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Abstract

The purpose of this study was to evaluate whether consumer-level activity trackers can esti-

mate wheelchair strokes and arm ergometer revolutions. Thirty able-bodied participants

wore three consumer-level activity trackers (Garmin VivoFit, FitBit Flex, and Jawbone

UP24) on the wrist. Participants propelled a wheelchair at fixed frequencies (30, 45 and 60

strokes per minute (spm)) three minutes each and at pre-determined varied frequencies,

(30–80 spm) for two minutes. Participants also freely wheeled through an obstacle course.

10 other participants performed arm-ergometry at 40, 60 and 80 revolutions per minute

(rpm), for three minutes each. Mean percentage error (MPE(SD)) for 30 spm were�46

(26)% for all monitors, and declined to 3-6(2–7)% at 60 spm. For the obstacle course, MPE

ranged from 12-17(7–13)% for all trackers. For arm-ergometry, MPE was at 1-96(0–37)%

with the best measurement for the Fitbit at 60 and 80 rpm, and the Garmin at 80rpm, with

MPE = 1(0–1)%. The consumer-level wrist-worn activity trackers we tested have higher

accuracy/precision at higher movement frequencies but perform poorly at lower

frequencies.

Introduction

Individuals with disabilities are twice as likely to be inactive compared to their healthy coun-

terparts [1], leading to secondary complications such as obesity and cardiovascular disease [2].

Healthy People 2020, an evidence-based government program to improve the nation’s health,

emphasises including people with disabilities in health promotion efforts [3]. Understanding

disparities in health and physical activity (PA) between adults with and without disabilities is

an integral part of this effort [1, 3]. It is therefore critical to develop tools to measure PA with

accuracy and precision in people with disability. It would also important to test existing com-

mercially available technologies to assess if they can be used for this purpose.
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Consumer level PA monitors (PAM) present a convenient and cost-effective measurement

of PA and can be used as motivation to increase PA [4]. PAM typically utilize a tri-axial accel-

erometer, which converts frequency and intensity data from user activity, to create a tally of

steps as well as other functions [5]. PAMs can also be useful for clinicians to track and monitor

a patient’s PA level. Several groups have studied the validity of these devices to measure steps

during a variety of walking activities in able-bodied and clinical populations [5–21]. Generally,

these studies showed that PAMs are a valid, low-cost method of measuring stepping, but are

less accurate at slower walking speeds [12, 20, 21], depending on where the device was placed

on the body [15, 16, 20].

Since many popular PAMs are worn on the wrist it is possible that they would capture

movements other than swinging of the arms during walking such as wheelchair strokes. This

would allow application of PAMs for wheelchair users. In a recent study, four out of five

wheelchairs users indicated interest in using PAM but expressed concerns about accuracy/pre-

cision for wheel chair stroke counts [22]. The purpose of this study was therefore to evaluate

the ability of consumer-level PAMs to accurately count arm strokes during activities common

in everyday lives of wheelchair users (wheelchair propulsion and arm-crank ergometry). Based

on previous research involving the use of PAM during walking, we hypothesized that wheeling

at slower frequencies would result in less accurate counts of activity than at higher frequencies.

Materials and methods

Participants

30 able-bodied participants volunteered for the study (19 females; age (years): 23.8±3.9, height

(cm): 167.6±8.7, and weight (kg): 68.7±16.5 [mean±SD]). For the arm ergometry task, ten dif-

ferent able-bodied participants were recruited (8 females, age (years): 25.4±5.8, height (cm):

165.4±8.8, and weight (kg): 64.1±10.5). The San Diego State University Institutional Review

Board approved all procedures, and all participants provided written informed consent.

Fitness trackers

Three wrist-worn commercially available PAMs (Garmin Vivofit, Fitbit Flex, and Jawbone

UP24) were selected based on their popularity/affordability. All three PAMs have tri-axial

accelerometers. Algorithms of these trackers are tuned for walking. Thresholds are set to deter-

mine a large enough movement indicative of walking while also attempting to minimize

counting of smaller movements not associated with stepping. Based on our empirical observa-

tions of the relationship between PAM counts and wheelchair strokes, one stroke on the

wheelchair was logged as two counts on the PAM. For the arm ergometry tasks, we counted

one revolution as one count on the fitness trackers.

