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Abstract: Enterotoxigenic Escherichia coli (ETEC) produce heat-labile (LT) and/or  

heat-stable enterotoxins (ST). Despite that, the mechanism of action of both toxins are well 

known, there is great controversy in the literature concerning the in vitro production and 

release of LT and, for ST, no major concerns have been discussed. Furthermore, the 
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majority of published papers describe the use of only one or a few ETEC isolates to define 

the production and release of these toxins, which hinders the detection of ETEC by phenotypic 

approaches. Thus, the present study was undertaken to obtain a better understanding of ST 

and LT toxin production and release under laboratory conditions. Accordingly, a collection 

of 90 LT-, ST-, and ST/LT-producing ETEC isolates was used to determine a protocol for 

toxin production and release aimed at ETEC detection. For this, we used previously raised 

anti-LT antibodies and the anti-ST monoclonal and polyclonal antibodies described herein. 

The presence of bile salts and the use of certain antibiotics improved ETEC toxin 

production/release. Triton X-100, as chemical treatment, proved to be an alternative 

method for toxin release. Consequently, a common protocol that can increase the production 

and release of LT and ST toxins could facilitate and enhance the sensitivity of diagnostic 

tests for ETEC using the raised and described antibodies in the present work. 

Keywords: ETEC; heat-labile toxin; heat-stable toxin; production; release; detection 

 

1. Introduction 

Enterotoxigenic Escherichia coli (ETEC), one of the six-diarrheagenic E. coli pathotypes (DEC), is 

responsible for about 300,000 to 500,000 deaths annually in children under five years of age [1]. These 

organisms are the most frequent cause of traveler’s diarrhea, affecting tourists traveling in endemic 

areas, as well as the diarrheal pathogen that most commonly afflicts military personnel deployed to 

endemic areas. In addition, it appears that ETEC contributes substantially to delayed growth and 

malnutrition, accompanied by repeated bouts of infectious diarrhea, and moreover, malnourished 

children appear to be at higher risk of acquiring ETEC infections [2,3]. For an effective reduction of 

these events, preventive measures and easy diagnostic tests are necessary. ETEC causes watery 

diarrhea after small intestine colonization, mainly through different colonization factors (CFs) and the 

secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins that bind to epithelial cell receptors 

in the intestine. Both CFs and toxins are plasmid-encoded [4]. 

Heat-stable toxin (ST) is a cysteine-rich peptide synthesized as a pre-pro-peptide of 72 amino acids 

that are processed during export to produce the mature active toxin of 18 or 19 amino acids [5]. Its  

C-terminal region is conserved featuring 13 amino acids, of which six are cysteine residues that form 

three disulfide bonds, necessary for the enterotoxic activity and heat-stable nature of the toxin [6,7]. 

Once released, ST binds to the extracellular domain of guanylyl cyclase C (GC-C) on the brush border 

of the intestinal epithelium. These interactions activate the intracellular catalytic domain of guanylyl 

cyclase, leading to the intracellular accumulation of cGMP, increasing chloride secretion and 

decreasing sodium absorption [8,9].  

In contrast to ST, LT is large, oligomeric, with AB5 type structure of 84 kDa, and consists of one A 

subunit and five B subunits [10]. LT is secreted through the outer membrane by a two-step process. In 

the first step, N-terminal signal peptides of the subunits are cleaved during secretion (sec)-dependent 

transport across the inner membrane to the periplasm where the monomers assemble into the  

holotoxin [11,12]. After folding and assembly, the holotoxin is transported across the outer membrane 
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via type II secretion apparatus [13]. In some strains, additional genes, such as leoA, coding for a  

GTP-binding protein [14], and located on a pathogenicity island in the prototype H10407 strain, also 

modulate LT secretion [15]. Binding of the B subunit to GM1 gangliosides centered in caveolae on the 

host cell surface triggers endocytosis of the holotoxin [16]. However, how LT is transferred to 

ganglioside receptors on the surface of intestinal cells has many possible explanations [15,17]. 

