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Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B
cells, remains one of the most extensively studied cytokines. It plays a vital role in health
maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads
to profound immunodeficiency. IL-7 contributes to host defense by regulating the
development and homeostasis of immune cells, including T lymphocytes, B
lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have
demonstrated safety and potent immune reconstitution effects. In this article, we
discuss IL-7 and its functions in immune cell development, drawing on a substantial
body of knowledge regarding the biology of IL-7. We aim to answer some remaining
questions about IL-7, providing insights essential for designing new strategies of
immune intervention.
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INTRODUCTION

Interleukin-7 (IL-7) was discovered in the last century and noted for its growth-promoting effects
on progenitors of B cells in vivo (1). It was subsequently shown that IL-7 is a 25-kDa soluble
globular protein. IL-7 is produced by cells, such as fetal liver cells, stromal cells in the bone marrow
(BM), and thymus and other epithelial cells, including keratinocytes and enterocytes (2). IL-7R is a
heterodimeric complex consisting of the a-chain (CD127) and the common cytokine receptor g-
chain, shared with the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, and expressed in a
variety of cells (3). Thus, IL-7 has multiple biological activities and influences various cell types
through binding to its receptor. Deficiencies in IL-7 or IL-7R can lead to severely impaired immune
cell development (Table 1). In the ensuing decades, the discovery of relevant signaling pathways was
accompanied by recognition that IL-7 plays an indispensable role in the development and
maintenance of many other immune cells. The vital regulatory functions of IL-7 throughout the
entire immune system have become increasingly evident.
org December 2021 | Volume 12 | Article 7473241

https://www.frontiersin.org/articles/10.3389/fimmu.2021.747324/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.747324/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.747324/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.747324/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:tangzh@tjh.tjmu.edu.cn
https://doi.org/10.3389/fimmu.2021.747324
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.747324
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.747324&domain=pdf&date_stamp=2021-12-02


Chen et al. Review of IL-7
IL−7−Mediated Signaling Pathways
IL-7Ra is expressed in early thymocytes, T cells, pre-B cells, BM
macrophages, and other immune cells. In these cells, IL−7
−mediated signaling initiates downstream signaling pathways
through Janus kinase 1 (JAK1), JAK3, and phosphoinositide 3
−kinase (PI3K), which further leads to the activation and
phosphorylation of signal transducer and activator of
transcription 5 (STAT5). Phosphorylation of the IL-7Ra chain
is critical for the next stage of signal transduction because it
contr ibutes to the recruitment of STAT prote ins .
Phosphorylation of STAT proteins makes it possible for them
to dimerize and translocate to the nucleus, where they act as
transcription factors for target genes by binding to specific
promoter elements. This results in changes in the expression of
B-cell lymphoma 2 (Bcl−2) family members, such as increased
expression of the anti−apoptotic molecules Bcl-xl, Mcl-1, and Bcl
−2 and decreased expression of the pro−apoptotic molecules
Bax, Bim, and Bad.

Src family kinases are also activated by IL-7 binding. These
kinases play an important role in developing B cells, but their
function in IL-7 signaling has not been fully elucidated. Studies
revealed that a potential function of Src kinases is to help activate
STAT proteins because they can be phosphorylated by Src
kinases independently or in conjunction with JAK proteins (4).
One key downstream mediator of PI3K signaling is the serine/
threonine kinase Akt (PKB). Akt serves as a central modulator of
normal and aberrant B-cell differentiation via regulation of
variety of pro- and anti-apoptotic factors (5). The molecular
Frontiers in Immunology | www.frontiersin.org 2
structure and signal transduction pathways of IL-7R are shown
in Figure 1.

Beyond contribution to homeostasis of peripheral T cells,
elevated production of IL-7 promotes survival of both naïve and
memory T cells (6). IL-7 was suggested to be involved in multiple
stages of the development of B-cell progenitor, including its
commitment, survival, differentiation, and proliferation (7).
Moreover, IL-7 is a non-redundant cytokine with the ability to
regulate the recruitment of leukocytes such as neutrophils and
monocytes (8, 9). The results of animal experiments and clinical
findings suggest that IL-7 is required to maintain and develop
immune cells. In this review, we discuss IL-7 and its functions in
immune cell development based on the body of knowledge
regarding IL-7 biology (Figure 2), with the aim of answering
the remaining questions, essential for the design of new immune
intervention strategies.
IL-7/IL-7R AND T CELLS

Although IL-7 originally was discovered for a novel molecule
acting exclusively on B cells, many critical biological activities of
T cells are susceptible to IL-7.