Protocol

Wheelchair tasks. Participants propelled a wheelchair while wearing all activity trackers

on their right wrist, placed in random order. Participants were given time to practice before

collecting data to avoid a learning effect. They were also given breaks between each bout of

wheeling.

For the rollers task, participants propelled the wheelchair on suspended rollers (Fig 1) at

separate frequencies (30, 45 and 60 strokes per minute (spm)), three minutes each. These fre-

quencies were selected based on a previous study where experienced wheelchair users pro-

pelled at self-selected speeds over ground at an average of ~53 spm [23]. Participants also

propelled the wheelchair on the rollers at pre-determined varied frequencies (Mixed), ranging
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from 30–80 spm over 2 minutes (mean = 47 spm, Fig 2). Each frequency was performed 3

times and averaged before statistical analysis was performed, except for within-tracker com-

parisons. We used a metronome to allow participants to easily adhere to the prescribed fre-

quencies, and gave them the opportunity to practice the frequencies before starting the data

recordings. Participants were visually monitored throughout the trial and given verbal cues as

needed to ensure they followed the metronome. The order of trials was randomized between

each participant.

Fig 1. Wheelchair rollers setup. An illustration of the participant propelling the wheelchair on suspended rollers.

https://doi.org/10.1371/journal.pone.0191556.g001

Accuracy of consumer-level activity monitors during wheelchair propulsion

PLOS ONE | https://doi.org/10.1371/journal.pone.0191556 February 14, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0191556.g001
https://doi.org/10.1371/journal.pone.0191556


Participants also wheeled through an obstacle course twice (Fig 3) at self-selected speeds.

Two experimenters used tally counters to count strokes of participants’ right arm. If there was

a non-zero difference between the observers, the trial was repeated. For a subset of participants

(n = 19), time to complete the obstacle course was recorded to calculate mean spm.

Fig 2. Mixed frequencies trial. A graphic representation of the frequencies and number of strokes performed for the

Mixed condition during the rollers task.

https://doi.org/10.1371/journal.pone.0191556.g002

Fig 3. Obstacle course depiction. The obstacle course negotiated by participants in a manual wheelchair. The course covered ~9m x7.5m area.

https://doi.org/10.1371/journal.pone.0191556.g003
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Arm ergometry. A second group of participants performed an arm ergometry task. The

arm ergometer (Drive Medical, Model RTL10273) was placed at a participant-selected height

and distance. Participants cycled at different frequencies (40, 60 and 80 revolutions per minute

(rpm)) for three minutes each. This range of frequencies was selected based on those used pre-

viously involving arm ergometry and hand cycling in wheelchair users [24–26]. The number

of revolutions performed was verified using the display count on the ergometer.

Data analysis and statistics

Data were analysed with Statistical Packaging for Social Sciences 22 (SPSS, IBM, Armonk, NY)

unless indicated otherwise. Data are presented as mean across trials (95% confidence intervals

lower bound, upper bound, unless indicated otherwise) for stroke counts, and mean percent-

age error (MPE) (Table 1). Standard Error of Measurement (SEM) was calculated for com-

bined systematic and random error as the square root of within subject mean squares as

described by Weir et al. [27].

For the rollers and arm ergometry tasks, a mixed design Analysis of Variance (ANOVA)

with repeated measures was used to compare tracker counts and pre-determined (rollers) or

true (arm ergometry) values across stroke frequencies. A separate ANOVA was also performed

for MPE to compare each tracker error to zero across stroke frequencies, as well as comparing

MPE between trackers.

For the obstacle course task, a one-way ANOVA with repeated measures was used to assess

differences across tracker counts and the true values. An ANOVA was also performed for

MPE to compare each tracker error to zero across stroke frequencies, as well as comparing

MPE between trackers.

For all ANOVA analysis, if sphericity did not hold (or was undefined) the Huynh-Feldt

adjustment was used to evaluate main effects of the within subjects variable and/or the interac-

tion effect. Post-hoc analyses were done without adjustment for multiple comparisons. Effect

sizes for main effects or interactions are presented as ratio of effect variability to error variabil-

ity (partial eta squared, ηp
2) and for regressions as effect variability to total variability (R2).