Nevertheless, much of the LT secreted by these organisms under laboratory growth conditions remains 

associated with outer membrane vesicles, which can enter host cells via lipid raft-dependent 

endocytosis [18]. Other studies have also suggested that LT and its similar secretion apparatus can 

assemble or split to one end of the bacterium, thus, allowing ETEC to deliver their toxin at the host cell 

surface [19,20]. Although there is controversy in the literature concerning the production and release 

of LT, no such issue has been raised regarding ST. The majority of published papers describe the use 

of only one or a few ETEC isolates to define the production and release of these toxins [21–23], which 

impairs the detection of ETEC by phenotypic approaches. Thus, the present study was undertaken to 

achieve a better understanding of ST and LT toxin production and release under laboratory conditions. 

Accordingly, a collection of LT-, ST- and ST/LT-producing ETEC isolates was used to evaluate different 

protocols for toxin production and release aimed at ETEC detection. For this detection, we used previously 

raised anti-LT antibodies [24,25] and anti-ST monoclonal and polyclonal antibodies described herein. 

2. Results and Discussion 

2.1. Characterization of ST MAb 

ST MAb was classified as IgG1 and only recognized the ST toxin as determined by immunoblotting 

(Figure 1) and indirect ELISA. The next step was to investigate the applicability of antibodies in 

detecting ST in capture ELISA (cELISA). Accordingly, an ST cELISA was standardized using anti-ST 

MAb in the capture step and an IgG-enriched fraction of rabbit polyclonal anti-ST antibodies as detecting 

antibody. This system was able to detect as little as 125 ng toxin, showing it to be suitable for our study. 

Figure 1. Reactivity of ST MAb by immunoblotting. Bacterial lysates from strains 30 

(Lane 1), 127 (Lane 2), and 3321-4 (Lane 3) (3 µg) were separated by SDS-PAGE (10% gel; 

tricine) and transferred to a PVDF membrane. Each strip was incubated with anti-ST MAb 

followed by goat anti-mouse IgG peroxidase-conjugate. Immunodetection signals were 

visualized by addition of DAB/H2O2. Molecular markers are indicated as kilodaltons (kDa) 

at the left side of the panel. The arrow indicates the pre-pro-peptide form of ST toxin. 

ETEC isolates 30 and 127 had spontaneously lost the estA gene. 
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2.2. Comparison of Effects of Different Compounds on Production of LT and ST by E. coli H10407  

ETEC H10407 is an ST- and LT-producing strain, and was, thus, employed in the evaluation of  

E. coli broth (EC broth). Both toxins were detected by cELISA in supernatants from cells grown in this 

medium. In order to increase the release of both toxins, the following step was used to test several 

described treatments using the ETEC H10407 strain. For this strain, toxin release was different; no 

significant difference was observed in LT release by the addition of polymyxin or triton X-100 to 

either the cell pellet (p = 0.2934) or culture medium (p = 0.1545) (Figure 2A). Moreover, there was no 

significant difference by the use of EDTA or triton X-100 for ST release, either when the pellet was 

treated (p = 0.9354) or in the culture medium (p = 0.3692) (Figure 2B). Triton X-100 was the common 

treatment for the release of both toxins, where pellet treatments released a greater amount of LT  

(p = 0.0013) (Figure 2A), but when this detergent was added directly to the culture medium, the 

release of ST was significantly increased (p < 0.0001) (Figure 2B).  

Figure 2. LT (A) and ST (B) production after chemical treatments. The ETEC H10407 

strain was cultivated in EC broth. After 16–18 h, the culture was centrifuged and cell 

pellets were treated with 0.1 M EDTA or 0.2 mg/mL polymyxin B sulfate (1606 UI/mL) or 

2% triton X-100 (small checkered) or not (white bars). The same compounds were also 

added directly to the culture growth (large checkered) or not (white bars) and then 

centrifuged. The supernatants treated or not were tested for LT (A) or for ST (B) by 

cELISA. The error bars represent the absorbance means and standard errors of duplicates 

of three independent experiments. 

