@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Figer Z, Altermatt F, Zaksek V, Knapi¢ T,
Fiser C (2015) Morphologically Cryptic Amphipod
Species Are “Ecological Clones” at Regional but Not
at Local Scale: A Case Study of Four Niphargus
Species. PLoS ONE 10(7): e0134384. doi:10.1371/
journal.pone.0134384

Editor: Diego Fontaneto, Consiglio Nazionale delle
Ricerche (CNR), ITALY

Received: March 26, 2015
Accepted: July 8,2015
Published: July 30, 2015

Copyright: © 2015 FiSer et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All nucleotide
sequences are available from the GenBank database
(accession numbers KR858309 - KR858545 and
JQ815447, JQ815452, JQ815453, JQ815456,
JQ815464, JQ815465, JQ815527, JQ815528,
JQ815530, JQ815538). All other relevant data are
within the paper and its Supporting Information files.

Funding: The project was funded by Slovenian
Research Agency, program P1—0184 (to ZF, VK and
CF), and by the Swiss National Science Foundation,
grants nr. 31003A_135622 and PPO0P3_150698 (to
FA).

Morphologically Cryptic Amphipod Species
Are “Ecological Clones” at Regional but Not
at Local Scale: A Case Study of Four
Niphargus Species

Ziga Fiser'*, Florian Altermatt??, Valerija Zaksek', Tea Knapié®, Cene Fiser’

1 Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia, 2 Eawag: Swiss
Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Uberlandstrasse 133,
CH-8600 Diibendorf, Switzerland, 3 Institute of Evolutionary Biology and Environmental Studies, University
of Zirich, Winterthurerstrasse 190, CH-8057 Zirich, Switzerland, 4 Slovenian Museum of Natural History,
Ljubljana, Slovenia

* fiser.ziga@gmail.com

Abstract

Recent studies indicate that morphologically cryptic species may be ecologically more dif-
ferent than would be predicted from their morphological similarity and phylogenetic related-
ness. However, in biodiversity research it often remains unclear whether cryptic species
should be treated as ecologically equivalent, or whether detected differences have ecologi-
cal significance. In this study, we assessed the ecological equivalence of four morphologi-
cally cryptic species of the amphipod genus Niphargus. All species live in a small, isolated
area on the Istrian Peninsula in the NW Balkans. The distributional ranges of the species
are partially overlapping and all species are living in springs. We reconstructed their ecologi-
cal niches using morphological traits related to feeding, bioclimatic niche envelope and spe-
cies’ preference for epi-hypogean habitats. The ecological meaning of differences in niches
was evaluated using distributional data and co-occurrence frequencies. We show that the
species comprise two pairs of sister species. All species differ from each other and the
degree of differentiation is not related to phylogenetic relatedness. Moreover, low co-occur-
rence frequencies in sympatric zones imply present or past interspecific competition. This
pattern suggests that species are not differentiated enough to reduce interspecific competi-
tion, nor ecologically equivalent to co-exist via neutral dynamics. We tentatively conclude
that the question of ecological equivalence relates to the scale of the study: at a fine scale,
species’ differences may influence dynamics in a local community, whereas at the regional
level these species likely play roughly similar ecological roles.
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Introduction

According to recent studies, morphologically cryptic species are a common and widespread
phenomenon [1-2], found across all phyla and in different environments [3]. Although their
detection has become routine [4-5], a common agreement on how cryptic species should be
treated in biodiversity research is still lacking. At a global geographic scale, our ignorance of
cryptic species leads to underestimations of species richness [6], while their discovery may
modify hypotheses of their ranges [7-8]. At a regional and local scale, the presence of cryptic
species might affect our view on the local occurrence of species, their interactions with coexist-
ing species and their response to the local abiotic environment. Furthermore, our awareness
and understanding of morphologically cryptic species may profoundly affect their conservation
status and priority setting of endangered species.

All these issues are critically related to a question of whether or not morphologically cryptic
species are ecologically equivalent. If equivalent, such species could be considered as “ecological
clones”, playing a highly predictable role in the ecosystem across different scales. Several lines
of evidence suggest that morphologically cryptic species indeed share their ecological needs.
First, morphology itself is related to species’ ecological niche [9]. Outstanding morphological
similarity of cryptic species is maintained by stabilizing selection [10], which implies that such
species exploit the same microhabitat and resources. Moreover, many cryptic species are sister
species deriving from the same ancestor (but see [11]) and might have retained the ancestral
ecological niche [12-13]. On the other hand, some studies found evidence for divergence of
morphologically cryptic species in aspects of the ecological niche unrelated to morphology
[14-16].

Therefore, a key question related to evolutionary ecology of cryptic species is how phyloge-
netic differentiation translates into ecological differentiation. An accurate answer requires an
experimental approach that is often time consuming and sometimes even unfeasible due to
extreme morphological crypsis of these animals. Considerable insights, however, can be already
gained from comparative analysis of ecological and distributional data in well-defined regions.
On rare occasions, morphologically cryptic species come in contact with each other and estab-
lish zones of sympatry [14, 17-18]. Such cases may be particularly promising for exploring the
ecological divergence among cryptic species, as species in sympatry experience intensified
interspecific competition [9] that may drive divergent evolution of the components of the eco-
logical niche that are not under stabilizing selection [19] and maximize their ecological
difference.

Here, we present a case study, in which we explored the extent of ecological differentiation
of four morphologically cryptic species belonging to the subterranean amphipod genus
Niphargus. The system is a species-poor community comprising of two nonrelated, but mor-
phologically and ecologically highly similar lineages that had long been treated as a single spe-
cies [20]. Each lineage (the N. krameri complex and the N. spinulifemur complex, see [11]),
however, each comprises two morphologically cryptic species. All species live in a small
region, the Istrian Peninsula (ca. 2,800 km?) in NW Balkans [21]. The study area has been iso-
lated from the rest of Dinaric Mountains for several millions of years [22]. The ecology of the
focal species strongly suggests that these species have never occurred beyond this area [21],
and that processes of ecological differentiation as well as species interactions are confined to
this geographic area. The four species share general ecological requirements, and can all be
found predominately in springs, which are species-poor, predator-free boundary environ-
ments between surface and groundwater systems. Thereby, this natural study system is an
ideal, diversity-balanced system of sympatric and partially sympatric cryptic species: it is spa-
tially well defined and simple enough to infer species interactions based on co-occurrence
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data, while still complex and diverse enough to explore the impact of phylogeny and ecological
differentiation.

In this study we first determined the focal species using molecular data. Next, we explored
their ecological properties, using type of habitat, bioclimatic requirements and morphological
traits related to feeding biology. To evaluate ecological significance of between-species differ-
ences we tested for signs of competition among these species based on co-occurrence data. We
show that the studied cryptic species are ecologically differentiated; however, co-occurrence
data suggest that this differentiation is not sufficient to resolve the possible interspecific compe-
tition at the local scale. While interspecific competition likely contributes to local community
dynamics, the incomplete differentiation suggests that these species likely play a more or less
similar role in the ecosystem at a regional scale.

Materials and Methods
Data

Data on Niphargus occurrences on the Istrian Peninsula were obtained from the Zoological
Collection of the Department of Biology (Biotechnical Faculty, University of Ljubljana) and
previously published papers. The entire peninsula and its surrounding area have been system-
atically explored over past ten years, with special attention to caves, springs and uppers
stretches of surface streams. Part of the data has been already published [21], but many locali-
ties were visited for the first time and many sites were examined several times.

Some of the samples (collected between March 2002 and October 2011) were used to resolve
the taxonomy of both species complexes using molecular data (details about samples in S1
Table). Samples from the other localities could be unambiguously assigned to the newly delim-
ited species. All the data was assembled into an original dataset of 238 unique localities (S2
Table). It contained 31, 73, 6 and 150 locality records of N. krameri A, N. krameri B, N. spinuli-
femur A and N. spinulifemur B, respectively. The original dataset was visually inspected using
DIVA-GIS 7.5.0 (http://www.diva-gis.org) and each record was assigned to a grid with cell size
of 3 x 3 km. This produced a dataset with 25, 48, 6 and 65 presence records of N. krameri A, N.
krameri B, N. spinulifemur A and N. spinulifemur B, respectively (S3 Table). Unless stated dif-
ferently, this dataset was used for spatial and ecological analyses.

Permits and approvals were not required for sampling at these locations. The study does
not include endangered or protected species.

Description of the study system and taxa

The study focused on species of the N. krameri and the N. spinulifemur species complexes,
both inhabiting the Istrian Peninsula. Two distinct phylogenetic lineages are found within
each, in both cases called A and B respectively (see Results). Other amphipods living in the
region and occasionally found at the sampled localities were excluded from analyses as they
live in completely different habitats and were only recorded as by-catches. These included
other Niphargus species from deep cave lakes and coastal anchihaline caves [23] and Gam-
marus and Echinogammarus amphipods that live only in permanently watered streams
[21,24]. Focal species were found predominantly in springs and upper stretches of streams, but
also in caves. All these habitats are species poor: aside from amphipod fauna, assellote isopods,
trichopteran, plecopteran and ephemeropteran larvae, erpobdelid leeches and salamander lar-
vae were also found, but no fishes were observed. The effects of predation are likely negligible.
Juvenile amphipods of focal species shelter in fine substrate [24]. Adults are too fast and too
large (>15 mm) to be predated by leeches or by salamander larvae.
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Phylogenetic characterization of the community

The phylogeny of the N. krameri and N. spinulifemur species complexes was established using
molecular data. We employed two criteria for species delimitation: i) monophyly and ii) genetic
distance measured as patristic distance [25].

Species complexes were identified according to diagnostic characters [20-21]. After the
morphological examination, DNA was isolated either from one pereopod (large specimens) or
whole abdomen (small specimens) using the GeneElute Mammalian Genomic DNA Miniprep
Kit (Sigma-Aldrich) following the protocol for Mammalian Tissue Preparation. We amplified
a nuclear gene coding for the 28S ribosomal subunit (285 rRNA) and a fragment of the mito-
chondrial gene coding for the cytochrome oxidase I (COI). The nuclear marker was amplified
using primers 28S lev3 and 28S des5 (1268-1382 bp; [26-27]). The mitochondrial marker COI
was amplified using primers Jerry and Maggie (592bp, [28]) for N. krameri. As amplification
with those primers was not successful in N. spinulifemur specimens, we used either LCO 1490
and HCO 2198 (661 bp; [29]) or the newly designed COI_spfl (5'- GNACCTTATATTTTA
TTTTAG -3') and COL_sprl (5'- CGRTCTGTTARTAATATWGTAAT -3') primers (548 bp)
for specimens that gave no PCR products with the former as well. Although the COI fragments
obtained for each species are not homologs and do not overlap, it has been tested that in
Niphargus and cave shrimp Troglocaris they exhibit the same phylogenetic information (C.
Douady unpublished, V. Zaksek unpublished).

PCR was performed using the next cycling settings: 45 s at 94°C, 30 s at 48°C, 60 s at 72°C
for 40 cycles followed by final extension of 7 min at 72°C for the 285 rRNA (28S lev3 and 28S
des5); 60 s at 95°C, 60 s at 46°C, 90 s at 72°C for 45 cycles followed by final extension of 7 min
at 72°C for the COI (Jerry and Maggie) and 60 s at 94°C, 60 s at 45°C, 150 s at 72°C for 40
cycles followed by final extension of 7 min at 72°C for the COI (LCO 1490 and HCO 2198;
COI_spfl and COI_sprl).

PCR products were purified using Multiscreen PCR plates (Millipore) according to the
manufacturer’s instructions. Many reactions with 28S rRNA primers gave unspecific products.
The target product was excised from a 1.5% agarose gel and purified using GeneJET Gel
Extraction Kit (Fermentas) following the manufacturer’s protocol. Each fragment was
sequenced in both directions using appropriate PCR amplification primers (Macrogen). Con-
tigs were assembled and edited using Geneious 6.0.5. (Biomatters). Sequences of five distantly
related Niphargus species, used as outgroup taxa, were obtained from GenBank and our data-
base (for details see S1 Table).

Four alignments, separated by species and gene, were made using MAFFT 7.017 [30] plug-
in in Geneious 6.0.5. (Biomatters). Each species alignment was analysed as a four partition
dataset (28S, COI 1st codon position, COI 2nd codon position, COI 3rd codon position) by
Bayesian inference using Mr. Bayes 3.2.1 [31]. The appropriate substitution model and priors
were chosen for each partition according to BIC criterion computed with jModelTest 2.1.4
[32-33]. Two independent runs with four chains were run for 2 x 10° generations and sampled
every 100 generations. This was sufficient for the SD of split frequencies to drop under 0.01.
After discarding the first 25% of the sampled trees from both runs, a 50% majority rule consen-
sus tree was constructed from remaining 30000 trees. Additionally, we searched for the tree
topology with the maximum likelihood using PHYML 3.1 [33]. The robustness of the topology
was tested with 1000 bootstrap replicates. Finally, the maximum likelihood tree, without boot-
straps, based only on COI alignment was searched for in both species. Patristic distances were
extracted from these trees using Patristic [34] and average patristic distances were computed
between clades. We also calculated average uncorrected p-distances and Kimura two-parame-
ter distances (K2P) between clades based on COI sequences using MEGA 6 [35].
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Ecological niche characterization

Three independent axes of the ecological niche were explored: morphological traits important
for feeding biology, epi-hypogean distribution of species and bioclimatic niche. Each axis was
given equal weight in the three-dimensional niche model.

Morphology. Amphipods may feed on decaying leaves, filter organic particles or predate
[36]. Any specialization in feeding biology might represent a critical shift in ecological niche
and stabilize species coexistence. Appendages involved in feeding include mouthparts and
gnathopods. The four species were found to differ in three such morphological characters dac-
tylus of maxilliped, ischium of gnathopod I, and carpus of gnathopod II (for an overview of
niphargid morphology see [37]). The number of maxilliped’s claws presumably enhances the
grip on organic particles whereas extra setal groups on gnathopods are thought to enlarge the
capacity of a filtering basket between the gnathopods and the body. Traits are non-polymor-
phic in molecularly delineated species. For discrimination of feeding ecology on a continuum
between predation-filtration, all three traits were treated as equally important. Each trait was
treated as a binary variable and each species was assigned an index based on these three binary
characters in a range between 0 (predator) and 3 (filtrator). The difference in feeding ecology
was estimated by pairwise comparison with 3 and 0 attributed to the most and the least differ-
ent species pair, respectively. For the joint comparison of three-dimensional niche, differences
were normalized to a range between 0 and 1. Body size, a trait commonly used as a surrogate
for ecological niche, turned out to be non-informative.

Epi-hypogean distribution. Niphargus species are adapted to subterranean environment
(eyeless, little or no protective pigment [37]). However, species in this study are most com-
monly found in karstic springs and, to a lesser extent, in caves and upper stretches of streams
that dry out during the summer. The distribution along the epi-hypogean water gradient repre-
sented the second niche axis. A habitat type was assigned to localities of the original dataset
based on the locality descriptions; 13 localities were excluded as their descriptions were unin-
formative. Three habitat type categories, namely ‘surface’ (streams, small rivers, puddles,
swamps, water supplies and reservoirs), ‘transitional’ (natural or artificial springs and sinks)
and ‘subterranean’ (caves, artificial tunnels, aqueducts and mines) were distinguished. Istrian
Peninsula is geologically diverse. Although geological basement does not affect the distribution
of species [21] it may affect the distribution of available habitats. To control for the impact of
geology, we assigned geological basement (flysch or limestone) to each locality according to the
georeferenced geological map of the area [38-44]. A three-way contingency table (species, hab-
itat type, geology) was constructed and conditional independence of species and habitat type
given geology was estimated with Cochran-Mantel-Haenszel chi-squared test statistic. Due to
low expected frequencies in some cells, a randomization test with 10.000 table permutations
was performed in R 3.0.1. (R Core Team 2013, URL http://www.R-project.org/).

Bioclimatic niche. Compared to epigean environments, subterranean environments are
relatively stable. The temperature in a cave corresponds to the mean annual temperature of its
epigean locality and many subterranean species are indeed very sensitive to temperature fluctu-
ations [45]. Temperature fluctuations can be considered as surrogates for environmental varia-
tion [46]. In addition, precipitation regime may cause catastrophic ecological drift and can
directly relate to temporal instability of habitat template [47]. Given that species may differ in
their bioclimatic niche, potential species distributions (i.e., bioclimatic niche envelopes) were
modelled using MaxEnt 3.3.3e (http://www.cs.princeton.edu/~schapire/maxent; [48]), which
has been reported to work well with small sample sizes [49] and successfully predicts non-colo-
nized habitat patches that are suitable for the focal species. It is also not sensitive to possible
effects of interspecific interactions [48].
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The modelled area was the Istrian Peninsula. Original WorldClim climatic layers [50] were
resampled to a cell size of 3x3 km. To account for non-independence of BioClim data, we com-
puted Spearman's rank correlation coefficients across all pairs of variables. Three correlation
coefficient values (0.7, 0.8, 0.9) were used as threshold values beyond which climatic data were
assumed independent. This procedure yielded three different model inputs counting four, five
and eight different BioClim variables (Table 1). Each of them was run for each species. Auto-
feature mode and settings suggested by [48] were used. Models were trained using 75% of pres-
ence points and tested against the remaining data. Jackknife was used to train distribution
models of N. spinulifemur A, as the small number of records makes the above method inappro-
priate [49]. Predictive accuracy of all models was evaluated with area under receiver operating
characteristic curve (ROC-AUC) statistics.

To compare the bioclimatic niche envelopes of four studied species, functions in dismo [51]
and phyloclim [52] R package were used. Pairwise niche envelope overlap was estimated from
continuous probability maps (we used mean values of six alternative maps) with Schoener’s D
index [53]. This metrics ranges from 0 (no overlap) to 1 (identical potential distributions). The
significance of indices was tested using a niche equivalency test, which asks whether the biocli-
matic niche envelope models of two species are more different than expected if they were ran-
domly drawn from the same underlying distribution [53].

Joint, three-dimensional niche model. To estimate the ecological differences between
focal species, a three-dimensional niche model was constructed. A difference of a species pair
in one niche aspect was represented along each axis (feeding biology, epi-hypogean distribu-
tion, bioclimatic niche). Morphology was treated as described above. Habitat type was repre-
sented as a difference in proportion of surface versus subterranean habitats (transitional
habitats were excluded, see Results). Schoener’s D index was used as a measure of difference in
bioclimatic niches. Joint niche differences were calculated as magnitudes of vectors defined by
a species pair. After normalization, values along each niche axis ranged between 0 (maximum
difference) and 1 (maximum similarity). Three estimates were obtained for every species-pair
as three values of Schoener’s D index were available for each.

Inferring ecological equivalence from distributional data and coexistence
models

Distribution pattern tests. To test whether species show random, evenly dispersed or
clumped distribution a nearest neighbour analysis was performed using Spatial Statistics
toolbox in ArcMap 10.0 (ESRI 2011).

Tests of competition. Competition tests were made on assumptions and premises as fol-
lows. If interspecific species competition does not exceed intraspecific competition [54], the
presence of one species has no influence on the presence of the other. Therefore, the two spe-
cies’ occurrences can be treated as independent events and the chance of finding both species
in syntopy equals to the joint probability of independent events, that is, a product of the proba-
bilities of finding each species in a given region.

When species are spatially segregated and ecologically at least slightly different, it is difficult
to tell apart to what extent spatial segregation can be attributed to differences in niches (e.g.,
bioclimatic niche envelope) of studied species and to what extent this segregation can be con-
sidered as the result of competitive interaction. For this reason, we inferred the role of competi-
tion only in areas where neither geographical distances nor ecological conditions presumably
restrict dispersal. As climate factors potentially affect species’ distribution, the analysis was
constrained to the areas where species come in contact according to bioclimatic niche envelope
predictions.
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Table 1. BioClim variables used in modelling the bioclimatic niches.

Variable Code Variable 0.9 0.8 0.7
Bio 1 Annual Mean Temperature + - -
Bio 3 Isothermality* +

Bio 4 Temperature Seasonality (standard deviation *100) +

Bio 7 Temperature Annual Range + - -
Bio 9 Mean Temperature of Driest Quarter + - -
Bio 12 Annual Precipitation + + +
Bio13 Precipitation of Wettest Month + - -
Bio 15 Precipitation Seasonality (Coefficient of Variation) + +
Bio18 Precipitation of Warmest Quarter + -

0.7, 0.8, 0.9 refer to threshold of the maximum correlation (Spearman’s rank) between BioClim variables
value beyond which the data were considered as independent.

*|sothermality = [Mean Diurnal Range (Mean of monthly (max temp—min temp)) / Temperature Annual
Range]

doi:10.1371/journal.pone.0134384.t001

Similar reasoning applies to spatial segregation along surface-subterranean niche axis. To
account for this, we made another even more restrictive analysis, in which we included the data
from those localities where subterranean and surface species may come in contact with each
other, i.e., in springs. The second analysis is therefore limited to localities from springs found
in zones of sympatry.

Continuous probability maps were converted to presence-absence maps in ArcMap 10.0
(ESRI 2011) using minimum training presence (LPT) computed in MaxEnt as a threshold.
Consequently, three alternative binary distribution maps were obtained for each species (S1-54
Figs).

Using all alternative binary distributions, all possible areas of pairwise sympatries were iden-
tified. The probabilities of occurrences of each species and the probabilities of syntopies were
estimated using i) the original data, and alternatively, ii) using only records from springs. The
probabilities of occurrences of each species and the probabilities of syntopies served as a null
hypothesis of no competition that was tested against the real data with an exact multinomial
test in EMT R package [55].

Altogether six tests were performed for all species pairs. Three tests were controlling for the
effect of climate factors and three tests were controlling for the effect of climate factors and for
the effects of epi-hypogean distribution.

Results
Evidence for speciation

Both N. krameri and N. spinulifemur are monophyletic complexes (Fig 1, see also [11]). Each
complex is further partitioned into two clades, which are labelled clade A and B in both cases.
These clades are strongly supported by Bayesian inference as well as maximum likelihood
methods. The average patristic distances between clades calculated from COI maximum likeli-
hood trees by far exceed 0.16 substitutions per nucleotide (Fig 1), which has been proposed as a
conservative threshold for delimiting species in crustaceans [25]. The two clades within the N.
krameri complex can be distinguished by the presence or absence of a single obscure character,
an additional setal group on carpal article of gnathopod II (Table 2). No diagnostic character
was found between the clades of the N. spinulifemur complex, despite the investigation of a
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Fig 1. Bayesian phylogenetic trees of the focal species complexes using concatenated alignments for 28S and COI gene fragment. The numbers on
nodes indicate posterior probabilities for Bayesian trees and bootstrap support values for maximum likelihood trees. Patristic, K2P and uncorrected p-
distances between A and B species within N. krameri and N. spinulifemur are 0.34, 0.14,0.12 and 0.36, 0.19, 0.16, respectively. Coloured dots at some
terminals indicate localities of co-occurrences with the respective species. The species are: Niphargus krameri A (NKA, red), Niphargus krameri B (NKB,
blue), Niphargus spinulifemur A (NSA, green), and Niphargus spinulifemur B (NSB, yellow).

doi:10.1371/journal.pone.0134384.g001
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Table 2. Species differences in morphological traits related to feeding biology.

Morphological trait N. krameri A N. krameri B N. spinulifemur A N. spinulifemur B
maxilliped dactylus double nail double nail single nail single nail

carpal article of gnathopod Il, extra setae forming filtering basket* well developed missing well developed well developed
ischium |, extra setae forming filtering basket missing missing well developed well developed

*diagnostic character between N. krameri A and N. krameri B.

doi:10.1371/journal.pone.0134384.t002

long list of potential characters (for an overview see [37]). Some species were found to co-occur
(Figs 1 and 2). The possibility of zones of sympatry between clades strongly suggests their
mutual reproductive isolation. Considering the presented facts, we argue that the four clades
represent four reproductively isolated and morphologically cryptic species, namely N. krameri
A, N. krameri B, N. spinulifemur A and N. spinulifemur B. Respective name abbreviations
NKA, NKB, NSA and NSB are used throughout the text. Formal description of the new species
will be published in another paper.

As species delimitation may be sensitive to the choice of method (see e.g., [56]), we addi-
tionally, and as a part of a more extensive analysis on the whole genus Niphargus, confirmed
our species delimitations using PTP and bPTP approaches (Fiser et al. unpublished work).
These gave identical delimitations for the N. krameri species complex and split N. spinulifemur
A and B into a few additional species. Because accurate species delimitation requires a multilo-
cus approach comprising two or more independent markers [56], and as some of the results of
the PTP and bPTP methods are discussable (work in preparation), we decided to go with the
well supported, robust and most conservative estimates obtained by Bayesian inference and
maximum likelihood.

Ecological niche of the four species

The four study species differ both along individual niche axes as well as in their three-dimen-
sional ecological niche. The differences among species are of different magnitude. The results
are summarized below.

Morphology of mouthparts and gnathopods suggests that the most different species are
NKB versus NSA and NSB. The former species seems to be oriented towards predation and/or
handling large particles of food, whereas the latter two species are likely specialized in filter-
feeding. Small differences in morphology were found between NKA (filter feeder/predator)
and NKB (predator), and no differences were found between NSA and NSB (both of them fil-
ter-feeders, Table 2).

The analysis of epi-hypogean distribution indicates that about one half of records for each
species derive from transitional habitats. NKA, NSA and NSB, however, are more common in
surface habitats whereas NKB inhabits subterranean habitats more frequently (M? = 53.8,

p =0.001; Fig 3). Geological basement does not affect the observed, non-random partitioning
of habitat type among species.

All models defining the bioclimatic niche envelope can be considered as acceptably predic-
tive (AUC > above 0.7, see [57]). Details of each model can be found in (S1-54 Figs). Niche
overlaps in terms of Schoener’s D ranged from 0.38 to 0.81 and are listed in Table 3. Disregard-
ing which combination of bioclimatic variables was used to model the bioclimatic niche enve-
lope, the indices reveal almost identical results. The overlap of niches is moderate (0.4-0.6) to
high (0.6-0.8) [58]. Niche equivalency test revealed that bioclimatic niches are equivalent
within NKA and NSA as well as within NKB and NSA. In the remaining species pairs,
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® N. krameriA B N. spinulifemur A
@ N. krameri B O N. spinulifemur B

Fig 2. Distribution of focal species and the studied area (the Istrian Peninsula). The inset map indicates the geographic position of the study area within
Europe. Species presence records were superimposed on a SRTM Shaded Relief (Central North) layer available from ESRI.

doi:10.1371/journal.pone.0134384.9002
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Fig 3. Epi-hypogean distribution of the studied species, corrected for geological basement.

Habitat type

S - surface

T - transitional

U - underground

Geology
F - flysch
L - limestone

Species

NKA - N. krameri A
NKB - N. krameri B
NSA - N. spinulifemur A
NSB - N. spinulifemur B

doi:10.1371/journal.pone.0134384.9003

bioclimatic niches are significantly more different than expected if they were randomly drawn
from the same underlying distribution. However, different accuracy of niche models advises
some care, as the overlap estimates are subjected to unequal errors. Error is smallest between

NKA and NSB and greatest between NKB and NSA.

Opverall differences between species inferred from our three-dimensional niche model are
presented in Table 3. Three alternatives of bioclimatic niche have a negligible effect on the final
values. Most similar niches are shared by NKA-NSA and NSA-NSB species pairs whereas
niches between NKB and NSB are most different. Other species pairs lie in between these
extremes. It is important to notice that the two species pairs that appear most sympatric in Fig

PLOS ONE | DOI:10.1371/journal.pone.0134384  July 30, 2015

11/19



@’PLOS ‘ ONE

Ecological Differentiation of Cryptic Niphargus Species

Table 3. Ecological similarity between species pairs along individual niche axes and the joint niche.

Species pair
NKA-NKB
NKA-NSA
NKA-NSB
NKB-NSA
NKB-NSB
NSA-NSB

Feeding biology'

0.67
0.33
0.33
0.00
0.00
1.00

Epi-hypogen distr.? Bio Clime®’ Bio Clime®® Bio Clime®® Joint niche®’ Joint niche®® Joint niche®®

0.24
0.89
0.87
0.13
0.37
0.76

0.63* 0.69* 0.60* 0.55 0.57 0.54
0.70 0.74 0.75 0.80 0.80 0.80
0.41* 0.41* 0.38* 0.59 0.59 0.58
0.77 0.81 0.75 0.58 0.58 0.58
0.64* 0.58* 0.62* 0.43 0.40 0.41
0.45* 0.45* 0.44* 0.77 0.77 0.77

'Overall morphological similarity calculated from Table 2, normalized values.

2Difference in preference for surface habitats, normalized values.

07,08, 09 The yalues denote maximum Spearman’s rank correlation between BioClim variables allowed in calculation of Schoener’s D index. For
calculations of the joint niche values of D index were standardized.

*A statistically significant difference in values of selected BioClim variables for the species pair.

doi:10.1371/journal.pone.0134384.1003

2 (NKA-NSA and NKB-NSB) exhibit the most and the least similar niche. Likewise, niches
between sister species pairs are either similar (NSA-NSB) or quite different (NKA-NKB).

Coexistence models in the community

The four species exhibit a sympatric distribution pattern across the Istrian Peninsula (Fig 2).
The nearest neighbour analysis further demonstrated that the distribution of each species is
clumped rather than randomly or evenly dispersed (Table 4). Apparently, the distribution
overlap is greatest in phylogenetically distantly related (NKA-NSA and NKB-NSB) rather than
in sister species (NKA-NKB and NSA-NSB) (Fig 2 and S1-54 Figs).

Observed and expected values of syntopic and non-syntopic species-occurrences in areas of
sympatry (see Methods) along with results of multinomial tests are presented in Table 5 and S4
and S5 Tables. Six alternative tests (see Methods and Table 5) were performed for each species
pair. Overall, in five out of six species pairs it seems that syntopies were less frequent and non-
syntopic occurrences were more frequent than would be expected by chance alone in all tests.

In NKA-NKB and NKB-NSB species pairs, syntopies were less frequent and non-syntopic
occurrences were more frequent than would be expected by chance alone in all tests. The same
is true in four out of six tests for NKA-NSA and NKA-NSB (Table 5 and S4 and S5 Tables). In
NKB-NSA species pair increasing restrictions yielded in five tests alone; syntopies were less fre-
quent and non-syntopic occurrences were more frequent than would be expected by chance
alone in two out of five tests. The only species pair that in no test differed from chance expecta-
tions was NSA-NSB. We tentatively propose that the pattern implies competitive interactions
within four to five out of six pairs of species. All results including phylogenetic relatedness,
niche differentiation, distribution and tests of co-occurrence are summarized in Table 6.

Table 4. Evidence for clumped distribution of focal species.

Species
NKA
NKB
NSA
NSB

N

25
48
6

65

Area NN Ratio* z-score p-value
0.51 0.47 -5.0444 <0.0001
0.51 0.82 -2.4182 0.0156
0.51 0.23 -3.5940 0.0003
0.51 0.51 -7.4832 <0.0001

* NN Ratio = observed mean distance/expected mean distance, if NNR<1 then distribution is clumped, if NNR>1 then distribution is equally dispersed.

doi:10.1371/journal.pone.0134384.1004
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Table 5. Evidence for competition inferred from presence-absence distributions.

species pair’ corrected for bioclimatic niche envelope? corrected for bioclimatic niche envelope and epi-
hypogean spatial seggregation®

0.7 0.8* 0.9* 0.7 0.8* 0.9*
NKA—NKB <0.001° <0.001 <0.001 0.007 <0.001 0.009
NSA—NSB 0.12 0.12 0.534 0.12 0.12 0.534
NKA—NSA <0.001 <0.001 0.055 0.004 0.008 0.055
NKB—NSB <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
NKA—NSB 0.034 <0.001 0.249 0.034 <0.001 0.249
NKB—NSA 0.011 0.027 0.099 0.23 0.23 NAS

T NKA, NKB, NSA and NSB abbreviate the four species of the NK and NS complex.

2 Sympatry area of a species pair defined as overlapping ranges, as inferred by LPT binary threshold.

3 Sympatry of species pair in area of overlapping ranges as inferred by LPT binary threshold and corrected for epi-hypogean spatial segregation (data
from springs only).

“ Correlation threshold defining the BioClim variables used in modeling (see Table 1).

5 Probability that the observed frequencies of co-occurrence come from the same underlying distributions as the expected frequencies. Boldface values
indicate statistical significance for nonrandom low co-occurrence frequency, which might imply present or past competitive interactions. More detailed
tables including expected and observed number of occurrences and M statistics are available in Supporting Information.

8 Controlling for spatial autocorrelation restricted the number of records and probability could not have been estimated.

doi:10.1371/journal.pone.0134384.1005

Discussion
The significance of ecological differentiation

All four focal species ecologically differ from each other and the degree of differentiation varies
between species (Table 6). These differences may not necessarily mean that species play ecolog-
ically different roles in the ecosystem. For example, the four species studied here are spatially
segregated. Such segregation may indicate species’ adaptation to for example bioclimatic
niches, but it may also be a result of biotic interactions [59-60]. In order to evaluate whether
the observed differences indicate species’ ecological differentiation, we analysed ecological dif-
ferences and co-occurrence data within coexistence theory.

The most differentiated species pair in the system is NKB-NSB (Tables 3 and 6). Strongly
differentiated species are expected to establish stable coexistence, defined as long-term co-
occurrence where intraspecific competition exceeds interspecific competition [54], and where
each species shows positive population growth when it is rare in the system [61]. If these crite-
ria were satisfied, co-occurrence records should be more frequent than observed by chance,

Table 6. Summary of all results.

Species pair Phylogenetic relatedness Ecological niche’ Distribution pattern® Competition
NKA—NKB sister 5 small spatial overlap strong
NSA—NSB sister 2 small spatial overlap unlikely
NKA—NSA non- sister 1 strong spatial overlap strong
NKB—NSB non- sister 6 strong spatial overlap strong
NKA—NSB non- sister 3 small spatial overlap strong
NKB—NSA non- sister 4 small spatial overlap ?

T Numbers rang species pairs according to the similarity of the species ecological niche: 1- little difference, 6—maximum differences.
2 All species exhibit a clumped distribution (see Table 4).

doi:10.1371/journal.pone.0134384.1006
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given that in NSB the geographic range is spatially nested within the range of NKB. Apparently
this is not the case as the frequency of co-occurrences is unexpectedly low. A similar pattern
with unexpectedly low co-occurrences might occur if species were specialized for spatially
auto-correlated environmental factors that would limit their dispersal. In the present study,
however, we controlled for bioclimatic factors and surface-subterranean segregation by limit-
ing our inference to sympatric areas, hence the effect of restricted dispersal between localities
should be minimal. Although alternative explanations cannot be excluded without experimen-
tal work, we tentatively propose that this pattern hints at short-term co-occurrences and com-
petitive exclusion [62]. In other words, ecological differences between these two species are not
sufficient to resolve interspecific competitive interactions.

In analogy, ecologically equivalent species, which might evolve under various different theo-
retical predictions [63-64], could establish prolonged periods of co-occurrences (unstable
coexistence sensu [54]). The ecologically most similar pair in the study system is NKA-NSA.
Distributional ranges of both species overlap and both species apparently share bioclimatic and
epi-hypogean requirements. The only difference observed was in morphology, and even in this
aspect NKA shows a degree of similarity with NSA, possibly indicating NKA convergence
towards ecological equivalence. Ecologically equivalent species are expected to co-occur with a
frequency that equals the probability of chance meetings. Again, we found a different pattern:
although the two species spatially overlap, no co-occurrences between NKA and NSA were
detected. If not result of low number of records for NSA, this result again implies competitive
exclusion [62].

Other species pairs (NKA-NKB, NKA-NSB, NKB-NSA, NSA-NSB) comprise of moderately
different species, the ranges of which spatially overlap only in part. Spatial segregation may
indicate an adaptation to spatially-correlated environmental parameters like bioclimatic niche.
In turn, dispersal along an environmental gradient establishes zones of sympatry, where species
interact with each other [65]. In most cases, frequency of co-occurrences is low (Table 5 and S4
and S5 Tables) which once again indicates that interspecific interactions do not allow long-
term co-occurrences in zones of sympatry. The only exception is the species pair NSA-NSB,
where results suggest that these two species may co-occur at random. However, the zone of
sympatry is small. Consequently the number of records used in co-occurrence test in this spe-
cies pair is low, and results may be inaccurate.

In short, we tentatively conclude that all four studied species are neither ecologically identi-
cal, nor functionally differentiated. Results may indicate that any pair of the four studied spe-
cies experience strong interspecific interactions at local-most scale, or, with other words, the
observed ecological differentiation should be considered when dynamics of local community is
studied. Noteworthy, these results are concordant to recently published experimental approach
conducted with cryptic amphipods from the genus Hyalella [66].

Phylogenetic differentiation does not relate to ecological differences

Several authors recently addressed whether phylogenetic relationship can be used as a proxy of
species’ ecological similarity [13, 67-69]. Here presented results do not support the hypothesis
that closely related species are ecologically more similar than distantly related ones: species of
N. spinulifemur complex are among the most similar species in the studied system, whereas
species of N. krameri complex are among the most different herein studied species pairs

(Table 6). We acknowledge that the dataset is too small to permit statistical evaluation of this
hypothesis. In addition, generalization of this conclusion may be sensitive to phylogenetic hier-
archy. Wiens [12] argued that the concept of ecological similarity applies well to clade level,
although species within the clade differ from each other. Our data may be in agreement to this
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view: all species differ from each other; however, both species complexes studied share similar
ecology that is distinct from ecology of many other Niphargus clades [5, 27].

Conclusion

The question of ecological differentiation of morphologically cryptic species is apparently a
hierarchy-related question, no matter if considered from phylogenetic or functional-ecological
perspective. Species differ at a fine scale and this differentiation may play a role in local dynam-
ics, for example processes involved in community assembly [66, 70-72]. We strongly advise
that morphologically cryptic species should not be a priori treated as ecologically equivalent in
fine scale ecological studies or even eco-toxicological tests [73-75]. By contrast, incomplete dif-
ferentiation as inferred from low-occurrences implies that on a large scale these species play
roughly similar roles in the ecosystem and that clade membership can be used as a proxy for
species ecology.
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