For the obstacle course task, intra-class correlation coefficients (ICC) with 95% CI were cal-

culated using a 1-way random model for average measures[27]. Lin’s concordance coefficients

with 95% CI were calculated using open online statistical software [28]. ICC and Lin’s coeffi-

cient were not calculated for trials with predetermined outcomes values (i.e., the rollers and

ergometer tasks) because there was no variability between participants in these tasks.

For the obstacle course task, modified Bland-Altman plots were created to plot difference

values against observed (true) values. In addition to standard limits of agreement (LoA), we

plotted minimal clinically important difference (MCID) [29], based on interval size for catego-

rizing PA levels relative to target PA recommendations [30] at 25% of true values and centered

on 0. Consistent error as mean difference scores (across all values) was assessed for significant

difference from zero via single measurement t-test. Proportional bias was assessed with simple

linear regression of difference values on observed values.

Table 1. Standard equations for descriptives.

Equation #

Mean Count
P

Ci

k
1

MPE
P

jCi� Tij
Ti �k

� 1�100 2

C = count by tracker; i = trial; k = number of trials; T = adjusted pre-determined (rollers) or true (obstacle course

and ergometer) stroke count.

https://doi.org/10.1371/journal.pone.0191556.t001

Accuracy of consumer-level activity monitors during wheelchair propulsion

PLOS ONE | https://doi.org/10.1371/journal.pone.0191556 February 14, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0191556.t001
https://doi.org/10.1371/journal.pone.0191556


Within tracker reliability was assessed with a two-way random model with absolute agree-

ment type [27] for each tracker across all 3 trials at each frequency for the roller and ergometer

tasks. Heuristics for interpretation are based on Koo and Li [31], and are as follows: ICC values

of less than 0.50 indicates poor reliability, ICC values in the range 0.50 to 0.75 indicate moder-

ate reliability, between 0.75 and 0.9 indicates good reliability, and an ICC value of greater than

0.9 shows excellent reliability.

Level of significance was set at α�.05.

Results

Wheelchair rollers tasks

For the rollers task, there was a significant interaction among tracker and pre-determined val-

ues across different speeds (p< .001, ηp
2 = .385) for mean counts. For individual trackers,

mean counts showed significant differences for tracker-measured values compared to pre-

determined values for most of the frequencies except for the Fitbit at 30 spm and the Garmin

at 60 spm (Fig 4a).

In general, the trackers had smaller percent errors at the higher stroke frequencies. For all

trackers, MPE significantly decreased (all p< .001, ηp
2�.694) with increasing stroke fre-

quency. Consistent with this, the SEM values were lower at higher stroke frequencies (Fig 4c).

At 30 spm, SEM values for all trackers were high, but the Fitbit was the lowest. At 45 spm, the

FitBit and Jawbone were closer to the true values (lower SEM), and at 60 spm, SEM was the

lowest, and the Jawbone was closest to the pre-determined value.

During the mixed frequencies rollers trials, the counts for all trackers were significantly

lower than the pre-determined counts (all Δ = -33(-48,-17) to -27(-40,-14), p< .001). When

comparing the MPE for each tracker to each other, there were no significant differences

(p�.120, ηp
2�.070, Fig 4b). SEM for each of the trackers were about the same, with the Garmin

having slightly higher SEM than then the others.

Within tracker reliability for the rollers task was poor to moderate except for the Fitbit at 30

spm, and the Jawbone at 30 spm (Table 2).

Obstacle course task

For the obstacle course task, stroke frequency through the obstacle course was 48(44, 53)

strokes per minute. The overall ANOVA showed no significant difference (p = .102, ηp
2�.076)

for the counts measured by trackers compared to true stroke count (Fig 5a). There was an

overall effect of trackers on MPE (p< .001, ηp
2�.469). Post-hoc analysis showed that MPE

for all trackers were significantly different from zero (i.e. observed MPE, all<-12(-21,-9),

p< .001, Fig 5b). There were no significant differences in MPE among the devices (p�.138,

ηp
2�.066).

The ICC and Lin’s concordance coefficient were similar (as indicated by overlapping confi-

dence intervals) between trackers, with values about 0.03 and 0.05 higher for Jawbone com-

pared to Garmin (ICC and Lin’s coefficient, respectively) (Fig 6a and 6b), and the Garmin was

about 0.04 and 0.05 higher than Fitbit.