 

2.3. Effects of Antibiotics on Toxin Production 

The H10407 strain was cultivated either in the absence or presence of the antibiotic lincomycin or 

ciprofloxacin and using both antibiotics, we observed that from 6 to 8 h growth, the presence of 

lincomycin (Figure 3A, black line) increased the production of LT toxin when compared either to its 

absence (p = 0.056) or only ciprofloxacin presence (p = 0.079) (Figures 3A, blue and green lines). It 

was interesting to observe that after 5 h growth, there was a decrease in LT production either in the 

absence of antibiotic or in ciprofloxacin presence (Figure 3A, green and blue lines). The difference 

observed for ST production was from 7 to 8 h growth, either employing lincomycin alone (p = 0.037), 

or when both antibiotics were added (p = 0.041) (Figure 3B, black and red lines). The production 
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profile observed at 24 h was the same as 8 h of H10407 growth for both toxins in the presence or 

absence of antibiotics. 

Figure 3. LT (A) and ST (B) production in presence or absence of antibiotics. The ETEC 

H10407 strain was cultivated in EC broth containing lincomycin (black line), ciprofloxacin 

(green line), lincomycin plus ciprofloxacin (red line) or no antibiotic (blue line). The 

supernatants were tested for LT (A) by cELISA or for ST (B) by indirect ELISA. 

 

2.4. Characterization of LT and ST Production/Release in ETEC Strains 

On the other hand, in analyzing other ETEC isolates, in addition to H10407, we observed that some 

of them showed higher toxin production in the presence of lincomycin (data not shown), while for 

others this production was higher in the presence of ciprofloxacin (data not shown). Also the triton  

X-100 treatment of the pellet or culture medium had different influences on the release of toxins. 

Considering these facts, the combination of both antibiotics with EC broth and direct addition of triton 

X-100 to the culture medium were used to evaluate the toxin production of 90 ETEC isolates. 

For the LT-producing isolates, we observed that LT production/release was greatly enhanced  

(p = 0.0073) when cells were cultivated in the presence of antibiotics (Figure 4A, insert). All  

49 isolates tested showed increased LT production/release level, but variations were observed among 

the isolates. Notably, for one isolate (2004), LT production/release level was low in the absence of 

antibiotic, but it was increased three-fold in the presence of antibiotic (Figure 4A). 

In analyzing the ST/LT-producing isolates, almost all showed increased LT production/release. 

Among the 19 tested strains, only two isolates (157A2 and 159A2) showed no increase in LT 

production/release after antibiotic supplementation in EC broth. In contrast, eight isolates (170, 156A1, 

170A1, 3095, 3950, 237, 2355, and 3238) showed at least a three-fold increase in LT 

production/release with antibiotic addition to EC broth, among them one isolate (170) and three 

isolates (237, 2355, and 3238) had at least four- and five-fold increased production/release in the 

presence of antibiotic, respectively (Figure 4B). In addition, for the ST/LT-producing isolates, the 

addition of antibiotics greatly enhanced LT production/release (p = 0.0076) (Figure 4B, insert). 
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Figure 4. In vitro effects of lincomycin and ciprofloxacin on enterotoxigenic Escherichia coli 

isolates. (A) LT-producing strains. (B) ST/LT-producing strains. The strains were 

cultivated in EC broth (○/white bars) or EC broth containing lincomycin and ciprofloxacin 

(●/crosshatched bars), and bacterial growth cultures were treated with 2% triton X-100. 

