
Ecology and Evolution. 2020;10:6239–6245.     |  6239www.ecolevol.org

 

Received: 4 March 2020  |  Revised: 13 April 2020  |  Accepted: 14 April 2020

DOI: 10.1002/ece3.6352  

O R I G I N A L  R E S E A R C H

A high-throughput method to quantify feeding rates in aquatic 
organisms: A case study with Daphnia

Jessica L. Hite  |   Alaina C. Pfenning-Butterworth |   Rachel E. Vetter |    
Clayton E. Cressler

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd

School of Biological Sciences, University of 
Nebraska, Lincoln, Nebraska

Correspondence
Jessica L Hite, School of Biological Sciences, 
University of Nebraska, Lincoln, NE 68588.
Email: jhite2@unl.edu

Funding information
National Institutes of Health, Grant/Award 
Number: F32GM128246

Abstract
1. Food ingestion is one of the most basic features of all organisms. However, obtain-

ing precise—and high-throughput—estimates of feeding rates remains challenging, 
particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. 
These animals typically consume low volumes of food that are time-consuming to 
accurately measure.

2. We extend a standard high-throughput fluorometry technique, which uses a mi-
croplate reader and 96-well plates, as a practical tool for studies in ecology, evo-
lution, and disease biology. We outline technical and methodological details to 
optimize quantification of individual feeding rates, improve accuracy, and mini-
mize sampling error.

3. This high-throughput assay offers several advantages over previous methods, 
including i) substantially reduced time allotments per sample to facilitate larger, 
more efficient experiments; ii) technical replicates; and iii) conversion of in vivo 
measurements to units (mL-1 hr-1 ind-1) which enables broad-scale comparisons 
across an array of taxa and studies.

4. To evaluate the accuracy and feasibility of our approach, we use the zooplankton, 
Daphnia dentifera, as a case study. Our results indicate that this procedure accu-
rately quantifies feeding rates and highlights differences among seven genotypes.

5. The method detailed here has broad applicability to a diverse array of aquatic 
taxa, their resources, environmental contaminants (e.g., plastics), and infectious 
agents. We discuss simple extensions to quantify epidemiologically relevant traits, 
such as pathogen exposure and transmission rates, for infectious agents with oral 
or trophic transmission.
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1  | INTRODUC TION

Energy ingestion (feeding) is arguably the most central biolog-
ical process. Consumer–resource interactions are the build-
ing blocks of ecological food webs and form the cornerstone of 
ecological theory (Murdoch, Briggs, & Nisbet, 2003; de Roos & 
Persson, 2013). Feeding behavior is highly plastic, changing across 
ontogeny (Rudolf & Rasmussen, 2013; ten Brink & de Roos, 2017) 
and in response to threats from predators (Costa & Vonesh, 2013; 
Matassa, Donelan, Luttbeg, & Trussell, 2016), infectious agents 
(Bernardo, & Singer, 2017Hite, Pfenning, & Cressler, 2020), re-
sources (Mandal, Abbott Wilkins, & Shurin, 2018, Penczykowski 
et al., 2014; Sarnelle & Wilson, 2008), and environmental con-
taminants such as heavy metals and microplastics (Carrasco 
et al., 2019; Cole et al., 2013; Setala, Norkko, & Lehtiniemi, 2016). 
Changes in feeding rates can, therefore, reveal mechanistic con-
nections between behavior, physiology, and immunology with ap-
plications for multiple disciplines.

Measuring feeding rates, however, is typically a time-consuming 
and logistically challenging endeavor. This is especially true for small 
aquatic herbivores such as zooplankton, snails, and tadpoles. These 
animals typically consume low volumes of food that are time-con-
suming to accurately measure. Previous efforts have largely relied 
on time-intensive processes such as electronic particle counting 
systems (Seale, 1982), single-channel fluorometers (Penczykowski 
et al., 2014), dry mass and cell counts (Sarnelle & Wilson, 2008), 
radioactive labels (Hong, Burford, Ralph, Udy, & Doblin, 2013), and 
dyes or beads (Cole et al., 2013; Setala et al., 2016). While these 
methods are widely used, each carries unique disadvantages, and all 
suffer from pronounced time constraints that hinder high-through-
put experiments. For instance, processing time for a single-channel 
fluorometer is approximately two min. per sample (J. L. Hite, unpub-
lished data).