Bland-Altman plots (Fig 7a–7c) showed LoAs well above the MCID for all trackers. Only

45, 43 and 53% of difference values fell within the MCID for Garmin, FitBit and Jawbone,

respectively. Consistent error was not significant for the Garmin (Δerror = -0.1(-15,16),

p = .990) but significant for the Fitbit (Δ = 14(1,28), p = .024) and the Jawbone (Δ = 16(6,26),

p = .004). Proportional bias was not significant for any of the trackers (p�.0.84, R2�.103).

Accuracy of consumer-level activity monitors during wheelchair propulsion
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Ergometer task

For the ergometer task, there was a significant interaction for tracker and frequency (p< .001,

ηp
2�.924). All trackers at all stroke frequencies had significantly different mean counts from

Fig 4. Wheelchair rollers task statistics. Means and 95%CI for (a) counts, (b) mean percentage error, and (c)

standard error of measurement. Significant difference (p�.05) �from Predetermined, afrom 30 spm, bfrom 45 spm,
1from Garmin, 2from Fitbit.

https://doi.org/10.1371/journal.pone.0191556.g004
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the true counts (all p< .001, mean difference = -113 to 173, Fig 8a). For 23 of 30 trials at 40

rpm, the Jawbone recorded 0 counts. MPE for each trackers were significantly different than

zero at each frequency (all MPE�1(0–101), p�.003, Fig 8b). The differences in MPE among

cycle frequencies varied by tracker (p = .001, ηp
2�.647). For the Garmin, all frequencies were

significantly different than each other, except for between 40 and 60 rpm (Δ = 12(-1, 24),

p = .066). The errors were less with higher speeds for the Garmin. For the FitBit, all errors

were significantly different between the different frequencies, with higher errors 40 rpm,

except there were virtually no errors at 60 and 80 Hz (Δ = 0(0,1), p = .317). For the Jawbone,

the only significant differences among errors across all three frequencies was between 60 and

80 rpm (Δ = 34(3, 65), p = .034), as the MPE only decreased at the highest frequency.

Within tracker reliability for the ergometer tasks was poor to moderate for all trackers at all

frequencies (Table 2).

Discussion

The aim of this paper was to evaluate the ability of three popular consumer-level PAMs to

detect strokes during different tasks: propelling a wheelchair at different frequencies, negotiat-

ing an obstacle course and using an arm ergometer. These fitness trackers exhibited poor accu-

racy and precision in measuring true strokes across a range of wheelchair tasks at lower to

medium movement frequencies, but performed better at the higher frequencies we tested.

Based on the ICC calculations, within PAM reliability was poor to moderate in almost all con-

ditions. During the wheelchair rollers tasks, the three trackers were better at counting strokes

at the highest frequency we tested (3–6% MPE), with no significant difference among trackers.

The devices tested had substantial error during wheeling and low frequency arm ergometry (as

demonstrated by high MPE and SEM). During the obstacle course task, errors for the trackers

beyond the MCID occurred in about half of the trials. Only arm ergometry at the highest fre-

quency tested (80 rpm) was measured with high accuracy and precision by two of the three

trackers (Garmin and FitBit). Generally, the existing software algorithms to measure steps in

these trackers are poorly suited to measure many common modes of arm exercises.

The PAMs tested in the current study tended to underestimate stroke counts on the rollers

and overestimate obstacle course counts and ergometer revolutions. The MPEs at the higher

Table 2. Within tracker reliability for each frequency.

Garmin FitBit Jawbone

ICC (95% CI) p-value ICC (95% CI) p-value ICC (95% CI) p-value

Rollers 30spm 0.697

(0.525–0.829)

< .001 0.818

(0.697–0.902)

< .001 0.780

(0.610–0.879)

< .001

45spm 0.580

(0.376–0.752)

< .001 0.692

(0.517–0.825)

< .001 0.605

(0.406–0.769)

< .001

60spm 0.156

(-0.053–0.406)

.077 0.627

(0.433–0.784)

< .001 0.255

(0.034–0.498)

.011

Random 0.477

(0.257–0.679)

< .001 0.640

(0.450–0.792)

< .001 0.535

(0.322–0.721)

< .001

Ergometer 40rpm 0.258

(-0.112–0.686)

.094 0.265

(-0.106–0.691)

.088 0.205

(-0.151–0.650)

.144

60rpm 0.499

(0.107–0.821)

.006 0.373

(-0.017–0.756)

.031 0.187

(-0.164–0.637)

.164

80rpm -0.001

(-0.282–0.473)

.477 -0.078

(-0.323–0.388)

.634 0.438

(0.044–0.791)

.014

https://doi.org/10.1371/journal.pone.0191556.t002
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Fig 5. Obstacle course task statistics. Means and 95%CI for (a) counts, (b) mean percentage error, and (c) standard

error of measurement. �significant difference from true (p�.05).

https://doi.org/10.1371/journal.pone.0191556.g005
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movement frequencies we tested during wheelchair propulsion are similar to those from other

studies using wrist-worn PAMs during walking or jogging [5, 7, 11].