Each supernatant was tested for LT by cELISA. 
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The influence of both antibiotics together on ST-producing isolates could be seen with increased 

production/release of ST in 15 ETEC strains, showing at least a two-fold increase. Nevertheless, in one 

of them (76359-1) there was a more than four-fold increase. In the isolate 616, we observed a 16-fold 

increase in ST production/release. In addition to the isolate 2859, no ST production was observed in 

the absence of antibiotic, but in its presence, production/release increased as much as 1000-fold. As 

noted for LT-producing ETEC strains, seven ST-producing isolates (3891-1, 84/3046, 1791-1, 

84/3353, 74499-1, 2021-1, and 75525-1) also showed no change in ST production/release in the 

presence of antibiotics (Figure 5A). Despite the fact that we observed individual differences between 

the presence and absence of antibiotics in ST production/release, the absorbance means between 

groups were not significant (p = 0.059) (Figure 5A, insert).  

Almost all ST/LT-producing isolates showed increased production of ST toxin when cultivated in 

the presence of antibiotics. Among the 14 isolates that showed increased ST production, this was 

evident only after antibiotic addition in eight (157A2, 3026, 237, 3950, 2355, 159A2, 15, and 3238). 

Two isolates (40T and 155A1) showed no influence of cultivation with antibiotic on ST production 

(Figure 5B). However, for the ST/LT-producing isolates, the addition of antibiotics greatly enhanced 

ST production/release (p = 0.0034) (Figure 5B, insert). 

Figure 5. In vitro effects of lincomycin and ciprofloxacin on enterotoxigenic Escherichia coli 

isolates. (A) ST-producing strains. (B) ST/LT-producing strains. The strains were 

cultivated in EC broth (○/white bars) or EC broth containing lincomycin and ciprofloxacin 

(●/crosshatched bars), and the bacterial growth cultures were treated with 2% triton X-100. 

Each supernatant was tested for ST by cELISA.  
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Figure 5. Cont. 

 

2.5. Discussion 
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for LT release [21,23,30,31], but some authors have demonstrated that triton X-100 treatment shows a 

superior performance in LT release [32]. Nevertheless, Lasaro et al. [33] found that polymyxin B 

recovered 25% of LT produced by strain H10407, where it was more effective than triton X-100, 

which recovered less than 15% of the toxin. The effect of urea has also been described for LT  

release [34], and in our study, the results of urea treatment showed no reproducibility (data not shown). 

Although some authors [33,35] consider that “sonic disruption” is the most efficient condition, this 

method is laborious and impractical in routine use and in dealing with a large collection of bacterial 

isolates. In our tests, treatment with triton X-100 was the common chemical treatment for the release 

of both toxins and therefore chosen to be added directly to bacterial culture growth, confirming that 

production/release of toxins is indeed affected by chemicals in vitro. 

Next, we investigated the effect of adding antibiotics (ciprofloxacin and lincomycin) to the EC 

broth on the production of ETEC toxins. It has already been described that the addition of lincomycin 

to the growth medium causes an increase in LT production of ETEC isolates [22,23,36,37]. As 

expected, the addition of lincomycin to EC broth increased LT production in the prototype strain 

(H10407) as well as some LT-positive isolates tested (data not shown). On the other hand, we also 

observed that the presence of ciprofloxacin privileged LT production in some isolates (data not 

shown). Yoh et al. [37] reported that among several antibiotics tested, either lincomycin or tetracycline 

alone stimulated the production of LT by ETEC strains, and, as demonstrated by us, the effect of 

antibiotic on production/release was not similar in all strains. For ST, few data are available; when  

ST-producing isolates were grown in media with lincomycin, no differences in ST production were 

detected [38–40], as observed with H10407. The increase, though significant, was different between 

the isolates. However, statistical analyses showed that, depending on the group of isolates, this 

difference in LT and ST production was higher in strains producing both toxins and LT-producers 

when cultivated in the presence of antibiotics. Under the same culture conditions, a smaller difference 

was observed in isolates producing only ST. In fact, according to the literature, no uniformity in the 

production of toxins by bacterial isolates has been found [41]. A variation of almost 50-fold has been 

described between LT-positive isolates [42], indicating that the regulation of LT production, as well as 

ST production, is different in individual ETEC isolates, as demonstrated here with a collection of 

ETEC isolates. Nevertheless, as far as we know, this is the first time that ST secretion and release 

characteristics are described. 