To overcome these limitations—and highlight a practical tool 
for studies in aquatic ecology, disease ecology, and evolutionary 
epidemiology—we present a standard high-throughput fluorometry 
method that uses a microplate reader and 96-well plates (Garbutt 
& Little, 2014; Nasser & Lynch, 2016; Ogonowski, Schür, Jarsén, & 
Gorokhova, 2016). We provide specific technical and methodolog-
ical protocols to optimize quantification of individual feeding rates, 
improve accuracy, and minimize sampling error. The approach de-
tailed here offers three key advantages over previous methods. 
First, it is precise and high-throughput and substantially reduces 
time allotments per sample. Processing time runs approximately 
15 min, from pipetting (with a multi-channel pipette), to analyz-
ing and exporting the data for a 96-well plate of samples. In other 
words, instead of a single measurement taking two min. per sample, 
one can read a 96-well plate in two min.. Second, unlike previous 
methods outlined above, this assay includes technical replicates. 
Third, conversion of in vivo measurements to units (mL-1 hr-1 ind-1), 
which facilitates quantitative comparisons across a broad array of 
taxa and studies.

2  | MATERIAL S AND METHODS

This method uses a microplate reader (Tecan©, Maennedorf, 
Switzlerand) to quantify feeding rates using in vivo narrow-band 
fluorometry, a standard and widely used method for accurately 
measuring chlorophyll-a (Kalaji et al., 2014; Lorenzen, 1966). In brief, 
the goal is to compare the fluorescence of algae in tubes with ani-
mals (consumers) versus the fluorescence of algae in the animal-free 
(consumer-free) controls, following Sarnelle and Wilson (2008). We 
provide a detailed protocol (and overview of materials, Fig. 2) aimed 
at improving repeatability and analytical accuracy, while minimiz-
ing variation among samples. The most important, but easily over-
looked, details include (a) preparing all media in batch cultures and 
mixing it continuously prior to and throughout distribution to each 
biological replicate; (b) conducting the assay under minimal light con-
ditions to prevent spurious spikes in fluorescence; (c) ensuring that 
the ratio of chlorophyll to carbon remains constant across assays; 
and (d) pair-matching plate-specific controls with their respective 
treatment samples to reduce among-plate variation.

2.1 | Cleaning procedures

All glassware and plasticware used in the assays were acid-cleaned 
(8%–10% H2SO4 or HCL) and thoroughly rinsed with deionized water 
(four times) prior to use. This added precaution helps improve analytical 
accuracy by removing potential contamination from trace amounts of 
minerals, metals (e.g., copper), nutrients (e.g., phosphates), or microbes.

2.2 | Feeding rate assay

To refine this standard method, we measured feeding rates of 6-day-
old female Daphnia dentifera (Figure 1) from seven different isoclonal 
lines (hereafter, genotypes) with 30 replicates per genotype and 
spore level (n = 630). Genotypes were originally collected from dif-
ferent lakes in Southern Indiana and Michigan (USA). We previously 
identified these lines as unique genotypes by comparing alleles at 
microsatellite loci (Strauss et al., 2017), and other studies have used 
subsets of these genotypes to examine genotypic variation in epide-
miologically and evolutionarily relevant traits, including feeding rates 
(Shocket et al., 2018; Strauss, Bowling, Duffy, Cáceres, & Hall, 2018; 
Strauss et al., 2019). These genotypes, therefore, provide an ideal 
case study to test the accuracy of the method detailed here. Due to 
logistical (i.e., time) constraints, we conducted the assays over two 
temporal blocks, block one with five genotypes and block two with 
four genotypes with two genotypes repeated among blocks to high-
light any potential block effects (e.g., from potential variation in algal 
or spore infectivity). We omitted any negative feeding rates (since 
these represent technical errors), individuals that died during the 
assay, and animals later identified as male; male and female Daphnia 
have different feeding rates (Hite et al., 2017).
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For the food source, we used batch-cultured algae (Ankistrodesmus 
falcatus) of the same age and growth stage (the predetermined 
stationary phase under our specific conditions: 14 days old). We 
cultured algae in 1 L Erlenmeyer flasks containing 500 ml of high 
nitrogen COMBO (Kilham, Kreeger, Lynn, Goulden, & Herrera, 1998) 

under a 16:8 light–dark cycle at 40 ± 5 μmol photon·m−2·s−1 of pho-
tosynthetically active radiation (PAR). We inoculated batch cultures 
with 10 ml of 14-day-old A. falcatus grown under identical condi-
tions. We made the high nitrogen COMBO with filtered (0.2 μm) and 
UV-sterilized DI water (PureLab Ultra, Evoqua Water Technologies) 
and by doubling the nitrogen in the base media. Since the relation-
ship between chlorophyll fluorescence and carbon content changes 
throughout algal growth stages, it is crucial to inoculate each flask 
with algae of the same density, age, and growth stage to ensure iden-
tical starting points; these steps ensure consistency in the chloro-
phyll: carbon ratio (used in calculations below), as well as nutrient 
(e.g., nitrogen and phosphorus) and lipid content per cell, all of which 
can affect herbivore feeding rates Halsey & Jones, 2015; Mandal 
et al., 2018; Sterner, 1993).