For the Garmin and Jawbone during the rollers condition at 30 spm, it may appear that the

method of doubling the actual stroke counts to match those of the PAM counts would be

incorrect. There is a possibility that people pushed at a higher acceleration than what would be

needed at 30 spm and then returned arms back to the starting position at a lower acceleration

to stay on rhythm, and therefore only the forward stroke was counted. However, the variability

Fig 6. Statistic and 95%CI for obstacle course task. �Significant difference from 0 (p�.05).

https://doi.org/10.1371/journal.pone.0191556.g006
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is very large, 95% CI ranges = 64 and 72, respectively, for a 90 stroke count. Therefore the over-

all conclusion of poor validity and reliability for the trackers at low frequency seems defensible

even if the stroke counts were not doubled.

There has been increasing attention on the use of low cost, consumer-level sensors to pro-

mote PA by changing exercise behavior. Bravata and colleagues [4] showed that having a sim-

ple pedometer can increase PA and others report that PAM have the potential to stimulate

behavior change to potentially improve fitness and health [32–34]. Similar to able-bodied indi-

viduals, many wheelchair users have a desire to track their personal PA with a wearable device,

as well as compare their own activity to family and friends using this device [22]. Based on the

results of this study, the monitors we tested are not readily able to comprehensively measure

activities of manual wheelchair users. Recently, Apple, Inc. has released a software update for

the Apple Watch targeted for wheelchair users, allowing them the same access to the tools and

social platforms available to able-bodied people to track their PA. However, the cost of this

device might be prohibitive for many individuals (�$299.00), and a lower cost consumer-level

device (similar to the ones tested in this study) would enable more wheelchair users to monitor

their PA and improve their health.

One limitation of this study is that we tested able bodied participants rather than experi-

enced wheelchair users. A previous study showed that experienced manual wheelchair users

have different frontal plane shoulder movements than novice wheelchair users during level

Fig 7. Modified Bland-Altman plots for obstacle course task. Observed values on x-axis. LoA were centered on 0. MCID = 25% of observed

values. LoA, Limit of Agreement; MCID, minimal clinically important difference.

https://doi.org/10.1371/journal.pone.0191556.g007
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wheelchair propulsion [35]. However, it is unlikely that the trackers we tested in this study

would be sensitive enough to detect differences between experienced and novice wheelchair

users. In addition, for the arm ergometry task, the movement is so highly constrained that

it would be very unlikely for the trackers to discern between able-bodied and disabled

participants.

Another limitation is the fact that we only measured short bouts of activity, and it is possible

that longer bouts may influence the PAM measurement error. However, we would consider

that most bouts of activity are likely short in duration (e.g., moving from desk to bathroom,

wheeling around the house, getting from the car to a restaurant or store, etc). Although it is

common to measure accuracy and reliability during short bouts of activity [12, 20, 36], it

Fig 8. Ergometer task statistics. Means and 95%CI for (a) counts, (b) mean percentage error, and (c) standard error

of measurement. Significant difference (p�.05) �from true values, afrom 40 rpm, bfrom 60 rpm, 1from Garmin, 2from

Fitbit.

https://doi.org/10.1371/journal.pone.0191556.g008
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would be important to test the accuracy of these devices in ecologically valid settings in future

studies.

In conclusion, our study showed that the consumer-level wrist-worn activity trackers we

tested performed poorly in measuring arm strokes at lower to medium frequencies during

wheelchair propulsion and arm ergometry, but performed better at higher frequencies. These

trackers are therefore unlikely to accurately and precisely measure overall activity for most

wheelchair users, highlighting the need for software that is specifically designed to measure

activities commonly performed by persons with lower limb paralysis and weakness.
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