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ABSTRACT

Introduction: Peripheral neuropathy is repor-
ted in obesity even in the absence of
hyperglycaemia.
Objective: To compare the prevalence and
characterise the phenotype of peripheral neu-
ropathy in people living with obesity (OB) and
long-duration type 1 diabetes (T1D).

Patients and Methods: We performed a
prospective cross-sectional study of 130 partici-
pants including healthy volunteers (HV)
(n = 28), people with T1D (n = 51), and OB (BMI
30–50 kg/m2) (n = 51). Participants underwent
assessment of neuropathic symptoms (Neu-
ropathy Symptom Profile, NSP), neurological
deficits (Neuropathy Disability Score, NDS),
vibration perception threshold (VPT) and eval-
uation of sural nerve conduction velocity and
amplitude.
Results: Peripheral neuropathy was present in
43.1% of people with T1D (age 49.9 ± 12.9
years; duration of diabetes 23.4 ± 13.5 years)
and 33.3% of OB (age 48.2 ± 10.8 years). VPT
for high risk of neuropathic foot ulceration
(VPT C 25 V) was present in 31.4% of T1D and
19.6% of OB. Participants living with OB were
heavier (BMI 42.9 ± 3.5 kg/m2) and had greater
centripetal adiposity with an increased body fat
percentage (FM%) (P\0.001) and waist cir-
cumference (WC) (P\0.001) compared to T1D.
The OB group had a higher NDS (P\0.001),
VAS for pain (P\ 0.001), NSP (P\0.001), VPT
(P\0.001) and reduced sural nerve conduction
velocity (P\0.001) and amplitude (P\ 0.001)
compared to HV, but these parameters were
comparable in T1D. VPT was positively associ-
ated with increased WC (P = 0.011), FM%
(P = 0.001) and HbA1c (P\0.001) after adjust-
ing for age (R2 = 0.547). Subgroup analysis of
respiratory quotient (RQ) measured in the OB
group did not correlate with VPT (P = 0.788),
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nerve conduction velocity (P = 0.743) or
amplitude (P = 0.677).
Conclusion: The characteristics of peripheral
neuropathy were comparable between normo-
glycaemic people living with obesity and people
with long-duration T1D, suggesting that meta-
bolic factors linked to obesity play a pivotal role
in the development of peripheral neuropathy.
Further studies are needed to investigate the
mechanistic link between visceral adiposity and
neuropathy.

Keywords: Diabetes; Diabetic neuropathies;
Indirect calorimetry; Obesity; Peripheral
neuropathy

Key Summary Points

Why carry out this study?

Prevalence of neuropathy in people living
with obesity even with normoglycaemia is
well recognized. This study aimed to
evaluate the differences in neuropathy
phenotype between primarily
hyperglycaemia-driven versus obesity-
driven cardiometabolic factors in the
development of axonal peripheral
neuropathy.

What was learned from the study?

The prevalence and phenotype of
peripheral neuropathy are comparable
between normoglycaemic people with
obesity and long-duration type 1 diabetes,
suggesting that obesity-related risk factors
and hyperglycaemia may contribute
equally to the development of
neuropathy.

Higher centripetal adiposity, BMI, total
body fat and triglycerides in people with
obesity are independent risk factors for
elevated vibration perception threshold
and peripheral neuropathy.

Metabolic markers of impaired fat
oxidation are not associated with
peripheral neuropathy in obesity.

INTRODUCTION

The global prevalence of obesity has more than
doubled since the 1980s, affecting an estimated
604 million adults and 108 million children [1].
Within the UK, 27% of adults are obese (body
mass index (BMI) C 30 kg/m2) [2], and 3–4% are
severely obese (BMI C 40 kg/m2) [3]. Further-
more, the prevalence of obesity is projected to
rise substantially by 2030 in the USA, such that
48.9% of adults will be obese and 24.2% will be
severely obese [4].