3. Experimental Section 

3.1. Bacterial Strains 

The bacterial isolates used in this study consisted of 90 strains previously defined as ETEC by gene 

presence including the prototypes H10407 (O78:H11) [43] as the ETEC-producing ST/LT prototype 

strain and 3321-4 (O153:H45) as the ETEC-producing ST prototype strain [44]. LT-I (49 isolates),  

ST-I (21 isolates) and LT-I/ST-I (18 isolates) were isolated from different geographic areas as detailed 

in Table 1 [25,45–51]. The ETEC isolates (30 and 127), which had spontaneously lost the estA gene, 

were employed as ST toxin negative control [52].  
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Table 1. Characteristics of the enterotoxigenic Escherichia coli (ETEC) isolates used. 

Strain Serotype Gene Toxin expression Geographic origin/period of isolation 

18 O8:H9 elt (LT+) São Paulo, Brazil, 1994–1996 

28 O112:H10 elt (LT+) São Paulo, Brazil, 1994–1996 

51 O62:H19 elt (LT+) São Paulo, Brazil, 1994–1996 

120 O88:H25 elt (LT+) São Paulo, Brazil, 1994–1996 

10/1A O114:H21 elt (LT+) Rio de Janeiro, Brazil, 1998 

10/1B O114:H21 elt (LT+) Rio de Janeiro, Brazil, 1998 

105A1 ONT:H4 elt (LT+) Paraiba, Brazil, 2000–2001 

117A1 O6:H16 elt (LT+) Paraiba, Brazil, 2000–2001 

162-1 O88:H25 elt (LT+) São Paulo, Brazil, 1989–1990 

18/1 ONT:HNT elt (LT+) Rio de Janeiro, Brazil, 1998 

21089 ONT:HNT elt (LT+) Rio de Janeiro, Brazil, 1998 

220A1 O25:H16 elt (LT+) Paraiba, Brazil, 2000–2001 

258909-3 O128:H1 elt (LT+) Bangladesh, 1979–1984 

2A5 O88:H25 elt (LT+) Paraiba, Brazil, 2000–2001 

3841-3 O88:H- elt (LT+) São Paulo, Brazil, 1989–1990 

39A1 O109:H19 elt (LT+) Paraiba, Brazil, 2000–2001 

4541-5 O64:H- elt (LT+) São Paulo, Brazil, 1989–1990 

4702-1 O167:H5 elt (LT+) São Paulo, Brazil, 1989–1990 

72A1 O15:H40 elt (LT+) Paraiba, Brazil, 2000–2001 

102330-1 O45:H16 elt (LT+) Bahia, Brazil, 2001–2002 

106172-1 ONT:H10 elt (LT+) Bahia, Brazil, 2001–2002 

115181-1 O64:H- elt (LT+) Bahia, Brazil, 2001–2002 

117820-1 O64:H- elt (LT+) Bahia, Brazil, 2001–2002 

3400-1 ONT:H4 elt (LT+) Bahia, Brazil, 2001–2002 

104 OR:H17 elt (LT+) Bahia, Brazil, 2003–2004 

138 OR:H25 elt (LT+) Bahia, Brazil, 2003–2004 

224 OR:H10 elt (LT+) Bahia, Brazil, 2003–2004 

231 OR:H25 elt (LT+) Bahia, Brazil, 2003–2004 

308 OR:H16 elt (LT+) Bahia, Brazil, 2003–2004 

622 OR:H9 elt (LT+) Bahia, Brazil, 2003–2004 

906 O15:H40 elt (LT+) Bahia, Brazil, 2003–2004 

913 O6:H16 elt (LT+) Bahia, Brazil, 2003–2004 

922 O64:HNT elt (LT+) Bahia, Brazil, 2003–2004 

