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Abstract

The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes,
hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the
difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the
application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the
efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high
resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly,
we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel
detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive
rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised
using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and
global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters
output by our algorithm display good agreement with the manual measurements made by three independent observers.
We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy.
The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely
available.
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Introduction

Variations in blood vessel diameters occur as part of the

autonomous control of blood flow in healthy subjects and at

different stages in the pulse cycle [1], while sustained changes may

also indicate the presence of some pathologies [2]. Measurements

of vessel calibre are therefore of interest both to physiologists

looking to better understand the regulation of blood flow [3,4] and

to clinicians interested in the prediction, diagnosis or progression

of disease [5–7]. Of particular importance are retinal images, as

these may be used to directly visualise blood vessels non-invasively

in vivo [2,6]. However, accurate quantification of changes in vessel

calibre is difficult to automate fully because of large variations in

image type, size and quality. In practice, measurements are

frequently obtained using semi-automated computer-assisted

methods [8–10], which can be both laborious and open to user-

bias.

Retinal vessel segmentation
Fully automating the analysis of vessel calibre in still images

relies firstly upon accurately locating the blood vessels. The

application of state-of-the-art image processing techniques to the

accurate segmentation of vessels in human fluorescein angiograms

and fundus (red-free) images has received considerable attention in

recent years [2,11]. Published retinal segmentation algorithms can

be broadly categorised as those that require training images and

those that do not. The former group comprises primarily

supervised algorithms that use a set of hand segmented images

(in which pixels are manually identified either as belonging to

vessels or not) to train a classifier to distinguish vessel pixels

according to feature vectors computed, for example, from

neighbouring pixel intensities or colour channel information

[12], wavelet coefficients [13] or filter correlations [14,15]. When

training images are not used, algorithms typically work by

preprocessing the image to enhance the contrast between vessels

and the background, before a binarisation step (e.g. thresholding)

is applied. Preprocessing may be achieved using matched filtering,

which involves filtering the image with a family of 1D filters

derived from Gaussian functions (chosen to model the profile

across most vessels) rotated at different angles, then retaining the

largest magnitude response [16–18]. In order to better enhance

vessels of different widths, the width of the filter may be varied in

addition to its orientation, resulting in a multiscale matched filter

method [18,19]. Other filter-based approaches include using a
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Laplace kernel [20], and multiple applications of 2D Gaussian

smoothing at different scales followed by ridge detection [12,21].

The effectiveness of morphological, rather than linear, filters for

vessel detection has also been explored [22].

In general, algorithms that integrate the use of training images

and classifiers report better segmentation results at the cost of

higher computation times. The requirement for training images

can be considered a drawback, because manual segmentation of

even a single image is a difficult and time-consuming process, open

to inter-user variability [12] – although this can be somewhat

mitigated if hand-segmenting only a portion of an image is

sufficient to train the classifier [23]. The main strength of these

supervised algorithms is that, because of the complexity of retinal

images combined with the high level of variability arising from

acquisition conditions and the health of the subject, in many cases

it may not be possible to transform or enhance an image in such a

way that a simple thresholding operation can reliably identify the

vasculature – and so the more sophisticated decision making

processes used by classifiers may help to overcome this. On the

other hand, unsupervised algorithms are often faster, and can be

tested easily on new image types without any need for training sets

to be generated. Their primary disadvantage is that they often use

filters and operations that are tailored for a particular type or

resolution of image and can require significant modifications to be

applied to others; for example, matched filters of a fixed size are

unlikely to perform well on both low and high resolution images.

In some cases, the fundamental approach of preprocessing

followed by thresholding typically used with unsupervised

algorithms has been combined with the automatic optimisation

of parameters (such as filter sizes and thresholds), but this then

reintroduces the requirement to have manually segmented training

images [24,25].

Vessel diameter measurement
One might suppose that all of the important information

regarding the retinal vasculature is encoded in the binary images

produced by an accurate vessel segmentation algorithm. If these

binary images could be fully deciphered, a completely automated

analysis of the retinal vasculature would be possible. However,

despite the proliferation of vessel segmentation algorithms,

relatively little attention has been given to converting this

information directly into vessel diameter measurements [26].

Two notable exceptions are ‘Vessel Finder’ [27] and ‘Retinal

Image multiScale Analysis’ (RISA) [28], both of which have been

applied to the analysis of retinal images of infants at risk of

retinopathy of prematurity (ROP). However, both of these pieces

of software offer only mean diameters for each vessel segment,

rather than individual measurements along the vessel length. Also,

by making measurements directly from the segmented images, the

final results may be unduly influenced by thresholds used in the

binarisation stages [27].

In large-scale studies, it is common to use a computer-assisted

method to measure vessels [29,30]. This requires a user to

manually draw a line perpendicularly across a vessel, before edge

points are located from the vessel profile using, for example,

thresholds [31] or gradients [9]. Interpolation may be used to

improve the precision of measurements over those computed

directly from segmented pixels, although the user may introduce

bias by his or her choice of measurement locations and angles, and

the time taken to draw each profile line restricts the number of

diameters obtainable.

A more sophisticated approach to measurement is to track the

vessel boundaries. From initial seed points along vessel centrelines

– which may be identified manually [2] or automatically [32] – a

pair of vessel edge points and an orientation can be identified.

Based upon these, a pixel intensity profile is computed slightly

further along the vessel, and the edge points detected from this

profile are used to update the orientation [33]. Various tests can be

applied whenever the tracking breaks down, so that a vessel that

fades from view for several pixels may still be correctly identified.

Alternatively, if one uses active contours for tracking, a contour is

initialised (manually or automatically) close to an edge before an

iterative algorithm applies forces to the contour in an effort to

draw it towards the edge. While the definition of appropriate

forces to apply to the contour may be difficult, and the algorithm

used to apply these forces is somewhat slow and so inappropriate

for the interactive processing of large image sets, this method offers

the important advantage of being able to continue to track vessels

even if they fade briefly from view within the image, and it is

possible to evaluate diameters as the distance between the edges at

any location. Active contours are used for fully-automated vessel

segmentation by the Extraction of Segment Profiles (ESP) algorithm

[26].

Finally, an alternative, graph-based algorithm has recently been

described [34]. To begin, a ‘vesselness map’ generated by filtering

the image is thresholded to give a binary image [14], which is

cleaned up and thinned to provide vessel centrelines. Vessel

orientations are identified by principal component analysis of

several adjacent centreline pixels. Profiles computed across these

centrelines are then used to build a graph, which is searched to

determine vessel edges by minimising a cost function. A

smoothness constraint ensures that the edges are feasible.

Contribution of the current work
In this paper, we describe a fast and accurate unsupervised

algorithm to detect and measure blood vessels in retinal images.

This involves two main steps. The first is simple approach for

vessel segmentation by thresholding wavelet coefficients, which we

introduce here and demonstrate to be much faster than other

unsupervised segmentation methods, while achieving comparable

accuracy. The second step consists of a new alternative to the

graph-based algorithm to extract centrelines and localise vessel

edges from image profiles, by making use of spline fitting to

determine vessel orientations and then searching for the zero-

crossings of the second derivative perpendicular to the vessel.

Using the fundus photographs contained within a standard image

database and extracting diameter measurements from the detected

edges, we show that our entire algorithm is capable of achieving a

high level of accuracy and low measurement error, with a much

shorter processing time than that required by the other state-of-

the-art vessel analysis algorithms (ESP and graph-based), both for

low and high resolution images.

Finally, we have made the MATLAB implementation of our

algorithm available online, along with a graphical user interface,

manual, source code and all test functions. This software is suitable

for a range of image types without a need for prior training,

including both fundus photographs and fluorescein angiograms,

and can be further customised with the addition of new

algorithms.

Methods

Image sources
We obtained human retinal images from publicly available

databases. The source of fundus images used to test the

segmentation was the DRIVE (Digital Retinal Image for Vessel

Extraction) database [12]. The forty colour images are 565|584
pixels in size, and were captured in digital form using a Canon

Retinal Vessel Detection and Measurement
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CR5 nonmydriatic 3CCD at 450 field of view as part of a

screening programme in the Netherlands. Two sets of manually

segmented binary images showing blood vessels were made

available by these authors. To test calibre measurements, we used

the recently published REVIEW (REtinal Vessel Image set for

Estimation of Widths) database [35]. These images are of higher

resolution than the DRIVE images, ranging in size from

1360|1024 to 3584|2438 pixels. In all cases, colour images

were converted to grayscale by extracting the green channel

information and treating this as containing gray levels, because

the green channel exhibits the best contrast for vessel detection

[17].

Vessel segmentation by wavelet thresholding
The Isotropic Undecimated Wavelet Transform (IUWT) is a

powerful, redundant wavelet transform that has been used in

astronomy [36] and biology [37] applications. It affords a

particularly simple implementation that can be readily appreciated

without recourse to wavelet theory: at each iteration j, scaling

coefficients cj are computed by lowpass filtering, and wavelet

coefficients wj by subtraction [38]. The scaling coefficients

preserve the mean of the original signal, whereas wavelet

coefficients have a zero mean and encode information corre-

sponding to different spatial scales present within the signal.

Applied to a signal c0~f , subsequent scaling coefficients are

calculated by convolution with a filter h:j .

cjz1~cj � h:j

where h0~½1,4,6,4,1�=16 is derived from the cubic B-spline, and

h:j is the upsampled filter obtained by inserting 2j{1 zeros

between each pair of adjacent coefficients of h0. If the original

signal f is multidimensional, the filtering can be applied

separably along all dimensions. Wavelet coefficients are then

simply the difference between two adjacent sets of scaling

coefficients, i.e.

wjz1~cj{cjz1

Reconstruction of the original signal from all wavelet coefficients

and the final set of scaling coefficients is straightforward, and

requires only addition. After the computation of n wavelet levels,

f ~cnz
Xn

j~1

wj

The effect of applying the IUWT to a fundus image from the

DRIVE database is shown in Fig. 1. The set of wavelet coefficients

generated at each iteration is referred to as a wavelet level, and

one may see that larger features (including vessels) are visible with

improved contrast on higher wavelet levels. Segmentation can

then be carried out very simply by adding the wavelet levels

exhibiting the best contrast for vessels and thresholding based

upon a percentage of the highest (if applied to an angiogram) or

lowest (if applied to a fundus image) valued coefficients. The

thresholds should be computed from pixels within the field of view

(FOV) only, in order to ensure that the dark pixels outside this do

not contribute to the threshold chosen; if a FOV mask is not

available, one can normally be produced by simply applying a

global threshold to the image. This is best applied to the red

channel of a colour fundus photograph.

The choice of wavelet levels and thresholds do not typically

need to be changed for similar images; indeed, in all cases for

fundus images (both low and high resolution) we set the threshold

to identify the lowest 20% of coefficients as vessels, and varied only

the choice of wavelet levels if the image sizes were different.

Because the percentage of vessel pixels within the FOV is more

typically around 12–14% (as determined using manually segment-

ed images), the thresholded image is likely to be oversegmented

Figure 1. Wavelet levels and the final scaling coefficients calculated from four iterations of the IUWT. (A) The original image from the
DRIVE database. (B–E) Wavelet levels 1–4, computed using the IUWT algorithm. Wavelet coefficients have been scaled linearly for display, so that light
and dark pixels indicate positive and negative coefficients respectively, while zero is represented by a mid-tone gray. (F) The smooth residual image.
Adding this residual to all the wavelet levels would reconstruct the original image.
doi:10.1371/journal.pone.0032435.g001
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(i.e. many non-vessel pixels have been misclassified as vessels).

However, the majority of the vasculature is represented by one

large connected structure in the binary image, whereas misclas-

sified pixels tend to be clustered to form isolated objects. These

small objects can be removed simply based upon their area, either

in terms of pixels or a proportion of the image size. Similarly, small

holes present within thresholded regions can be filled in. Most

remaining erroneous detections are removed during later

processing steps. The results of this segmentation applied to a

fundus photograph from the DRIVE database are shown in Fig. 2.