Obesity is associated with systemic inflam-
mation and endothelial dysfunction which can
lead to peripheral neuropathy in both type 2
diabetes (T2D) [5], and type 1 diabetes (T1D) [6].
The EURODIAB study demonstrated that BMI,
hypertension and dyslipidaemia had compara-
ble risk to HbA1c for incident neuropathy in
people with T1D [7]. The Anglo-Danish-Dutch
study of Intensive Treatment of Diabetes in
Primary Care (ADDITION) confirmed that
abdominal obesity independently predicted
peripheral neuropathy in newly diagnosed
patients with T2D [8]. Furthermore, obesity has
been associated with peripheral neuropathy
independent of hyperglycaemia and hyper-
triglyceridemia [9]. The Rotterdam study repor-
ted that abdominal obesity, metabolic
syndrome and dyslipidaemia were strongly
associated with peripheral neuropathy in the
absence of diabetes [10]. In addition, symp-
tomatic peripheral neuropathy is more com-
mon in metabolic syndrome, independent of
glycaemic status [11]. Indeed, the Monica/Kora
Augsburg study demonstrated that neuropathic
pain was independently associated with body
weight and waist circumference in subjects with
impaired glucose tolerance (IGT) [12].

The pathognomonic manifestations of insu-
lin resistance, which include a decrease in
metabolic flexibility and impaired ability to
switch between fat and carbohydrate metabo-
lism, are putative factors linking obesity and
peripheral neuropathy [13]. Insulin resistance is
associated with low-grade inflammation which
contributes to endothelial dysfunction and
microvascular complications [13]. Our study
compared the prevalence and characteristics of
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peripheral neuropathy in people with obesity to
people with long-duration T1D. We have eval-
uated the putative link between respiratory
quotient (as a marker of substrate oxidation at
rest) and peripheral neuropathy in people with
obesity.

METHODS

Selection of Patients

We performed a prospective cross-sectional
study from January 2019 to March 2021 in (1)
healthy volunteers (HV), (2) people with T1D
and (3) people with obesity (OB) (BMI 30–50 kg/
m2) without diabetes were recruited from
Liverpool University Hospitals NHS Foundation
Trust clinics. The exclusion criteria for partici-
pants in the OB group were (1) previous bar-
iatric surgery, (2) thyroid disorders, (3)
concurrent use of weight loss medication,
including orlistat, phentermine, sibutramine,
naltrexone/bupropion, glucagon-like peptide 1
(GLP-1) receptor agonist within 3 months prior
to screening and (4) a formal diagnosis of
peripheral neuropathy of any origin. The
exclusion criteria for T1D group were (1) people
with class 2 or 3 obesity (BMI C 30 kg/m2), (2)
excessive alcohol intake, (3) neuropathy of non-
diabetes origin. HVs were excluded if they were
taking medications for hypertension or hyper-
lipidaemia. The sample size was not calculated
formally as we were recruiting unselected
patients for feasibility. We intended to base the
sample size calculation upon the vibration per-
ception threshold measurements and these data
for future studies. The study received relevant
research ethics approval by the University of
Liverpool Clinical Trials Unit and the North-
west Research Ethics Committee (18/NW/0532).
This study received the health regulatory
approval and was conducted in accordance with
the Declaration of Helsinki and Good Clinical
Practice (GCP). All subjects provided informed
consent to participate in the study.

Clinical Assessments

Eligible subjects underwent weight, waist cir-
cumference (WC), BMI, total body fat percent-
age (FM%), and blood pressure measurements.
Body composition was determined using the
two-electrode leg-to-leg bio-impedance analyser
machine (Tanita TBF-300MA, Tanita Corpora-
tion, Tokyo, Japan). Normoglycaemia
(HbA1c\39 mmol/mol), prediabetes (HbA1c
39–47 mmol/mol), and diabetes mellitus
(HbA1c C 48 mmol/mol) were classified
according to the Expert Committee on the
Diagnosis and Classification of Diabetes Melli-
tus [14].

Neurological Assessment

Neurologic deficits according to the Neuropathy
Disability Score (NDS), with a score of 0–2 (out
of 10) graded as no neuropathy, 3–4 mild neu-
ropathy, 5–8 moderate neuropathy, 9–10 severe
neuropathy, and the neuropathy symptom
profile (NSP) (out of 38) was assessed. All sub-
jects scored the average intensity of their neu-
ropathic pain over the previous 2 weeks on a
continuous visual analogue scale (VAS), where
‘‘0’’ and ‘‘10’’ indicated ‘‘no pain’’ and ‘‘worst
possible pain’’, respectively.

Peripheral neuropathy was defined accord-
ing to the Toronto consensus [15] i.e. the pres-
ence of an abnormality of nerve conduction
and a symptom or symptoms and/or a sign or
signs of neuropathy. Vibration perception
threshold (VPT) was measured from an average
of three values on the large toe using a neu-
rothesiometer (Horwell, Scientific Laboratory
Supplies, Wilford, Nottingham, UK). Partici-
pants with impaired VPT were defined by VPT of
15–24 V, whilst participants with C 25 V were
deemed at high risk for neuropathic foot ulcer.

Sural nerve conduction velocity (SNCV) and
sural nerve action potential (SNAP) were mea-
sured using the point-of-care device NC-Stat�

DPNCheckTM system (Neurometrix, Waltham,
USA). The NC-Stat DPNCheck has good relia-
bility and reproducibility and correlates well
with SNCV (R = 0.81) and moderately with
SNAP (R = 0.62) derived from nerve conduction
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studies (NCS) as a reference method [16]. The
point-of-care conduction device results were
evaluated against the reference values provided
for the device (abnormal result defined by
amplitude B 4 lV or conduction veloc-
ity B 44 m/s). The device cannot detect SNAP
signals of\2.1 lV and automatically calibrates
these values as zero [16]; therefore, all zero
results were recorded as 2.0 lV. For instances
when operators were unable to attain or detect
SNCV or SNAP signals, the results were recorded
as clinical neuropathy. Operators were trained
to reduce errors by using a fixed conduction
distance and filter settings and maximizing
amplitude to improve the signal to noise ratio
[16].

Fat Oxidation Assessment

Respiratory quotient (RQ) serves as an index of
substrate metabolised by active tissue and is
represented by the ratio of volume of oxygen
inspired (VO2) to the volume of carbon dioxide
exhaled (VCO2) during a (fasted) resting meta-
bolic state. The novel open-circuit
portable indirect calorimeter ECALTM (Meta-
bolic Health Solutions, Australia) (ISO 13485)
utilised a proprietary mouthpiece (single use)
and a nose clip. VO2 is measured using a gal-
vanic fuel cell oxygen analyser. VCO2 is mea-
sured using a patented ultra-low power VCO2

analyser which uses light-emitting diode and
detector technology in a novel non-dispersive
near-infrared absorption sensor. Calibrations
were performed using 5% carbon dioxide. A
successful test was defined as a steady state
achieved with a minimum of five consecutive
minutes with less than 10% coefficient of vari-
ation in FEO2 and FECO2.

Statistical Analysis

Descriptive statistics were presented as
mean ± standard deviation or value with per-
centage. Means were compared between the
three groups (HVs, OB and T1D) using the
analysis of covariance (ANCOVA) adjusted for
age with Bonferroni adjustment or
Kruskal–Wallis with post hoc test. Univariate

and multivariate linear regression was used to
model VPT as a function of the metabolic syn-
drome components (WC, HDL, triglycerides,
systolic blood pressure), after adjusting for age.
Statistical analysis was performed using IBM
SPSS version 27.0 (IBM Corp., Armonk, NY,
USA).

RESULTS

Demographics

One hundred and thirty participants (HV, n =
28; T1D, n = 51; OB, n = 51) matched for age
were studied; however, the proportion of female
participants in the OB group (75%) was greater
than the T1D group (47%) (P = 0.005). The
demographics, anthropometric measures, clini-
cal and metabolic phenotyping are summarised
in Table 1. The mean duration of T1D was
23.4 ± 13.5 years. As expected, participants
with obesity (OB) had a greater BMI (P\0.001),
body fat percentage (P\0.001), WC
(P\0.001), total cholesterol (P\0.001), LDL-
cholesterol (P\ 0.001) and triglycerides
(P\0.001) compared to participants with T1D.
According to the National Cholesterol Educa-
tion Program (NCEP) Adult Treatment Panel III
(ATPIII) definition of metabolic syndrome, 58%
of participants fulfilled the criteria for metabolic
syndrome in the OB group.

Neuropathy Assessment

Peripheral neuropathy measures are sum-
marised in Table 2. Peripheral neuropathy was
present in 43.1% of participants with T1D and
33.3% of participants living with OB according
to the Toronto consensus criteria for peripheral
neuropathy. Impaired VPT (15–24 V) and
advanced VPT deemed at high risk of neuro-
pathic ulcer (C 25 V) were present in 19.6% and
31.4% in T1D and 23.5% and 19.6% of partici-
pants living with OB. There were no differences
in VAS for pain, NSP, NDS, VPT, SNCV and
SNAP between T1D and OB groups. However,
both T1D and OB groups demonstrated greater
VAS for pain, NDS, NSP, VPT, SNCV and SNAP

Adv Ther (2022) 39:4218–4229 4221



compared to HV (P\ 0.001). There was an
association between VPT and VAS pain
(R2 = 0.330) (Fig. S1 in the supplementary
material).

We evaluated correlation between VPT as the
primary dependent variable with anthropo-
metric, metabolic and body composition mea-
surements in the whole cohort (OB, HV, and
T1D) using Pearson’s correlation analysis
(Table 3). VPT correlated with NSP (q = 0.841,
P\ 0.001), VAS (q = 0.761, P\0.001) and WC
(q = 0.420, P\ 0.001). VPT also correlated with
age (q = 0.269, P = 0.002), BMI (q = 0.348,
P\ 0.001), body fat percentage (FM%)
(q = 0.280, P = 0.001), HbA1c (q = 0.400,
P\ 0.001), total cholesterol (q = 0.227,
P = 0.010), triglycerides (q = 0.299, P = 0.001),
systolic BP (q = 0.379, P\0.001), and diastolic

BP (q = 0.350, P\0.001) (Table 3). Subgroup
analysis was performed in the OB group to
evaluate the association between VPT and that
of metabolic biomarkers obtained from indirect
calorimetry (REE and RQ). REE and RQ data
were obtained and performed in the OB group
only (Table 3).

Stepwise multivariate linear regression mod-
elling was performed with VPT as the depen-
dent variable from the entire cohort (HV,
T1D and OB) (Table 4). In model 1, BMI
(b = 0.333; P\0.001) and age (b = 0.249;
P = 0.002) correlated with VPT as the primary
dependent variable. In model 2, VPT correlated
with age (b = 0.257; P\0.001) and WC
(b = 0.433; P\ 0.001), but not BMI (P = 0.214)
and FM% (P = 0.119). In model 3, VPT corre-
lated with age (b = 0.149; P = 0.037), WC

Table 1 Demographics, clinical and metabolic characteristics in HVs and participants with T1D and OB