985 O166:H15 elt (LT+) Bahia, Brazil, 2003–2004 

1146 OR:H21 elt (LT+) Bahia, Brazil, 2003–2004 

1334 ONT:H16 elt (LT+) Bahia, Brazil, 2003–2004 

1530 OR:H19 elt (LT+) Bahia, Brazil, 2003–2004 

1754 OR:H21 elt (LT+) Bahia, Brazil, 2003–2004 

2109 ONT:H32 elt (LT+) Bahia, Brazil, 2003–2004 
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Table 1. Cont. 

Strain Serotype Gene Toxin expression Geographic origin/period of isolation 

2335 OR:H51 elt (LT+) Bahia, Brazil, 2003–2004 

2464 OR:H10 elt (LT+) Bahia, Brazil, 2003–2004 

3081 OR:H- elt (LT+) Bahia, Brazil, 2003–2004 

3412 O109:H- elt (LT+) Bahia, Brazil, 2003–2004 

3584 OR:H32 elt (LT+) Bahia, Brazil, 2003–2004 

3628 ONT:H40 elt (LT+) Bahia, Brazil, 2003–2004 

3684 O133:H25 elt (LT+) Bahia, Brazil, 2003–2004 

4125 O82:H40 elt (LT+) Bahia, Brazil, 2003–2004 

2004 ONT:H- elt (LT+) Bahia, Brazil, 2003–2004 

160BA OR:H- elt (LT+) Bahia, Brazil, 2003–2004 

3321-4 O153:H45 estA (ST+) São Paulo, Brazil, 1989–1990 

616 O25:H16 estA (ST+) Bahia, Brazil, 2003–2004 

2016 O8:H2 estA (ST+) Bahia, Brazil, 2003–2004 

6546-1 ONT:H32 estA (ST+) Bahia, Brazil, 2001–2002 

416 O148:H27 estA (ST+) Bahia, Brazil, 2003–2004 

2859 O78:H27 estA (ST+) Bahia, Brazil, 2003–2004 

3541 ONT:HNT estA (ST+) Bahia, Brazil, 2003–2004 

74499-1 O23:H15 estA (ST+) Bahia, Brazil, 2003–2004 

76359-1 O166:H15 estA (ST+) Bahia, Brazil, 2001–2002 

1791-1 O29:H21 estA (ST+) São Paulo, Brazil, 1989–1990 

4961-2 O29:H21 estA (ST+) São Paulo, Brazil, 1989–1990 

501-4 O78:H12 estA (ST+) São Paulo, Brazil, 1989–1990 

O211-1 O6:H16 estA (ST+) São Paulo, Brazil, 1989–1990 

3231-4 ONT:H[NT] estA (ST+) São Paulo, Brazil, 1989–1990 

2021-1 O128ac:H27 estA (ST+) São Paulo, Brazil, 1989–1990 

3511-1 O128ac:H21 estA (ST+) São Paulo, Brazil, 1989–1990 

4011-1 O153:H45 estA (ST+) São Paulo, Brazil, 1989–1990 

3891-1 O153:H45 estA (ST+) São Paulo, Brazil, 1989–1990 

75525-1 O27:H7 estA (ST+) Bahia, Brazil, 2001–2002 

84/3353 O4:H1 estA (ST+) Germany, 1984 

84/3046 O6:HNT estA (ST+) Germany, 1984 

84/3610 ONT:H5 estA (ST+) Germany, 1984 

H10407 O78:H11 elt/estA (LT+ ST+) Bangladesh, 1973 

4 O6:H16 elt/estA (LT+ ST+) São Paulo, Brazil, 1994–1996 

5 O6:H16 elt/estA (LT+ ST+) São Paulo, Brazil, 1994–1996 

155A1 O6:H16 elt/estA (LT+ ST+) Paraiba, Brazil, 2000–2001 

156A1 O6:H16 elt/estA (LT+ ST+) Paraiba, Brazil, 2000–2001 

157A2 O6:H16 elt/estA (LT+ ST+) Paraiba, Brazil, 2000–2001 

159A2 O6:H16 elt/estA (LT+ ST+) Paraiba, Brazil, 2000–2001 

160A2 O6:H16 elt/estA (LT+ ST+) