGFBP3 transgenic mice, mirroring changes in sleep depicted in

Fig. 4.

Found at: doi:10.1371/journal.pone.0004254.s004 (5.70 MB TIF)
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