HV (n = 28) T1D (n = 51) OB (n = 51) P value

HV vs T1D HV vs OB OB vs T1D

Age (years) 43.0 ± 6.9 49.9 ± 12.9 48.2 ± 10.8 0.067 0.146 0.960

Duration of T1D (years) – 23.4 ± 13.5 – – – –

Female, n (%) 18 (64) 24 (47) 38 (75) 0.383 0.133 0.005

Weight (kg) 67.6 ± 10.1 80.6 ± 20.9 116.2 ± 12.9 0.002 \ 0.001 \ 0.001

BMI (kg/m2) 23.3 ± 2.6 28.0 ± 5.1 42.9 ± 4.0 \ 0.001 \ 0.001 \ 0.001

WC (cm) 89.1 ± 11.6 95.1 ± 19.1 125.5 ± 14.9 0.924 \ 0.001 \ 0.001

FM% (%) 24.6 ± 2.9 26.5 ± 3.4 52.4 ± 2.7 0.457 \ 0.001 \ 0.001

HbA1c (%) 5.5 ± 0.2 8.7 ± 1.3 5.6 ± 0.3 \ 0.001 0.430 \ 0.001

\ 0.001HbA1c (mmol/mol) 37.0 ± 2.2 76.2 ± 14.1 37.8 ± 2.7 \ 0.001 0.441

TChol (mmol/l) 4.1 ± 0.2 4.4 ± 1.1 5.0 ± 0.8 0.869 \ 0.001 \ 0.001

HDL (mmol/l) 1.2 ± 0.2 1.3 ± 0.2 1.3 ± 0.3 0.712 0.712 0.712

LDL (mmol/l) 2.0 ± 0.3 2.1 ± 0.9 2.9 ± 0.9 0.917 \ 0.001 \ 0.001

TRIG (mmol/l) 1.2 ± 0.2 1.4 ± 0.9 2.2 ± 0.7 0.906 \ 0.001 \ 0.001

eGFR (ml/min/1.73 m2) 82 ± 9 79 ± 18 80 ± 11 0.863 0.895 0.883

Data presented as mean ± SD with significant differences measured by ANCOVA adjusted for age with Bonferroni
adjustment or Kruskal–Wallis test with post hoc test
NS non-significant, BMI body mass index, eGFR estimated glomerular filtration rate, FM% body fat percentage, HbA1c
glycated haemoglobin, HDL HDL-cholesterol, LDL LDL-cholesterol, HV healthy volunteers, OB obesity, T1D type 1
diabetes, TChol total cholesterol, TRIG triglycerides, WC waist circumference
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(b = 0.382; P = 0.018), FM% (b = 0.783;
P\ 0.001) and HbA1c (b = 1.051; P\ 0.001)
but there was no significant correlation with
BMI, total cholesterol, triglycerides, systolic and
diastolic blood pressure.

Obese With and Without Peripheral
Neuropathy

Of the 51 participants with OB, 33.3% (n = 17)
fulfilled the criteria for peripheral neuropathy
according to the Toronto consensus criteria on
peripheral neuropathy [15]. Within the OB
group, the prevalence of impaired VPT
(15–24 V) was 23.5% (n = 12) and prevalence of
advanced VPT deemed at high risk of neuro-
pathic ulcer (VPT C 25 V) was 19.6% (n = 10).
The peripheral neuropathy subgroup within OB
had a greater NSP (P\0.001), VAS for pain
(P\0.001) and VPT (P\0.001) with lower

SNCV (P\0.001) and SNAP (P = 0.003). WC
(P = 0.028) and FM% (P\0.001) were signifi-
cantly higher in obese participants with
peripheral neuropathy compared to those
without peripheral neuropathy.

In the OB group, measured substrate oxida-
tion, represented by the RQ (mean RQ = 1.016;
95% CI 0.9888–1.044) during the rested and
overnight fasted metabolic state, was not asso-
ciated with VPT (P = 0.934), sural nerve con-
duction velocity (SNCV) (P = 0.743) or sural
nerve amplitude (SNAP) (P = 0.677).

DISCUSSION

This cross-sectional study demonstrated a
comparable prevalence of peripheral neuropa-
thy in normoglycaemic people with obesity
compared to people with long-duration T1D.
This advocates that peripheral neuropathy is a

Table 2 Peripheral neuropathy measurements in HVs and participants with T1D and OB

HV (n = 28) T1D (n = 51) OB (n = 51) P value

HV vs T1D HV vs OB OB vs T1D

VAS Pain

(–/10)

Median (IQR)

0.3 ± 0.6

0 (0–0.5)

3.3 ± 3.5

3 (0–7)

3.0 ± 1.5

3 (2–4)

\ 0.001 \ 0.001 0.50

NDS (–/10)

Median (IQR)

0 ± 0

0 (0–0)

3.3 ± 3.8

2 (0–8)

2.4 ± 2.9

1 (0–6)

\ 0.001 \ 0.001 0.52

NSP (–/34)

Median (IQR)

0.1 ± 0.5

0 (0–2)

9.3 ± 8.6

6 (2–18)

9.1 ± 7.7

6 (2–16)

\ 0.001 \ 0.001 0.28

VPT (V) 8.9 ± 2.0 18.9 ± 10.2 17.5 ± 5.8 \ 0.001 \ 0.001 0.33

SNCV (m/s) 50.5 ± 3.4 41.2 ± 7.7 42.2 ± 6.1 \ 0.001 \ 0.001 0.75

SNAP (lV) 15.7 ± 2.2 7.3 ± 3.4 7.5 ± 2.9 \ 0.001 \ 0.001 0.94

Impaired VPT (15–24 V) (%) 0 19.6 23.5 – – –

Advanced VPT (C 25 V) (%) 0 31.4 19.6 – – –

Toronto criteria (%) 0 43.1 33.3 – – –

Data presented as mean ± SD
HV healthy volunteers, NCS nerve conduction study, NDS neuropathy disability score, NSP neuropathy symptom profile,
OB obesity, SNAP sural nerve action potential, SNCV sural nerve conduction velocity, T1D type 1 diabetes, Toronto
consensus criteria for peripheral neuropathy, VAS pain visual analogue score for pain, VPT vibration perception threshold
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result of a culmination of complex interaction
of several aetiologically linked pathophysiolog-
ical processes. Furthermore, our report demon-
strates that there is a positive association
between obesity and greater centripetal adipos-
ity, approximated by increased waist circum-
ference and increased body fat percentage, with
increased and/or impaired VPT. The link
between obesity and peripheral neuropathy
have been attributed to metabolically driven

cardiovascular risk factors such as hypertension,
hyperlipidaemia and inflammation [7, 17]
leading to degenerative processes within the
small nerve fibres. However, these mechanisms
are not fully elucidated. Obesity and hyper-
triglyceridemia predict the development of
diabetic neuropathy in T2D, independent of
glycaemic control [18]. In a recent cross-sec-
tional study of 47 participants with severe obe-
sity and 30 age-matched controls, participants
with severe obesity had a higher NSP, abnormal
thermal thresholds and lower sural and per-
oneal nerve amplitudes compared to controls,
and those with obesity and small nerve fibre
damage had higher triglycerides and prevalence
of metabolic syndrome (58% vs 23%; P = 0.02)
[19]. Interestingly, we did not demonstrate an
association between neuropathy and triglyc-
erides, likely because of the good control of
lipids in the OB cohort as they were under the
care of a tertiary weight management clinic.
Experimental studies have demonstrated that
neurones send vasoactive signals to increase
vascular permeability and attract adaptive
immunogenic cells in high fat diet-fed rodents
with obesity, dyslipidaemia and neuropathy
[20, 21]. Although initially a protective mecha-
nism, persistent dysfunction secondary to obe-
sity-mediated inflammation results in structural
neuronal damage. Further, inflammatory
mediators (tumour necrosis alpha and inter-
leukin-1B) and macrophages promote a long-
term microvascular inflammatory response and
impairment of insulin signalling in the periph-
eral nervous system [22]. Peripheral neuropathy
has been associated with increased abdominal
and visceral obesity [23]. In addition, obstruc-
tive sleep apnoea (OSA) which is prevalent in
severe obesity and even in T1D is an indepen-
dent risk factor for axonal dysfunction of
peripheral sensory nerves [24]. Unfortunately,
OSA data was not available within this cohort
and this risk factor could not be further inves-
tigated in the current study.

Autonomic dysfunction may be involved in
the development of obesity and visceral/central
obesity with increased peripheral insulin resis-
tance [25, 26]. Xu et al. showed that BMI was an
independent risk factor for abnormal plantar
pressures and increased VPT [27]. In patients

Table 3 Pearson’s correlation of variables against vibra-
tion perception threshold

VPT

q P

Age 0.269 0.002

Female 0.110 0.214

BMI 0.348 \ 0.001

WC 0.420 \ 0.001

FM% 0.280 0.001

TRIG 0.299 0.001

LDL 0.168 0.071

HDL 0.045 0.633

TChol 0.227 0.010

HbA1c 0.400 \ 0.001

SBP 0.379 \ 0.001

DBP 0.350 \ 0.001

NSP 0.841 \ 0.001

VAS 0.761 \ 0.001

REE§ 0.042 0.768

RQ§ 0.012 0.934

BMI body mass index, DBP diastolic blood pressure, FM%
body fat percentage, HDL HDL-cholesterol, HbA1c gly-
cated haemoglobin, LDL LDL-cholesterol, NSP neuropa-
thy symptom profile, SBP systolic blood pressure, TChol
total cholesterol, TRIG triglycerides, VAS visual analogue
scale for pain, VPT vibration perception threshold, WC
waist circumference
§Consists of subgroup analysis between VPT against REE
and RQ data set within the OB group only
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with T2D, Gao et al. [28] reported that those
with the highest fat mass index had the highest
risk of neuropathy (HR 1.93, 95% CI 1.74–2.15).
In a cross-sectional study, Callaghan et al. [29]
observed that the prevalence of peripheral
neuropathy was 12.1% in obese participants
with normoglycaemia and 40.8% in obese par-
ticipants with diabetes.

Our findings concur with previous studies
[29–31] demonstrating that obesity is associated
with peripheral neuropathy. Indeed, Herman
et al. [30] reported that people with severe
obesity had a predominant small fibre neu-
ropathy. In the National Health and Nutrition
Examination Survey of adults over 40 years of
age, whilst 9% had peripheral neuropathy the
obese group had at twofold greater risk (OR
2.20, 95% CI 1.43–3.39) of neuropathy com-
pared to non-obese individuals [32].

Participants with obesity and reduced insulin
sensitivity show reduced tibial and peroneal
nerve compound and sensory amplitudes [31].
Roustit et al. [33] demonstrated that a higher
WC and obesity were independently associated
with VPT. Spallone et al. prospectively assessed
135 patients with diabetes and showed that BMI
was an independent risk factor for DPN [34].
The KORA/Augsburg study followed 513 sub-
jects over 6.5 years and showed that being
overweight (OR 3.06, 95% CI 1.57–5.97) and
obese (OR 3.47, 95% CI 1.72–7.00) increased the
risk of developing peripheral neuropathy [35].

Emerging research suggests that the devel-
opment and progression of neuropathy is asso-
ciated with an impaired metabolic switch from
glucose to fatty acid or lipid oxidation [36] with
an association between cholesterol oxidation
and glycated LDL and the pathogenesis of

Table 4 Multivariate linear regression model using VPT as the dependent variable

Model Variable b coefficients 95% CI P R2

1 BMI 0.333 0.170; 0.480 \ 0.001 0.170

Age 0.249 0.074; 0.336 0.002

2 BMI 0.208 - 0.184; 0.457 0.214 0.253

Age 0.257 0.091; 0.342 0.001

WC 0.433 0.098; 0.313 0.001

FM% 0.250 0.056; 0.377 0.119

3 BMI 0.063 - 0.290; 0.423 0.711 0.538

Age 0.149 0.007; 0.259 0.037

WC 0.382 0.041; 0.213 0.018

FM% 0.783 0.248; 0.884 \ 0.001

TChol 0.078 - 2.512; 1.004 0.396

TRIG 0.043 - 1.357; 2.098 0.671

HbA1c 1.051 0.323; 0.595 \ 0.001

SBP 0.043 - 0.042; 0.171 0.232

DBP - 0.045 - 0.216; 0.131 0.627

BMI body mass index, CI confidence interval, DBP diastolic blood pressure, FM% body fat percentage, HbA1c glycated
haemoglobin, HDL HDL-cholesterol, LDL LDL-cholesterol, TCHOL total cholesterol, TRIG triglycerides, RQ respiratory
quotient, REE resting energy expenditure, SBP systolic blood pressure, VPT vibration perception threshold, WC waist
circumference
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neuropathy [37]. Reduced peripheral insulin
sensitivity also leads to increased fatty acid flux
into Schwann cells and subsequent peripheral
neuropathy [38, 39]. Obesity is associated with
the loss of peripheral sensory neurons and
pathology to intra-epidermal nerve fibres
[40, 41]. Local fat metabolism in the peripheral
nerve is of importance in maintaining an intact
and functional peripheral nerve. Previous data
has demonstrated that several genes are only
maximally expressed in the mature nerve, after
the completion of myelination, and are also
linked to the metabolism of storage lipids [42].
Within obesity and T2D, there is intracellular
accumulation of metabolites with enhanced
fatty acid uptake and blunted fatty acid oxida-
tion and lack of insulin-mediated inhibition of
lipolysis [43]. This leads to excess circulatory
‘spill’ with uptake by non-adipose tissue like the
liver, muscle, heart and pancreas leading to
ectopic fat deposition and dyslipidemia. Con-
sequent to the dyslipidemia state, free fatty
acid-induced lipotoxicity alters lipid-induced
intracellular signaling and drives neurological
dysfunction and neurodegeneration [44].
Whilst this study has shown impaired fat oxi-
dation and ‘overreliance’ on glucose oxidation
in obesity, fat oxidation per se was not associ-
ated with peripheral neuropathy measures.
However, cross-sectional measures of fat oxida-
tion which are fluid may not correlate with
more ‘fixed’ quantitative measures of peripheral
neuropathy.

In a large retrospective cohort study of
88,981 patients with T2D, bariatric surgery was
associated with significantly lower rates of
microvascular and macrovascular complica-
tions, compared to a non-surgically treated
group over 9 years [45], and this has been cor-
roborated by other studies [46]. Bariatric surgery
in people with obesity with and without T2D is
associated with improved biomarkers of neu-
ropathy, specifically evidence of small nerve
fibre regeneration over 12 months [40, 41] eval-
uated with corneal confocal microscopy. The
prevalence of peripheral neuropathy measured
with the Michigan Neuropathy Screening
Instrument (MNSI) was found to be reduced
(pre-bariatric surgery 20.4% to post-bariatric
surgery 10.5%) approximately 10 years after

Roux-en-Y gastric bypass and sleeve gastrec-
tomy [47]. Several randomized controlled stud-
ies (DiRECT, DROPLET and PREVIEW) have
demonstrated the efficacy of low-calorie diets
(LCDs; 800–850 kcal/day) in severe obesity
[48–50]; and recently, a dietary weight loss
study of 800 kcal/day (for 12 weeks) followed by
1200–1500 kcal/day resulted in an improve-
ment in metabolic parameters, whilst intra-
epidermal nerve fibre density (IENFD) remained
stable after 2 years [51].

We acknowledge that causality between
obesity and neuropathy cannot be inferred from
a cross-sectional study. We have also not
undertaken small fibre phenotyping which may
be more relevant to obesity-related neuropathy.
A larger sample size may also have allowed
adjustment of confounding factors for neu-
ropathy in relation to RQ or index of fat oxi-
dation, and RQ subanalysis may be limited
because of the severe obesity present in the
participant population.

CONCLUSION

The prevalence and characteristics of peripheral
neuropathy were comparable between normo-
glycaemic people with obesity and long-dura-
tion T1D, suggesting that metabolic factors
linked to obesity play a significant role in
development of peripheral neuropathy. Further
studies are needed to investigate the role of
visceral adiposity in peripheral neuropathy.
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