IL-7/IL-7R and T-Cell Lymphopoiesis
IL-7 signaling is necessary for the development of T cells. Defects
in IL-7 or IL-7 receptors in humans lead to severe impairment of
T lymphopoiesis (10). IL-7 plays a unique role in the
TABLE 1 | The effects of deficiency of IL-7 and its receptor on development of immune cells.

Cells Effects Treatment with IL-7

Thymus Decrease in thymic cell count
Thymic involution

Increase in thymic cell count
Recovery of thymic function

T cells Inhibition of glucose metabolism
Cell atrophy
Impairment of T-cell functions
Severe impairment of T lymphopoiesis
T-cell apoptosis

Restoring T-cell numbers
Increasing the diversity of T cells
Boosting T-cell function
Inhibiting T-cell apoptosis
Promoting glucose metabolism
Preventing T-cell from atrophy

B cells Block in transition to pro-B cells in the BM
Impairment of B differentiation potential
Impairment of early B lymphopoiesis
B-cell apoptosis

Increase in B-cell numbers
Allowing the transition of pro-B cells
Promoting B-cell survival
Increasing antibody production

NK cells Decrease in CD56brightNK cell count
Impairment of functional responsiveness
Pronounced reduce of NK cell cytotoxicity

Increase in NK cell count
Promoting survival of CD56brightNK cells
Inducing pronounced enhancement of NK cell cytotoxicity

ILCs Impairment of ILC differentiation and generation Increase in ILC numbers
Achieving the entry of lymphocytes into lymph nodes

Monocytes/macrophages Inhibition of monocyte activity
Reduce of cytokine secretion

Increasing antigen presentation
Augmenting the activity of monocytes
Promoting cellular proliferation
Increasing cytokine secretion
Inducing the recruitment of monocytes

Dendritic cells Decrease in DC count Continuous generation of functional dendritic cells
Creating microenvironments for thymic DCs

Neutrophils Decrease in cell count
Recruitment delay of neutrophils

Increase in neutrophil count
Accelerating the recruitment of neutrophils

Eosinophils Reduced production of eosinophils
Inhibition of eosinophil survival

Increase in eosinophil numbers Promoting the survival of eosinophils
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development of murine T cells, demonstrated by the paucity of
lymphocytes present in IL-7- and IL-7R-deficient mice and
following IL-7 or IL-7R neutralization in vivo. In severe
combined immunodeficiency (SCID) resulting from mutations
in JAK3, T cells were obviously decreased. JAK3 is indispensable
for gamma(c)-dependent signaling because it encodes a Janus
family tyrosine kinase that couples gamma(c), indicating that
defects in IL-7Ralpha signaling caused T-B+NK+ SCID (10).

The biological effects of IL-7 on T-cell lymphopoiesis vary for
different lineages during the stages of differentiation. Recent
studies have shown that the number of early thymic
progenitors (ETPs) in mice with impaired IL-7 signaling was
Frontiers in Immunology | www.frontiersin.org 3
significantly decreased, while the number of ETPs in mice with
overexpression of IL-7 was greatly increased (11). The findings
indicate that IL-7 can promote the development of ETPs. In
addition, IL-7 was indispensable during the gdTCR (T-cell
receptor) rearrangement because gdT cells were completely
absent from IL-7- mice. However, when the effect of IL-7 is
limited, other elements may compensate. For instance, thymic
stromal lymphopoietin (TSLP) also signals through the IL-7R
subunit, which can substitute for IL-7 in thymopoiesis to
stimulate the proliferation of CD4+ single-positive thymocytes
and peripheral T cells, although this is a suboptimal choice.
Beyond playing a critical role in the T lineage progenitor stage of
FIGURE 2 | IL-7R expression by immune cells and the effects of interleukin-7 (IL-7) on the development of T cells, B cells, natural killer (NK) cells, innate lymphoid
cells (ILCs), monocytes/macrophages, dendritic cells, neutrophils, and eosinophils. HSC, hematopoietic stem cell; CLP, common lymphoid progenitor; ETP, early T-
cell lineage progenitor; DN, double−negative; DP, double−positive; SP, single−positive.
FIGURE 1 | Signal transduction pathways of interleukin-7 receptor (IL-7R). Downstream signaling pathways induced by IL-7 involve Janus kinase 1 (Jak1), Jak3
(through the g-chain), Src kinases, phosphatidylinositol-3 kinase (PI3K), phosphokinase B (PKB), STAT3 (signal transducer and activator of transcription 3), and
STAT5. Signal transduction induces changes of gene expression levels in the nucleus, including promoting anti-apoptotic factors (such as Bcl-2, Bcl-xL, and Mcl-1)
and inhibition of pro-apoptotic factors (such as Bax, Bad, and Bim).
December 2021 | Volume 12 | Article 747324
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thymopoiesis, IL-7 is also crucial for developing double-negative
(DN) thymocytes. IL-7 is an efficient growth factor for DN
thymocytes and may serve as an amplification step during
thymopoiesis. In early thymocytes, IL-7R signals function
nonredundantly by promoting proliferation and survival of
CD44+25+DN thymocytes (so-called DN2 cells) (12, 13). Work
by Munitic et al. showed that beyond the DN stage, the forced
expression of IL-7Ra could lead to a diminished size of the DN
pool. The researchers suggested that this may occur due to the
consumption of IL-7, which then contributed to a reduced
supply of IL-7 available for DN thymocytes (14). In contrast to
the rigorous requirements for IL-7 signaling in double-negative
stage 2 (DN2) thymocytes, IL-7 signaling is commonly
extinguished by the immature single positive (ISP) stage of
thymocyte development. Notably, work by Yu et al.
demonstrated that IL-7R signals act as inhibitors of TCF-1,
LEF-1, and RORgammaT, all of which are essential for the
transition of DP to SP in the thymus (15). Regulation of IL-7R
is also significant during the double-positive stage of
development because IL-7R is indispensable for transforming
signaled double-positive thymocytes into functionally mature
CD8+ T cells (16).

Evidence suggests that IL-7 is an essential requirement for
normal thymopoiesis. This raised the possibility that diminished
IL-7 production could result in thymic involution and that IL-7
treatment may promote thymopoiesis in lymphopenic
individuals. Many researchers have pursued this appealing
hypothesis. Although IL-7 therapy in aged mice could not
reverse their thymic involution, some reports showed that IL-7
therapy can gradually accelerate recovery of thymic function
(17). The multiple functions of IL-7 in T-cell lymphopoiesis have
encouraged researchers to apply IL-7 as a therapy for recovering
T-cell numbers (18–21). In addition to the application of IL-7
alone, combining IL-7 with other molecules holds potential and
has attracted interest. Mamoru et al. demonstrated that when IL-
7 was induced in the presence of IL-12, the diversity of
intratumoral CD8+ T cells increased, and IL-12 function was
augmented to promote c lona l i t y (22) . S imi l a r l y ,
immunocomplexes of IL-7 and aIL-7 mAb M25 (IL-7/M25)
were described as super-agonists, remarkably augmenting the
size of the T-cell pool. Moreover, the immunocomplex effectively
shifted the CD4+:CD8+ T cell ratio in favor of CD8+ T cells (23).
These studies demonstrate that applying IL-7 to clinical
therapeutics effectively boosts T-cell function and restores T-
cell numbers to re-establish immune competence (24).

IL-7/IL-7R and T-Cell Survival
Without external disturbance, the T-cell homeostasis in the
peripheral lymphoid compartment is rigorously regulated
through turnover, survival, and death. By itself, tonic TCR
signaling is not sufficient to keep T cells alive. IL-7 promotes
T-cell survival by upregulating the expression level of the Bcl-2
family of molecules, especially Mcl-1 and Bcl-2, which can
extensively inhibit the mitochondrial apoptotic pathway.
Acting as a critical anti-apoptotic factor, Mcl-1 plays an
important role in the survival of single-positive thymocytes,
DN thymocytes, naïve T cells, and activated T cells. Moreover,
Frontiers in Immunology | www.frontiersin.org 4
Mcl-1 functions together with Bcl-xL to promote double-positive
thymocyte survival (25). However, some reports challenged the
conclusion that IL-7 regulates the expression of two anti-
apoptotic factors in peripheral T cells because experiments
with CD127 conditional deficient mice revealed no distinct
effect on the level of Mcl-1 and Bcl-2 expression compared
with normal mice for 3 days, indicating that IL-7 signaling was
not required to regulate these molecules (26, 27). However, a
major limitation is that the half-life of both anti-apoptotic factors
could be longer than 72 h.

In addition to dependence on a dynamic balance of pro-
apoptotic and anti-apoptotic signals, it should be emphasized
that the capacity of IL-7 to maintain steady metabolism—
especially glucose metabolism—is also critical for T-cell
survival (28). Previous reports have validated that IL-7
promotes glucose metabolism in vitro to prevent T-cell atrophy
(29). Once stimulated by growth factors, T cells increase their
rate of glucose uptake and glycolysis. This function is mediated
via a signaling mechanism in which STAT5 transcriptional
activity promotes Akt activation to regulate glucose uptake and
glucose transporter 1 (Glut1) trafficking, essential for IL-7 to
prevent T-cell death and maintain homeostasis (30). T cells
generally shrink and undergo atrophy when they were
transferred into IL-7-deficient hosts (29). Although inhibition
of CD127 expression on normal mature T cells did not cause
evident changes in total Glut1 levels and glucose uptake, it
reduced the rate of glycolysis and induced cell atrophy (26).
Taken together, findings demonstrate that IL-7R signaling is
essential for promoting T-cell survival through regulating
glycolysis. More recently, scientists tried to apply IL-7 to CAR-
T cells given the great success chimeric antigen receptor (CAR)-
engineered T cells showed in cancer treatment. Surprisingly, they
found that expression of IL-7 and CCL19 significantly improved
T-cell infiltration and survival of CAR-T cells in mouse tumors,
enhancing the anti-tumor activity against solid tumors (31).
IL-7/IL-7R AND B CELLS

IL-7/IL-7R and B-Cell Lymphopoiesis
Hematopoietic stem cells (HSCs) naturally differentiate into B
cells. During the process, cells gradually demonstrate B-cell traits
but inhibit the traits of other lineages. IL-7 exerts important
functions in mouse B cell development, exemplified by the fact
that mice with IL-7 deficiency lack both pre-B cells and mature B
cells (13, 32). An experiment with IL-7R- mice detected reduced
expression levels of Pax5 in BM cells. Pax5 acted as an essential
transcription factor in early B lineage cells (33). More
importantly, common lymphoid progenitors (CLPs) lose the
ability to differentiate into B220+CD19+B lineage cells in the
absence of IL-7 (34).

CLPs developed in an IL-7-deficient context possess normal
T/NK (natural killer) differentiation potential. However, their B
differentiation potential is severely impaired. In limiting dilution
assays, CLPs cultured in conditions favorable for B
lymphopoiesis generated B lineage cells more than CLPs
December 2021 | Volume 12 | Article 747324
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isolated from IL-7− mice cultured in the same conditions. In
contrast, enforced expression of EBF (a type of B lineage
transcription factor) into CLPs from IL-7− mice made it
possible to restore their capacity to differentiate into B lineage
cells (35). Notably, IL-7R signaling has been demonstrated to
lead to the expression of EBF by activation of STAT5, a major
signaling molecule downstream of the IL-7R signaling pathway.
Therefore, IL-7 receptor signaling acts as an important
component in forming the transcription factor network during
B lymphopoiesis via upregulating EBF, allowing stage transition
from the pre-pro-B to further maturational stages (36).

IL-7 is essential for murine B-cell development. However,
unlike in mice, the development of human B cells appears to
proceed typically in the absence of IL-7. A gene mutation located
at the human gc locus may lead to a disease called X-linked
severe combined immunodeficiency (X-SCID), characterized by
a deficiency of T and NK cells in the presence of normal
quantities of B cells (10). Indeed, IL-7 reacts with B-cell
precursors to show higher survival and proliferation ability by
mediating STAT5 (37). Although neonatal cord blood can
produce B-cell progenitor cells in the absence of IL-7, IL-7
greatly increases the production of B cells in co-cultures
containing human BM stroma and either adult BM HSCs or
cord blood (38). Experiments also revealed the crucial effect of
IL-7 on peripheral B-cell numbers. For example, a transient
decrease of peripheral B cell numbers could be observed after IL-
7 therapy, normalizing several weeks after the initiation of
treatment. This further suggested that B-cell lymphopoiesis
may be affected by the IL-7 levels of peripheral blood (39). The
selective cytokine culture experiments conducted by Bruno et al.
confirmed that the production of human B-line cells outside the
fetal stage depends on the signal mediated by IL-7Ra, which
could be provided by IL-7 or TSLP. The effectiveness of IL-7 on B
lymphopoiesis in vivo was demonstrated by the decrease in
human B cell progenitor cells after treatment with IL-7
neutralizing antibody in xenografts (40). In addition, the high
expression level of IL-7 was reported to be responsible for the
increased proportion of immature transitional B cells in patients
infected with HIV-1 (39, 41, 42).

More recently, experiments by Yu et al. found that a PLCg1/
PLCg2 double deficiency in mice resulted in the developmental
arrest of early B cells and rendered B-cell progenitors
irresponsive to IL-7. Inhibition of mammalian target of
rapamycin (mTOR) activation induced by PLCg/PKC impaired
IL-7-mediated B-cell development. Briefly, IL-7 receptors
regulated early B lymphopoiesis by activating the mTOR via
PLCg/DAG/PKC signaling (43). Despite its positive effect on B-
cell production, IL-7 has been demonstrated to be an unfavorable
prognostic factor affecting clinical outcomes in both mice and
humans. For example, compared with healthy individuals,
patients with Hodgkin’s lymphoma display higher serum levels
of IL-7, and IL-7 mRNA-specific signals are detectable in tumor
tissues (44). Lymphomas are also frequently observed in IL-7
transgenic mice (45). The role of IL-7 in the pathogenesis of
types of lymphoma and leukemia is documented in several
studies (46, 47).
Frontiers in Immunology | www.frontiersin.org 5
IL-7/IL-7R and B-Cell Survival
IL-7 promotes B-cell survival by modulating pro-apoptotic
production (such as Bax, Bad, and Bim) and anti-apoptotic
factors (such as Bcl-2, Bcl-xL, and Mcl-1). Studies have shown
that different regions of the IL-7 receptors initiated the signal
transduction pathways that regulate the Bcl-2 family, including
the synthesis of Bcl-2, phosphorylation of Bad, and cytosolic
retention of Bax (48). Short-term culture of immature
thymocytes with IL-7 causes an increase in Bcl-2 expression
and cell survival (49). Mcl-1 is another critical factor associated
with the survival of B cells, and STAT5 regulates its expression
directly (50). Defects in Mcl-1 expression increase apoptosis of B
cells and arrest the development at the pro-B-cell stage. In
thymocytes deficient in recombination activating gene 2,
exposure to IL-7 stimulation leads to a significant increase in
Mcl-1mRNA levels within 30 min (51). PI3K/Akt and JAK/
STAT pathways also play an important role in mediating the
survival responses of IL-7. PI3-K initiates Akt-dependent
phosphorylation of Bad, which is conducive to maintaining
Bad in the cytosol. To prevent apoptosis, this procedure
requires the activation by IL-7R signaling (52). Bax is a
significant pro-apoptotic factor in B-cell development, and
mice lacking the signaling component JAK3 or IL-7R display
greatly increased Bax levels (53, 54). More interestingly, although
B cells are insensitive to IL-7 (due to the lack of expression of IL-
7R on mature B cells), high concentrations of IL-7 promote B-
cell survival and increase antibody production in the presence of
T cells without using any other B-cell stimulatory signal. The
mechanism is that IL-7 promotes B cell activation through
stimulating expression of CD70 on CD4+ memory cells. IL-7
treatment also triggers resting peripheral T cells to secrete BAFF,
thus promoting the survival of B cells (55).
IL-7/IL-7R AND NK CELLS

Human NK cells comprise approximately 15% of all circulating
lymphocytes. In humans, NK cells can be divided into two subsets:
CD56bright andCD56dim subsets, based on their localization and the
cell-surface density of CD56 (56). The two subsets have distinct
functional properties. The CD56bright NK population produces
large amounts of diverse cytokines. In contrast, CD56dim NK
population possesses high cytotoxic activity. We already know
that CD127 is expressed predominantly on CD56bright NK cells
(57). More importantly, CD127 acts as a molecular marker in the
development of mouse NK cells derived from the thymus. CD127+

NK cells originating from the thymus repopulate in peripheral
lymphoid organs, where IL-7 strictly regulates their homeostasis
(58). Studies report that IL-7 has redundant functions for
generating NK cell precursors and immature NK cells. It also
plays a critical role in the normal homeostasis of mature NK cells
in the spleen (59–61).

Vosshenrich et al. compared the generation of thymic NK
cells in Rag2-IL7+ and Rag2-IL7- mice. The phenotype and
absolute number in the spleen and BM were not significantly
different. However, mice lacking in IL-7 had rare thymic
December 2021 | Volume 12 | Article 747324
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CD127+NK cells, indicating that IL-7 is critical for the
homeostasis (58). The authors assessed the NK cell number
that the thymus contributed to the peripheral NK cell pool and
found that considerable CD127+ NK cells were exported to
peripheral organs (58). However, in contrast to observations in
mice, Michaud et al. assessed the IL-7Ra expression levels in
mature NK cells isolated from human peripheral blood, and
found that IL-7Ra+CD56bright NK cells were independent of
thymic maturation because the NK cells extracted from athymic
patients expressed IL-7Ra. Moreover, the team confirmed that
IL-7 enhanced the survival of CD56brightNK cells by increasing
the expression of Bcl-2 (57).

Several lines of evidence confirm that IL-7 is extremely
important in disease control through regulating the biological
functions and homeostasis of NK cells. For example, patients
with multiple sclerosis (MS) have decreased NK cell numbers
and impairment of NK cell functions. The levels of IL-7 and IL-
7Ra in MS patients affect the functional responsiveness of NK
cells. IL-7 induces an increase of IFN-g production in CD56bright

NK cells and a pronounced enhancement of cytotoxicity in NK
cells from patients with MS (62). In hepatitis C virus (HCV)
mono-infection and HIV–HCV co-infection, IL-7 enhances NK-
cell degranulation and promotes NK-cell cytolysis of target cells
(63). Correspondingly, by using CD3-CD16+CD56+ cells from
HIV-positive and -negative donors, Lum et al. showed that IL-7
could augment NK function by upregulating Fas ligand (64).
IL-7/IL-7R AND ILCS

Innate lymphoid cells (ILCs) are a recently discovered family of
lymphoid cells important for eliminating external pathogens,
tissue development and remodeling, and immune defense at
multiple mucosal sites (65). ILCs are categorized into three broad
classes: ILC1s, ILC2s, and ILC3s. A further subset of ILCs is LTi,
namely, lymphoid tissue inducer cells. NK cells are similar to
ILC1s but are not considered part of the ILC subset. IL-7 is
involved in the development of all ILC subsets, as demonstrated
by animal experiments. For instance, compared with wild-type
(WT) mice, only a marginal reduction of ILC1s was observed in
IL-7R- mice or IL-15− mice. In contrast, ILC1s in IL-7R–IL-15R-

mice were significantly reduced, indicating a synergistic effect
from IL-7 in maintaining ILC1s (66).

One study suggested that IL-7 is critical for the survival and
maintenance of ILC2s in the tissue (67). The dependency of
transcription factors may shed light on the mechanism of IL-7’s
mediation in developing ILCs. Id2+CHILPs (common helper
innate lymphoid precursor cells) can generate ILC subsets
(ILC1s, ILC2s, ILC3s, and LTi), and a transcription factor
called NF1IL3 has been confirmed as indispensable for the
generation of CHILPs and expression of Id2 (68). IL-7
promotes the expression of NFIL3 (68), and therefore, a
deficiency in IL-7 impairs the development of all ILC subsets.
In addition, IL-7 and its receptor drive the differentiation and
generation of ILCs by initiating the expression of transcription
factor Sall3 in CHILPs (69). Recent work by Yang et al.
Frontiers in Immunology | www.frontiersin.org 6
emphasized the importance of IL-7 for the development of
ILC3s, and found that IL-7-dependent maintenance of ILC3s
resulted in the normal entry of lymphocytes into lymph
nodes (70).
IL-7/IL-7R AND MONOCYTES/
MACROPHAGES

Information about the effects of IL-7 on monocytes is sparse and
the role of IL-7 in the development of CD14+monocytes is not
yet clarified. Studies from the last century described the
destruction of monocyte-derived macrophages (MDMs)
infected with Mycobacterium avium mediated by IL-7 (71).
The anti-tumor cytotoxic and antimicrobial effects of
monocytes/macrophages treated with IL-7 have also been
described (71, 72). In patients with autoimmune disorders, IL-
7 combined with blood monocytes to maintain human CD4+

memory cells with mixed regulatory/helper functions (73).
Recently, scientists have reported studies on the in vitro effects
of IL-7. An increased HLA-DR expression of monocytes in the
presence of IL-7 has been reported. Thus, increased antigen
presentation may improve the monocyte effect mechanism in
vitro (74). Li et al. demonstrated that administration of IL-7 in
vivo significantly augmented the activity of lung-resident purified
monocytes. Treatment with IL-7 resulted in elevated STAT5
phosphorylation, increased pro-inflammatory cytokine
secretion, and promotion of cellular proliferation. Activation of
CD4+T cells was induced by monocytes and further enhanced
after treatment with IL-7 (75). IL-7 also induced the recruitment
of monocytes to the endothelium and promoted the cytokine
secretion of CD14+monocytes (9, 72, 76). However, the
biological relevance of these findings remains elusive because
of the relatively low IL-7R expression in monocytes and the
indirect effects of other cells and cytokines.
IL-7/IL-7R AND DENDRITIC CELLS

Dendritic cells (DCs) have long been recognized as important
components of immune cells. To date, there is no unified view on
the role of IL-7 in DCs. Katz and Takeuchi found that DCs were
independent of IL-7, and IL-7R was not required to develop DCs
(77). In their experiments, IL-7R-BM cells were transferred into
sub-lethally irradiatedWTmice. They found that IL-7Ra knockout
(KO) cells reconstituted various DC subsets, and thymic, splenic,
peripheral lymphnodes (pLN) and thymic-plasmacytoidDCswere
reconstituted by IL-7RaKO and WT donor cells. However, their
study was limited by the single experiment design and difficulties in
determining theproportionofDCs fromdonors. In contrast toKatz
and Takeuchi’s work, Vogt et al. usedmultiple in vivomodels. Each
model lacking in IL-7 demonstrated reducedDCnumbers, strongly
suggesting that precursors of both conventional DCs and
plasmacytoid DCs depended on IL-7 (78). The addition of IL-7 to
fetal thymus organ cultures (FTOC) led to the continuous
generation of large numbers of functional DCs. Nevertheless,
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endogenous deficiency of IL-7 reduced DC numbers drastically
(79). Saunders et al. noted that after a 4-day culture period with a
mixture of several cytokines, including IL-7, the mice thymic
precursors proliferated and differentiated to DCs instead of T-
lineage cells (80).Marquez et al. considered that human intrathymic
precursors can differentiate to T-lineage cells if cultured in the
presence of IL-7, and can then simultaneously develop into both
monocytes and DCs (81). To date, there is limited research on the
precise mechanism of IL-7 in DC development. However,
granulocyte-macrophage colony-stimulating factor (GM-CSF)
was confirmed to regulate the development of cDCs
(conventional dendritic cells) and pDCs (plasmacytoid dendritic
cells) by employing STAT5 to inhibit the IRF8 and the
transcriptional network in lin-Flt3+ progenitors (82). IL-7 is
known to trigger the phosphorylation of STAT5 (83, 84), and
thus, it seems likely that IL-7R could be an important signal
upstream of STAT5 in DC precursors.

Moore et al. (85) set out to elucidate the mechanism of IL-7’s
influence on DC biology. They examined the corticomedullary
structure andDCpopulations in IL-7R- thymus, showing that a loss
of IL-7R–dependent cells led to an inverted ratio of medullary
thymic epithelial cells (mTECs) to cortical thymic epithelial cells
(cTECs). An impact on the accumulation of three thymic DC
subsets was also noted. Their BM chimera experiments revealed
that the deficiency in the DC compartment from IL-7R- thymus is
cell-extrinsic. Therefore, although there is no intrinsic need for IL-7
during the development of DCs derived from thymic tissue, IL-7 is
extremely important for establishingmicroenvironments that allow
the accumulation of thymic DCs.
IL-7/IL-7R AND NEUTROPHILS

IL-7 receptors are also expressed in neutrophils, but their role in
neutrophil biology has attracted less attention from scientists
compared with other immune cells. In the last century,
researchers found that intravenous injection of IL-7 into mice
increased neutrophils (86, 87). Jiang et al. introduced the IL-7R
gene into IL-7R- BM progenitors to test the feasibility of IL-7R
transgenic therapy. An unanticipated result was the almost
logarithmic increase in neutrophils (88). In addition to
affecting the number of neutrophils, IL-7 treatment has been
reported to accelerate the recruitment of neutrophils by
promoting T-cell IL-17 secretion (8). This is because IL-17 acts
on mesothelial cells to trigger the secretion of CXCL1/KC and
CXCL2/MIP-2 (89), which have been demonstrated as essential
for the promotion of neutrophil recruitment and granulopoiesis
(90, 91). However, IL-7 only accelerated neutrophil recruitment,
and the acceleration of its activation or functionality was not
observed in the study (8).
IL-7/IL-7R AND EOSINOPHILS

There are few reports of responsiveness to IL-7 by eosinophils.
Vellenga et al. reported CD127 expression on eosinophil
Frontiers in Immunology | www.frontiersin.org 7
progenitors in BM and showed that IL-7 promoted eosinophil
colony formation from human BM cells (92). In addition, mRNA
for CD127 and CD132 were found to be expressed in human
blood eosinophils (93). Some primary studies have indirectly
confirmed that IL-7 can increase the production of eosinophils.
For example, eosinophil infiltration has been observed in mice
colonic mucosa after being treated with overproduction of IL-7
in the colon (94). Similar results have been reported in murine
tumors engineered to overexpress IL-7 (95, 96). Conversely, a
lack of eosinophils was observed in mice treated with targeted IL-
7 deletion (97). Western blotting analysis by Kelly et al.
confirmed the existence of IL-7Ra in highly purified human
blood eosinophils and revealed its novel property of upregulating
the activation marker CD69. More importantly, it demonstrated
that IL-7 promotes the survival of human eosinophils (98).

Clinical Studies on IL-7 Therapy
Clinical studies with IL-7 consistently demonstrates effective
results, especially for acute and chronic infectious diseases. For
example, a case report of a patient with progressive multifocal
leukoencephalopathy (PML) showed that IL-7 decreased
circulating John Cunningham (JC) virus, rapidly increased
lymphocytes, and contributed to disease resolution (99). Sepsis
is a perennial problem, but many high-profile and cutting-edge
therapies are ineffective for sepsis management. The first trial of
immunoadjuvant therapy targeting defects in adaptive immunity
in septic patients demonstrated that IL-7 restored lymphocytes
in septic shock (100). Encouragingly, IL-7 therapy also proved
effective for novel coronavirus disease (COVID-19), which
represents the greatest medical challenge in decades. In a
recent case series, 12 critically ill patients with COVID-19 and
severe lymphopenia were treated with IL-7 therapy. The
lymphocyte count of the IL-7 group was more than double
that of the control group (101).

Highly active antiretroviral therapy (HAART) has been
recognized as effective in the treatment of HIV infection.
However, while HAART almost completely inhibits viral
replication, it fails to restore immune function. Preliminary
clinical trial results demonstrated that IL-7 therapy improved
proliferation and survival of T cells in HAART-treated HIV+

individuals (102). This suggests that HAART may translate into
more favorable clinical outcomes with the use of IL-7. Similarly,
Sereti et al. confirmed that IL-7 administration drove T-cell cycle
entry and expansion in HIV-1 infection (103). Moreover,
administration of recombinant human interleukin-7 (rhIL-7)
improved the gut mucosal abnormalities of chronic HIV
infection and attenuated the systemic inflammatory and
coagulation abnormalities linked to it (104).

In addition to IL-7’s application in infectious diseases, current
understanding of cancer immunotherapy suggests that IL-7
therapy has great potential for cancer treatment. In the first
clinical trial with humans, 16 patients with refractory cancer
were treated with rhIL-7 every other day for a total of 14 days.
Substantial dose−dependent increases in the numbers of
circulating CD4+ and CD8+ T cells were observed in the trial,
with increases peaking at 3 weeks after the IL-7 therapy and
being sustained for at least 2 months (105). In lymphopenic
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metastatic breast cancers, rhIL-7 administration before
chemotherapy significantly increased CD4+ and CD8+ T-cell
counts, but there was no obvious increase in the expression level
of inflammatory cytokine (20). Preclinical studies have validated
the anti-tumor potency of IL-7 therapy. Intra-tumoral delivery of
IL-7-transduced DCs resulted in increased production of
interferon (IFN) and GM-CSF, thereby inducing superior
antitumor responses (106). In addition to using IL-7 alone,
efforts to combine IL-7 with other molecules have also
occurred. A group of researchers demonstrated that therapy
using an IL-7 complex, formed with an IL-7R-Fc, induced
anti-tumor responses by increasing tumor infiltration of T cells
through CXCR3 chemokine signaling (107).
CONCLUSION AND UNANSWERED
QUESTIONS

The subject of IL-7 function and regulation is challenging and
highlights the complexity of this cytokine. Several general
conclusions can be drawn from the review. First, most types of
immune cells are rigorously regulated by IL-7 throughout their
lifespan. Second, although common effects exist, the ultimate
influence of IL-7 regulation differs according to the cell type.
Finally, the expression of IL-7 positively regulates the expression
of pro-inflammatory cells and cytokines, indicating that the
application of IL-7 is a promising therapeutic strategy for
many diseases.
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Several unanswered questions and challenges remain to be
solved. For instance, the cells induced to secrete IL-7 during
immune responses to specific diseases are not known, and we do
not yet know the appropriate amount of IL-7 for different stages
of diseases. When is the most suitable time to apply IL-7 to
enhance immune reconstitution after infection with a specific
pathogen? What is the hierarchy of transcription factor binding
to IL-7 regulatory elements in different types of cells? However,
many of these questions may be solved by further animal
experiments and clinical trials, and combining traditional
biochemical methods and high-throughput approaches to
clarify molecular signal transduction pathways.
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