We conducted the entire assay (setup to takedown) with the 
lights off and windows shaded to prevent algal growth or any spuri-
ous spikes in algal fluorescence. During the timed feeding rate assay, 
we moved the centrifuge tubes to a completely dark incubator main-
tained at 22 ± 1°C. For best practices, we suggest preacclimating 
animals to the food and temperature conditions used in each assay 
for at least two days.

Prior to starting the assay, we calculated the entire amount of 
media needed for the assay and made a large primary solution con-
sisting of COMBO and algal food (1.0 mg dw L−1). We determined 
the relationships between algal density (mg C L−1) and optical absor-
bance (800 nm 1 cm cuvette) using a regression-based relationship 
between absorbance and dry mass (a close correlate of carbon). To 
ensure that the algal food and media remained evenly mixed and 
consistently distributed for each biological replicate (individual cen-
trifuge tube), we placed the beaker of primary solution on a stir plate 
(rotating at low-medium speed). We pipetted 10 ml of media into 
individual 15 ml centrifuge tubes.

F I G U R E  1   The focal organism, Daphnia dentifera. Daphnia are 
small (~1–3 mm) freshwater crustaceans and play a prominent 
role in many fields including aquatic ecology, life-history theory, 
physiology, toxicology, cellular immunology, and disease ecology. 
Photograph credit: Tara Stewart Merrill

F I G U R E  2   Hardware needed for the 
high-throughput method detailed here: 
multi-channel pipette with autoclaved 
pipette tips, black 96-well plates, 15 ml 
centrifuge tubes with caps and holder.
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Once all media were distributed, we used glass pipettes to trans-
fer individual Daphnia into each centrifuge tube (except, of course, 
the animal-free controls), capped the tubes, started the timer, and 
moved the animals to the incubator. To keep algal food in suspen-
sion, we gently inverted tubes every 30 min over the course of the 
assay. At the end of the assays (seven hrs), we transferred hosts to 
fresh media and collected a subsample of media from each tube to 
quantify the remaining food.

2.3 | In vivo fluorometry

We measured algal fluorescence using narrow-band fluorometry. 
We used the multichannel pippette to distribute 200 μL of sample 
(each with two technical replicates) into wells of a black 96-well 
plate (14-245-197A Thermo Fisher Scientific No. 7605). We used top 
read mode with standard initial parameters following Gregor and 
Maršálek (2005) and Kalaji et al. (2014): excitation wavelength: 485 
(20 nm bandwidth); emission wavelength: 665 (10 nm bandwidth); 
gain (optimal range): 112–120, number of flashes: 30; lag time: 0; 
integration time: 40 μs; shake duration: 10 s; and temperature: 
22.5°C ± 0.5. The particular brand and model of plate reader is nomi-
nal. However, the proper filters and narrow bandwidth are crucial.

To minimize noise introduced by among-read variation (Petersen 
& Nguyen, 2005; Resch-Genger et al., 2005), it is crucial that each 
plate is treated as a block and contains control samples (i.e., media 
from the consumer-free replicates) and that the average of these 
plate-specific controls is used to calculate feeding rates. That is, in 
the equations below, the control values come from each plate and are 
not averaged across all controls. This design reflects a matched-pairs 
layout and uses replication within blocks to help tease apart main 
effects, block effects, and their interaction (Gotelli & Ellison, 2004). 
This added step is an obvious limitation of this method. However, 
this is currently the best solution for maximizing the signal-to-noise 
ratio given the extreme sensitivity of modern fluorometers. In 
Appendix S1, we include R code to facilitate these additional quality 
control steps.

We calculated the feeding rate of individual Daphnia, f 
(L ind−1 day−1) following Sarnelle and Wilson (2008), by solving for 
the change in fluorescence, F: 

Fluorescence is determined by the biomass of algae in the sam-
ple, measured in mg dw L−1. Feeding measures the amount of space 
or volume cleared per unit time. Thus, if W is the biomass of algae 
per L, and f is the feeding rate (L time−1), then fW is the rate at which 
biomass is removed from the media. Mathematically, this is given by 
the solution of the ODE: 

Note, you have to divide by volume to get the units right, since 
volume occurs in the units of both f and W. We can convert the 
change in biomass density to change in fluorescence assuming a 
strong linear relationship between fluorescence and biomass (which 
we double-checked using the standard curve of fluorescence against 
biomass detailed above) then, 

where l is the slope of the regression. The dynamics of F are as follows: 

The solution of this linear differential equation is 

where F(t) is the food remaining (i.e., the mean algal fluorescence of the 
sample at time t), F(0) is the initial amount of food (i.e., the mean algal 
fluorescence of the corresponding plate-specific consumer-free con-
trols at time = t0), V is the volume of media (10 ml), and t is the length 
of the assay. Solving for f, then: 

2.4 | Statistical analysis

To test for differences in feeding rates across genotypes and across 
temporal blocks, we used analysis of variance (ANOVA) with Type 
III sum of squares to account for the unbalanced sample sizes. We 
confirmed that residuals of the feeding rate model did not deviate 
from normality using visual inspections and the Shapiro–Wilk test 
(p = .14). To highlight differences/similarities among genotypes, we 
used Tukey's post hoc analyses (multcomp package in R version 
3.6.1).

3  | RESULTS

Our method successfully detected differences in feeding rates among 
the focal genotypes (main effect: �2

6,1
 = 65.62 p < .0001) and across 

temporal blocks (p < .0001). However, there was no interaction be-
tween genotype and temporal block (p = .774) and visually illustrat-
ing the differences across genotypes and blocks is rather logistically 
challenging and obscures the main goal here to demonstrate that this 
method accurately captures similarities/differences in feeding rates. 
Therefore, we present these main effects averaged across tempo-
ral blocks (�2

6
 =  80.99, p < .0001, Fig. 3), which is recommended for 

experiments with simple nested designs (Gotelli & Ellison,2004, pgs. 
178–182). Both the mean and variation in the feeding rates estimated 
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by this method are congruent with previous estimates of Daphnia 
feeding rates (Garbutt & Little, 2014; Nasser & Lynch, 2016; Sarnelle & 
Wilson, 2008; Strauss et al., 2019).

4  | DISCUSSION

This high-throughput method enables larger, more efficient experi-
ments and can be applied to a wide array of aquatic taxa and experi-
mental designs. Due to its ability to quantify fine-scale differences in a 
relatively short amount of time, the high-throughput fluorometry tech-
nique is common in, for example, water quality management (Carstea, 
Bridgeman, Baker, & Reynolds, 2016; Gregor & Maršálek, 2005), agri-
culture (Kalaji et al., 2014, 2018), physiology (Bergman Filho, Soares, & 
Loureiro, 2011; Matoo, Julick, & Montooth, 2019), and medical micro-
biology (Chinen et al., 2015). To date, these methods and practical tools 
remain relatively underutilized in aquatic ecology, disease ecology, and 
evolutionary epidemiology. In extending and refining a standard high-
throughput fluorometry technique, we outlined technical and meth-
odological protocols to optimize quantification of individual feeding 
rates, improve accuracy, and minimize sampling error.

The feeding rates estimated by this method are congruent with 
previous estimates of Daphnia feeding rates (Garbutt & Little, 2014; 
Nasser & Lynch, 2016; Sarnelle & Wilson, 2008; Strauss et al., 2019). 
This method can be extended to account for differences in algal diver-
sity (Gregor & Maršálek, 2005) and extremely low algal concentrations 
or high turbidity (Chang, Hobson, Burch, & Lin, 2012), as well as en-
vironmental stressors including environmental contaminants like mi-
croplastics (Carrasco et al., 2019; Cole et al., 2013; Setala et al., 2016).

Additionally, this method also carries applications for dis-
ease ecology and evolutionary epidemiology. For instance, using 
slow-throughput methods (i.e., single-channel fluorometers), we 
previously found that feeding rates of the freshwater zooplankton 

Daphnia dentifera correlate strongly with the consumption of a fun-
gal pathogen, Metschnikowia bicuspidata (Hite et al., 2017; Shocket 
et al., 2018; Strauss et al., 2019), and more detailed counts of stained 
and filtered fungal spores confirm a strong positive relationship be-
tween algae intake and pathogen intake (Strauss et al., 2019).

Such extensions involve adding other batch cultures that con-
tain algae, sample media (e.g., COMBO), and the stressor of interest. 
Again, to ensure that the media remain evenly mixed and distributed 
among individual sampling units, it is crucial to keep the primary 
solution on the stir plate prior to and throughout the distribution 
step. This step is particularly important when combining this assay 
with exposure to other environmental contaminants, such as patho-
gens, which could potentially sink out of solution (Hall, Smyth, et al., 
2010). The only additional step involves controls that are animal-free 
but include the stressor of interest (e.g., pathogen propagules, mi-
croplastics). These samples now replace the pure algae controls in 
the feeding rate assay and will account for any background fluores-
cence of the contaminant or infectious agent, which will likely be 
minimal but nonetheless important, given the sensitivity and high 
resolution of modern fluorometers.
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two temporal blocks). Lowercase letters represent significant differences among genotypes (based on post hoc analyses). (b) Post hoc 
pairwise comparisons with Tukey's adjusted p-values and simultaneous 95% confidence intervals. If an interval does not contain zero, the 
corresponding means are significantly different
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