Centreline computation
The next step is to apply a morphological thinning algorithm

[39]. Thinning iteratively removes exterior pixels from the

detected vessels, finally resulting in a new binary image containing

connected lines of ‘on’ pixels running along the vessel centres. The

number of ‘on’ neighbours for each of these pixels is counted: end

pixels (v2 neighbours) are identified, and branch pixels (w2
neighbours) are removed. The removal of branches divides the the

vascular tree into individual vessel segments in preparation for

later analysis. This is useful because diameters are not well-defined

at branches, and also because diameters measured before a

significant branch or bifurcation are not directly comparable with

those measured afterwards, as less blood will flow through the

vessel afterwards and there will be a drop in pressure.

The elimination of as many uninteresting centrelines as possible

at this stage helps to improve the speed of the later processing

steps. To this end, centrelines are first cleaned up by removing

short segments (v10 pixels). Because any of these short segments

that contained end pixels were likely to be spurs, which often occur

as an unwanted side-effect of thinning, their corresponding branch

pixels are replaced to avoid causing the main vessels to which they

were connected being erroneously subdivided. A coarse estimate of

vessel diameters is then calculated using the distance transform of

the inverted binary segmented image. This gives the Euclidean

distance of every ‘vessel’ pixel from the closest non-vessel pixel,

and therefore doubling the maximum value of the distance

transform along the thinned centrelines provides an estimate of the

diameter of every vessel segment at its widest point. A centreline is

removed if it contains fewer pixels than its estimated diameter,

since such centrelines are unlikely to correspond to measureable

vessels.

Each remaining connected group of pixels now corresponds to

the centreline of a potential vessel segment that is suitable for

further analysis.

Centreline refinement using spline fitting
The orientation of a vessel segment at any point could be

estimated directly from its centreline, but discrete pixel coordinates

are not well suited for the computation of angles. A least-squares

cubic spline (in piecewise polynomial form) is therefore fitted to

each centreline to combine some smoothing with the ability to

evaluate accurate derivatives (and hence vessel orientations) at any

location. A parametric spline curve is required, with appropriate

parameterisation essential to obtain a smooth centreline. For this

we used the centripetal scheme described by Lee [40].

Adjusting the spacing of the breaks between polynomial pieces

in the spline can give some control over a preference for

smoothness or the ability to follow complex shapes, although we

found a spacing of approximately 10 pixels between breaks

performed acceptably on all tested images. The precise break

spacing can vary because the vessel segment is divided into

polynomial pieces of equal length, and the segment length is

unlikely to be an exact multiple of the polynomial piece length. If

the number of data points is very low, a single cubic polynomial is

fit to the centreline instead.

Image profile generation
Image (pixel intensity) profiles using linear interpolation are

then determined from the raw, grayscale image perpendicularly to

the spline at any point along the vessel, with approximately one

pixel intervals being selected as a suitably high resolution. An

image-dependent problem arises when determining the length of

the profiles, which need to be longer in images containing wider

vessels. To overcome this we again use the diameters estimated

from the distance transform above. By creating image profiles that

are at least double the largest diameter estimate we can be

confident that the profiles will be long enough to stretch beyond

even the widest vessels, and also allow additional space for later

filtering.

The image profiles are finally aligned side by side to create

‘straightened’ vessel images in which each row is a separate profile.

Two corresponding sets of binary profiles are also generated by

appling the same method to the segmented image and using

nearest neighbour interpolation. The first set contains only ‘vessel’

pixels that form a connected region that overlaps the centreline,

and this set therefore defines an initial estimate of the location of

the vessel within the image profiles. The second set of binary

profiles contains pixels outside the FOV along with any other

vessel pixels that do not overlap the centreline (and so correspond

to neighbouring vessels), and is used later to define regions within

the profiles where vessel edges should not be found.

Vessel edge identification
The measurement of diameters requires the location of edge

points, but these have no single ‘natural’ definition within the

Figure 2. Thresholding wavelet coefficients of the IUWT. (A) The
sum of wavelet levels 2 and 3. (B) A threshold was applied to A to
identify the lowest 15% of wavelet coefficients within the FOV. (C) A
cleaner version of the segmentation in B, created by removing
connected objects and filling holes with areas smaller than 75 and 20
pixels respectively. (D) A hand-segmented image from the DRIVE
database, shown for reference.
doi:10.1371/journal.pone.0032435.g002
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image space. Vessel profiles in fundus and fluorescein angiography

images resemble Gaussian functions, and edges have previously

been defined in a variety of ways, including using gradients or

model fitting [41]. One of the main complications encountered

when trying to develop a general vessel diameter measurement

strategy is the possible presence of the ‘central light reflex’ [42],

which is seen as a ‘dip’ or ‘hill’ approximately in the centre of the

vessel profile, and which is more likely to be found in higher

resolution images and wider vessels (Fig. 3). Its origins are unclear,

although it is thought to emanate from the column of densely

packed erythrocytes moving through the retinal microvasculature

[43]. The marked enhancement of the light reflex may be of

clinical interest; for example, it appears to be associated with

hypertension, although further investigation and a more objective

quantification of changes are needed [43]. That some vessel

measurement algorithms have misidentified the light reflex as the

vessel edge has been reported as problematic [41,44], and explicit

strategies for dealing with this issue are required to ensure that any

measurement is sufficiently robust [41,45–47].

Here, we define an edge as occurring at a local gradient

maximum (the rising edge) or minimum (the falling edge), as

identified to sub-pixel accuracy using the zero-crossings of the

second derivative. We have adopted a four-step method to identify

these edges for each vessel:

1. Estimate the average vessel width from the binary profiles. The

sum of ‘vessel’ pixels in each profile is computed, and the

median of these sums is taken as the provisional width.

2. Compute an average of all the vessel profiles (omitting pixels

previously identified as belonging to other vessels or outside the

FOV), and identify the locations of the maximum and

minimum gradient to the left and right of the centre

respectively, bounded to a search region of one estimated

diameter from the centre. These locations give the columns in

the vessel profile images at which edges are predicted to fall.

The distance between the two columns also gives a more

refined and robust estimate of mean vessel width, largely

independent of the thresholds used for the initial segmentation.

3. Apply an anisotropic Gaussian filter to the vessel profiles image

to reduce noise, and then calculate a discrete estimate of the

second derivative perpendicular to the vessel by finite

differences.

4. Identify locations where the sign of the pixels in each filtered

profile changes, and categorise these based upon the direction

of the sign change into potential left and right vessel edges.

Using connected components labelling, link the possible edges

into distinct trails. Remove trails that never come within 1/3 of

an estimated vessel diameter from the corresponding predicted

edge columns. The final edges are then the zero-crossings

belonging to the longest remaining trails to each side of the

vessel centre, and the diameter is simply the Euclidean distance

between these edges.

This process is summarised in Fig. 4. In the ideal case, a single

trail of suitable zero-crossings will exist to the left and right of the

vessel centre and edge identification is straightforward. The

additional tests are intended to produce reasonable results

whenever the edge may be broken, while avoiding misclassifying

zero-crossings due to the central light reflex or other image

features. The smoothing in the third step deals with the sensitivity

to noise of computing approximations of derivatives applied to

discrete data. The horizontal and vertical sigma values sH and sV

of the Gaussian filter are calculated by scaling the square root of

the estimated widths w produced by the previous step, and

therefore more smoothing is applied to vessels with larger

diameters. The scaling parameters may be adjusted according to

image noise, but we used sH~
ffiffiffiffiffiffiffiffiffiffi
0:1w
p

and sV ~
ffiffiffiffiffiffi
2w
p

for all

images. Because this smoothing is applied to the stacked image

profiles rather than the original image, the filter is effectively

oriented parallel to the vessel at each point. This ensures that most

blurring occurs within or alongside the vessel – rather than in all

directions, which might have otherwise affected edges or merged

vessels with neighbouring structures.

Algorithm summary
The main steps of the algorithm are illustrated in Fig. 5.

Results

Segmentation accuracy
The IUWT is somewhat atypical as a wavelet transform, and

has a particularly straightforward implementation. It effectively

provides an efficient means of combining background subtraction

along with noise and high-frequency content suppression using an

approximately Gaussian filter – so that the wavelet coefficients

resemble the values that would be computed directly using a

‘difference of Gaussians’ filter. Nevertheless, despite its simplicity

we found it to be well-suited to the task of vessel detection.

Although accurate segmentation is only a means to an end in the

algorithm described here, and does not constitute the final output,

in order to establish the suitability of the IUWT for efficient vessel

detection we have compared it with more specialised published

algorithms.

Figure 3. The central light reflex. (A) Part of an image from the
REVIEW database containing a pronounced central light reflex, which is
the bright region seen running through one of the vessels (blue arrow).
(B) The pixel intensity profile computed along the red line shown in A.
Here, the central light reflex appears as a small ‘hill’ in the rightmost
vessel.
doi:10.1371/journal.pone.0032435.g003

Retinal Vessel Detection and Measurement

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32435



Figure 4. Determining vessel edges by zero-crossings. (A) A ‘straightened’ vessel image, created by stacking many image profiles alongside
one another. (B) Corresponding stacked profiles determined from the initially-segmented image. White pixels belong to the vessel under
consideration, while gray pixels belong to other detected vessels. An initial vessel width estimate is determined from the median of the sum of white
pixels on each row, and refined using the averaged profile in F. (C) The profiles in A after smoothing with an anisotropic Gaussian filter, and
subsequently applying a second filter to approximate the second derivative computed perpendicular to the vessel (i.e. horizontally). In this
representation most of the vessel consists of negative values, but the central light reflex contains positive values. (D) Pixels in C representing positive-
to-negative (red) and negative-to-positive (blue) transitions. Transitions corresponding to the second vessel region in B are removed. The length of
each connected line is computed, and only the longest lines that fall close to the estimated vessel boundaries are retained. (E) The edges identified by
the algorithm, superimposed on top of the straighted vessel. (F) A mean vessel profile, computed by averaging all the profiles in A, excluding pixels
belonging to other vessels. The locations of the maximum and minimum gradients to the left and right of centre are shown in blue. The transitions in
D are removed if they do not fall close to these locations, and the distance between them is also used when calculating the Gaussian filter sizes. (G)
The edges identified by the algorithm, shown on the original image from the REVIEW database.
doi:10.1371/journal.pone.0032435.g004

Figure 5. Overview of the main steps taken by our algorithm when processing a fundus image. (A) The image (here, from the DRIVE
database) is read. (B) The green channel is selected for later processing. (C) A mask is produced by thresholding. (D) The IUWT is applied to B. (E)
Wavelet coefficients are thresholded. (F) Small objects are removed and holes are filled in E. (G) Morphological thinning is applied to F. (H) The
distance transform is applied to F to assist with estimating diameters and removing erroneously detected segments. (I) Branches are removed from G
and spline fitting applied to determine centrelines. (J) Edges are detected perpendicular to the centrelines.
doi:10.1371/journal.pone.0032435.g005
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The true positive rate (TPR) refers to the proportion of vessel

pixels identified by a segmentation algorithm that coincide with

vessel pixels in ‘ground truth’ segmented images, while the false

positive rate (FPR) is the proportion of detected pixels not

considered vessels in the ground truth images. Relatedly, the

‘accuracy’ is a single value frequently quoted for comparison,

defined as the number of correctly assigned pixels in the

segmented image (either vessel or non-vessel) divided by the total

number of pixels within the FOV. In common with other papers,

we used the ‘test’ set of images from the DRIVE database for

evaluation, treating the first set of manually segmented images as

the ground truth and reporting the average TPR, FPR and

accuracy results of all 20 images. Although masks depicting the

FOV are included with the DRIVE database, for our segmenta-

tion implementation we used a FOV mask computed simply by

thresholding the raw DRIVE images with a fixed threshold value

of 20 before applying a morphological erosion using a 3|3 square

structuring element. This provided more accurate FOVs than

those offered in the DRIVE database, and we used our FOVs to

compute the percentage threshold values and to define the region

of interest in which vessels could be detected by our algorithm.

Nevertheless, we used the DRIVE database FOVs when

computing TPR, FPR and accuracy scores in order to ensure

comparability with previous results.

Table 1 shows the results for our IUWT segmentation along

with those reported for previous unsupervised retinal segmentation

algorithms tested using the DRIVE database. Supervised algo-

rithms tend to perform better, but at the cost of greater

computation time and the requirement to have hand-segmented

images available. Here, we applied our IUWT algorithm with the

following settings: the sum of wavelet levels 2 and 3 was

thresholded to identify the lowest 15% of coefficients, before

objects smaller than 75 pixels were removed and holes smaller

than 20 pixels were filled. Note that the values reported in the

table for our algorithm were not the ‘best’ accuracy scores possible:

performing an iterative search using the hand-segmented images

for the parameters that would optimise the accuracy scores was

found to produce a very minor improvement, but this was not

sufficient to change the ranking of the IUWT segmentation in the

table. Therefore we report rounder parameter values that are

more likely to be found in practice when training images are not

present.

It can be seen from Table 1 that this simple IUWT approach

performs comparably to more complex specialised vessel segmen-

tation algorithms. The lower TPR of the IUWT as compared to

other algorithms is the result of fewer very narrow vessels being

located – although this is somewhat compensated for by a low

FPR, so that the overall accuracy is not compromised. It is worth

noting that, because of the effects of blur and noise, the sufficiently

accurate quantification of changes in the diameter of vessels that

are only 1–2 pixels wide cannot be expected. If one wishes to

measure such small vessels, higher-resolution images would be

required.

Efficiency of segmentation. We have implemented the

algorithm using MATLAB (R2011a, The MathWorks, Natick,

MA), using only the functions offered by MATLAB and its Image

Processing Toolbox (i.e. no additional compiled ‘mex’ code was

used to optimise the speed of computationally expensive parts of

the algorithm). MATLAB is widely used when creating new retinal

image analysis algorithms because of its range of built-in functions

that facilitate algorithm development, although in some cases code

performance can be improved by using a lower-level language

such as C++ [48]. Nevertheless, we found vectorised MATLAB

code to perform well in terms of processing time.

The proper comparison of algorithm efficiency is difficult

because, in general, source code has not been made publicly

available to allow testing on the same machine using the same

conditions (e.g. operating system, or MATLAB version where

appropriate). One must then resort to using the information

included in the published papers that have made use of the same

images. Table 2 provides a summary of the reported processing

times for algorithms tested using the DRIVE database images.

Because timing and test system information is often omitted from

papers, only two other algorithms that do not require training

images are included.

From these results, it is clear that the IUWT segmentation is

considerably faster, and the discrepancy in speed is unlikely to be

explained by differences in test systems. Indeed, recently some

attention has been given to implementing vessel segmentation

using specialist hardware. An algorithm implemented for the

SCAMP-3 vision system achieves an accuracy of score of 0.9180

[49], while an alternative algorithm making use of Cellular Neural

Networks reports an accuracy of 0.9261 [50]. However, the

accuracy of the IUWT strategy is higher than both of these, and

the IUWT is more suitable for scaling to images of different

resolutions.

Validation of diameter measurement accuracy
Comparison with manually segmented images. The

similarity between vessel diameters in ‘ground truth’ manually

segmented DRIVE database images and the diameters measured

entirely by our algorithm cannot readily be quantified. The

segmented image produced by the IUWT method will differ from

the manual segmentation, which will cause measurement locations

and angles not to match up. One may, however, observe good

agreement for wider vessels by overlaying the vessel edge points

located by our software on top of the manually segmented images

(Fig. 6). As noted above, very narrow vessels (1–2 pixels in

diameter) are consistently ignored by our algorithm, and higher

resolution images would be required to measure these.

‘Measurement error’ and the REVIEW database. In

order to evaluate the reliability of vessel diameter measurements,

we made use of the images included in the REVIEW database

Table 1. Vessel segmentation algorithm accuracy.

Method TPR FPR Acc.

Second observer 0.7760 0.0275 0.9473

Ricci [15] – – 0.9563

Mendonca [22] 0.7315 0.0219 0.9463

IUWT 15%, 75/20 px 0.7027 0.0283 0.9371

Garg [56] – – 0.9361

Espona [57] 0.7436 – 0.9352

Martinez-Perez [21] 0.7246 0.0345 0.9344

All background 0 0 0.8727

Comparison of the accuracy of unsupervised vessel segmentation algorithms as
applied to the DRIVE image database. The hand segmented images from the
first manual observer are used as the benchmark. True and false positive rates
(TPR and FPR) are included where these were made available in the original
papers. Note that assigning all pixels to the background – i.e. detecting no
vessels at all – still achieves an accuracy score of 0.8727. On the other hand, a
second manual observer achieved an accuracy of 0.9473. The accuracy of
segmentation algorithms can therefore be expected to fall within this range;
improving on the accuracy score of the second observer is not necessarily
beneficial, since the choice of the first observer as the benchmark is arbitrary.
doi:10.1371/journal.pone.0032435.t001
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[26,35]. This comprises 3 Image Sets containing full fundus

images: high-resolution (HRIS), vascular disease (VDIS) and

central light reflex (CLRIS), with each set containing

representative images that are particularly large, show visible

pathologies and have vessels exhibiting prominent central light

reflexes respectively. A fourth set, the kick-point image set (KPIS),

contains downsampled high-resolution images of several large-

diameter non-tortuous vessels. The database also offers manual

diameter measurements made by 3 independent observers using a

custom software tool for marking vessel edge points, so that the

ground truth diameters are considered to be the average of the

measurements made by the 3 observers at the same location in a

vessel segment. A total of 5066 locations are available. For

comparison of results, the error is then defined as

xi~wi{yi

where wi is a single width measured by the algorithm being tested,

and yi is the ground truth measurement at the same location in

the image. Performance is evaluated by considering the standard

deviation of the error, denoted sx. The justification for this is that

there is no single ‘correct’ vessel edge definition, and one is

primarily interested in changes in diameter determined using the

same method; with this in mind, a consistent measurement bias

can be corrected but fluctuations in the error cannot [35].

The authors of the database have used it to validate their

Extraction of Segment Profiles (ESP) algorithm [26]. Additionally,

they have implemented four previously used methods of edge

point location:

1. Gregson: a rectangle is fitted to a vessel intensity profile, and the

width is set so that the area under the rectangle is equal to the

area under the profile [51].

2. Half Height Full Width (HHFW): the standard half-height

method, which uses thresholds set half-way between the

maximum and minimum intensities to either side of an

estimated centre point [45].

3. 1D Gaussian (1DG): a 1D Gaussian model is fit to the vessel

intensity profile [52].

4. 2D Gaussian (2DG): similar to the 1D Gaussian case, but the

model is extruded into 2D [47].

In Table 3 we have reproduced their results as reported in [26]

and supplemented these with the results obtained by applying the

same tests to the output of our algorithm and those published for

the graph-based method [34]. For reproducibility, the relevant

parameters used by our algorithm were: Wavelet levels: 3–4 (VDIS

& CLRIS), 2 (KPIS & HRIS downsampled), 3–5 (HRIS original);

Threshold: 20%; Minimum object size: 0.05%; Fill hole size: 0.05%;

Centreline spur & short segment removal length: 10 pixels; Spline piece

spacing: 10 pixels; Parallel smoothing scale factor: 2, Perpendicular

smoothing scale factor: 0.1.

When interpreting the results in Table 3, two additional points

should be made:

N The HRIS images were downsampled by a factor of 4 before

being input into the test algorithms, and it is these down-

sampled measurements that are reported in the REVIEW

database [26]. Because manual measurements were made on

the original images, vessel widths are considered to be known

to an accuracy of +0:25 pixels (discounting human error).

Although the lower computational requirements of our

Table 2. Vessel segmentation algorithm times.

Method Processor RAM Implementation Training Accuracy Time

IUWT 2.13 GHz 2 GB MATLAB No 0.9371 0.093 s

Al-Rawi [24] 1.7 GHz – MATLAB Yes 0.9420 2.156 s

Anzalone [25] 2.40 GHz 192 MB MATLAB Yes 0.9419 v6 s

Espona [57] 1.83 GHz 2 GB C++ No 0.9352 38.4 s

Mendonca [22] 3.2 GHz 960 MB MATLAB No 0.9463 v150 s

Soares [13] 2.1 GHz 1 GB MATLAB Yes 0.9466 180 s

Staal [12] 1 GHz 1 GB MATLAB Yes 0.9441 900 s

Comparison of segmentation times for vessel segmentation algorithms applied to a DRIVE database image. Timings are reported in the original papers, and details of
computer specifications and implementation languages are given where these were made available. Four of the algorithms required training images to achieve their
accuracy scores. Timings are given only for processing individual images; one-off initialisation stages required by some algorithms (e.g. to train a classifier) are not
included. The IUWT algorithm made use of wavelet levels 2 and 3.
doi:10.1371/journal.pone.0032435.t002

Figure 6. Application of vessel detection to DRIVE database
images. Overlays of detected edge points (black) applied to the first
four images in the DRIVE database test image set, superimposed on the
corresponding manually segmented images (red).
doi:10.1371/journal.pone.0032435.g006
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algorithm make it feasible to measure full-resolution images

within an acceptable time frame, we report the results using

similarly downsampled images for comparability with the

results given elsewhere.

N The earlier edge location algorithms are initialised with centre

point locations and angles as determined from the ‘ground

truth’ measurements; a measurement success percentage less

than 100% indicates that the algorithm did not produce a

meaningful result (e.g. it did not converge). In contrast, the

ESP, graph-based and our algorithm incorporate vessel

detection along with measurement, and so are provided with

the original images only. Consequently, a reduction in the

measurement success percentage in these cases may indicate

that the vessel was not detected. When determining compa-

rable measurements for our algorithm, we first associated each

ground truth centre point with the closest detected centre

point. We kept the association only if the distance between

both points was less than or equal to the true vessel diameter at

that location, and also if the detected point was not closer to

another ground truth point. These strict criteria ensured that

each detected point was counted only once. However, in some

cases the ground-truth points had a spacing less than one pixel

and so not all could be uniquely matched with detected points

even when the detection was successful. These caused a slight

decrease in our reported success percentages, particularly in

the HRIS.

All three of the most recent methods – graph-based, ESP and

our algorithm – outperform the other edge location algorithms

both in terms of reducing sx and providing mean diameter

estimates more consistently close to the ‘ground truth’. The most

distinct improvement offered by our algorithm was seen in the

CLRIS, and probably arises because progressively refining edge

estimates helped to ensure that the discontinuities caused by the

central light reflex were rarely confused with the true vessel edge.

Performance on the VDIS is comparatively weaker. This is a

considerably noisier dataset than the others, and increasing the

smoothing scale parameters would improve the results by reducing

the noise accordingly. However, increased smoothing has a slight

negative effect upon the measurements made in cleaner images,

and we chose to report the results keeping as many parameters as

possible the same across images of different resolutions and quality

to demonstrate that careful parameter tuning on a by-image basis

is not necessary. In this regard, it is important to note that even in

this worst case the sx remains under 1 pixel. Example processed

images from each image set are shown in Figure 7.

Processing times. The biggest difference between our

approach and other algorithms tested using the REVIEW

database is in the length of time required to process an image.

Computation times for the MATLAB implementation of our

algorithm tested on two different systems are given in Table 4. A

DRIVE database image requires approximately 1 second to

process, while a 2160|1440 pixel image image takes around 3–

7 seconds depending upon the computer specifications. These

results compare favourably with timings reported for the other

algorithms: 11 minutes to process a DRIVE image using the ESP

method (1.2 GHz Pentium, 1GB RAM) [26], and several minutes

for a 2160|1440 pixel image using the graph-based algorithm

(composed of the vessel detection step, plus 50 seconds for the

graph creation and solving; system information not given) [34].

Discussion

Until recently, the study of retinal vessel diameters for clinical

purposes has remained largely a research tool because it is

laborious, although improvements in computerised analysis have

the potential to change this [5]. For truly automated analysis to be

feasible, the software used must be robust regarding variations in

image quality and the presence in an image of other signs of

pathology. The algorithm described here is general enough to offer

a practical alternative to manual measurements for a wide range of

studies, while offering important benefits in terms of speed and

repeatability.

Use of the IUWT for segmentation
Previously, more sophisticated multiscale algorithms for retinal

image segmentation, such as the supervised method of Soares et al.

[13], have reported good results, but have been criticised for

Table 3. REVIEW database comparison.

KPIS CLRIS VDIS HRIS

Method % Mean sXX % Mean sXX % Mean sXX % Mean sXX

Standard 100 7.52 0.00 100 13.80 0.00 100 8.85 0.00 100 4.35 0.00

O1 100 7.00 0.23 100 13.19 0.57 100 8.50 0.54 100 4.12 0.29

O2 100 7.60 0.21 100 13.68 0.70 100 8.91 0.62 100 4.35 0.26

O3 100 7.97 0.23 100 14.52 0.57 100 9.15 0.67 100 4.58 0.28

Gregson 100 7.29 0.60 100 12.80 2.84 100 10.07 1.49 100 7.64 1.48

HHFW 96.3 6.47 0.39 0 – – 78.4 7.94 0.88 88.3 4.97 0.93

1DG 100 4.95 0.40 98.6 6.30 4.14 99.9 5.78 2.11 99.6 3.81 0.90

2DG 100 5.87 0.34 26.7 7.00 6.02 77.2 6.59 1.33 98.9 4.18 0.70

ESP 100 6.56 0.33 93.0 15.7 1.47 99.6 8.80 0.77 99.7 4.63 0.42

Graph 99.4 6.38 0.67 94.1 14.05 1.78 96.0 8.35 1.43 100 4.56 0.57

Our algorithm 100 6.30 0.29 100 14.27 0.95 99.0 8.07 0.95 99.5 4.66 0.32

REVIEW database comparison of successful measurement percentages (i.e. the percentage of vessel locations at which a meaningful measure of vessel diameter was
returned by the algorithm), mean vessel diameters and standard deviations of the measurement error (sx). The data included in the top part of the table are reproduced
from [26] (� 2009 IEEE), to which we have added the results of the graph-based algorithm [34] and those obtained by applying the same tests using our algorithm. O1–
O3 were obtained from measurements made by three manual observers, and ‘Standard’ is the average of these measurements.
doi:10.1371/journal.pone.0032435.t003
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requiring long computation times [25]. Although the wavelet

transform is used for multiscale analysis, one might contend that

the IUWT segmentation described above is not a true multiscale

detection algorithm because detection does not occur separately

on each wavelet level; rather, levels are first combined by

summation before thresholding. While presented in the language

of wavelets, this segmentation is therefore equivalent to applying

limited smoothing for noise reduction, before subtracting a much

more highly smoothed version of the image that approximates the

inhomogeneous background present in retinal images, and then

thresholding the result. The smoothing filters used are approxi-

mately Gaussian in shape. However, formulating the segmentation

in terms of the IUWT enables a intuitive method whereby the

algorithm may be adapted to images of differing resolutions.

The justification for this approach rests upon the goals of

efficiency, generality and user-friendliness. Smoothing using the

IUWT may be computed much more quickly than using a large

Gaussian filter because of the many zero coefficients used in the

filters. Furthermore, the IUWT provides a convenient framework

for varying the levels of smoothing. The filter sizes are built in to

the definition of the IUWT; while using other filters with sizes

finely tuned to a particular image may provide some improve-

ments in segmentation accuracy, it is much faster and more

intuitive for a user to choose from, say, 6 possible wavelet levels

rather than any arbitrary Gaussian filter size. Finally, adding the

wavelet levels before segmenting means that the user is able to

compare the effects of different thresholds easily by looking at the

wavelet level sum and thresholded binary image. This makes it

possible to quickly and interactively test the appropriateness of our

software for analysing new images.

Choice of algorithm parameters
Although a relatively large number of parameters are associated

with our algorithm, in practice we found that many of these can be

left at default values. For example, because wavelet coefficient and

object removal thresholds are defined using the FOV size, and

smoothing filter sizes are automatically adapted to vessel widths,

the same values for the related parameters can be used across a

wide range of images. In fact, the only parameter we needed to

adjust for any of our measurement tests, in which the images

ranged from 565|584 to 3584|2438 pixels, was the choice of

wavelet levels. This directly relates to the size of structures that

should be detected, making it possible to give a preference for

detecting narrow or wide vessels, and therefore the most

appropriate choice depends upon the image dimensions and

capture angle (i.e. the extent of the retina contained within the

image). However, once chosen, the same wavelet levels were used

for all images with similar resolutions.

Algorithm efficiency
The efficiency, and not only accuracy, of segmentation

algorithms is of great importance if the software is to be of

practical use. The test images most commonly used are from the

DRIVE [12] and STARE [17] databases, which contain images

that are 585|564 and 605|700 pixels in size respectively.

However, these are very small compared to the high-resolution

images often used in practice for clinical purposes, which may be

15 times larger or more. An analysis requiring minutes for a single

DRIVE database image may be acceptable, but greatly increased

computational requirements of large images might mean that

downsampling is the only feasible option, at a cost of spatial

information. This is not necessary with our approach, with which

full-resolution images in the HRIS required average processing

times of 9.19 and 25.19 seconds for our faster and slower test

system respectively. Omitting downsampling also slightly im-

proved the analysis accuracy for the HRIS, giving a 99.96%

success rate, mean diameter of 4.38 pixels and sx of 0.29.

Figure 7. Application of vessel detection to REVIEW database
images. (A–C) Vessels detected in example images from the CLRIS,
HRIS and VDIS respectively. (D) Individual diameters found for a vessel
in a KPIS image. Note that in the KPIS image, the visible branching
vessels are much narrower and dimmer in comparison to the main
vessel, so that they occur as unconnected objects in the segmented
image. This difference in contrast then allows edges still to be found for
the main vessel at these branching locations.
doi:10.1371/journal.pone.0032435.g007

Table 4. Total image analysis times.

Image source Size Time for system 1 Time for system 2

DRIVE 565|584 1.12 s 0.65 s

REVIEW: VDIS 1360|1024 4.72 s 2.10 s

REVIEW: CLRIS 2160|1440 7.14 s 3.00 s

REVIEW: HRIS (downsampled) 896|610 2.12 s 0.98 s

REVIEW: HRIS 3584|2438 25.07 s 9.32 s

Mean computation times for our entire vessel analysis algorithm applied to a range of images using two different test systems. System 1: 2.13 GHz Intel Core 2 Duo PC
with 2 GB RAM, running Windows XP Professional and MATLAB R2010a 32-bit. System 2: 3.07 GHz Intel Xeon Workstation with 16 GB RAM, running Windows 7
Professional and MATLAB R2011a 64-bit.
doi:10.1371/journal.pone.0032435.t004
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In determining the overall analysis time the efficiency of the

segmentation step is an important factor. The speed of the IUWT

segmentation is of course reduced whenever larger images are

processed: more wavelet levels (and, consequently, filtering

operations) are required, and larger contiguous areas of memory

need to be found to store the images. However, because of the

many zero coefficients in the filters, the effects are less dramatic

than they would be using alternative techniques or more dense

filters. Furthermore, by using the segmented image only to extract

centrelines and thereby shifting the refinement of accurate vessel

edge location to the measurement stage, we were able to reduce

computation time without sacrificing overall reliability. Conse-

quently, the time required for the entire analysis remained lower

than that of alternative algorithms implementing segmentation

alone (Tables 2 and 4).

Locating vessel edges from zero-crossings of the second
derivative

Although a comparative study of Gaussian fitting, Sobel

operators and sliding linear regression filters deemed the last to

provide the most consistent edge localisation from image profiles,

the use of linear regression filters required a minimum vessel width

of at least 10 pixels [41]. This criterion was frequently not met in

our test images, and so restricts the general usefulness of the

approach. Perhaps the most common recent strategy when

determining a vessel edge has been to fit a model [47,52–55].

When the light reflex is present, a single Gaussian function is no

longer an adequate model for the vessel profile, and so double

[41,53] or piecewise Gaussian [54] models have been proposed.

Generally, this consists of two Gaussian functions – one to

represent the vessel and another to model the light reflex.

However we did not adopt this approach because of three main

problems:

1. Depending upon the complexity of the model, computation

times can be greatly increased.

2. For high-resolution fluorescein angiograms in particular, if

pixels are saturated then the true profile can be flattened at the

top, which can affect the fit.

3. The fit may depend upon the influence of pixels that extend

beyond the vessel itself, and is therefore affected by the length

of the profile line. A longer image profile permits more pixels

from outside the vessels to influence the fit. The background

itself is inhomogeneous, and can differ on each side of the

vessel, although models typically assume it is approximately

constant and flat.

The approach we have described does not suffer from these

problems and can be computed quickly. Making measurements

from the binary image directly would be insufficient to obtain

reliable measurements, since these would be heavily dependent

upon the precise threshold used (and potentially other image

features). However, by using a coarse estimate of the vessel width

based upon the initial segmentation we are able to search for a

high local gradient magnitude only in the region surrounding the

likely vessel edge. The estimate also makes it possible to smooth

the image in a scale-dependent manner without requiring the

application of an additional multiscale transform at the measure-

ment stage, although a more thorough exploration of the

estimated vessel widths and the optimal smoothing parameters

could improve this further. While speed and efficiency were

primary considerations when choosing to adopt this strategy, the

low sx in Table 3 suggests that these do not come at a cost of

accuracy or repeatability when compared to more complex edge

computations.

Nevertheless, one important limitation of our method is that if

the image contrast decreases then appropriate zero-crossings may

not be found at all locations along the vessel. Interpolation could

be used in such cases, although currently we prefer not to report

any results where the algorithm could not identify suitable

crossings. Integrating aspects of another, more complex algorithm

to deal with the most difficult measurements into our approach

may lead to better overall performance, while retaining fast

processing for identifying the main vessels. For example, an active

contour initialised from the edges provisionally given by our

algorithm would automatically combine interpolation with a

smoothness constraint that prevents identifying the wrong zero-

crossings, and so overcome regions of reduced contrast. Because

the initialisation should already be close to the edges, the contour

should converge relatively quickly.

Algorithm availability
The MATLAB implementation of our algorithm is included as

supporting information (File S1) along with a user manual and

description of how to run the tests reported in this paper. These

files can also be downloaded from http://sourceforge.net/p/aria-

vessels. For sample data, the DRIVE and REVIEW databases are

available at http://www.isi.uu.nl/Research/Databases/DRIVE/

and http://reviewdb.lincoln.ac.uk/ respectively.

Conclusion
The algorithm described here fully automates the analysis of

retinal vessel diameters. It allows the fast calculation of diameters

all along the length of each vessel rather than at specific points of

interest, thereby producing more fine-grained results than would

be possible manually or using interactive, computer-assisted

software. Computation time per image is typically no more than

several seconds on a current PC, and large images can also be

processed without a need for downsampling.

Supporting Information

File S1 MATLAB implementation of the vessel analysis
algorithm described in this paper, along with documen-
tation.
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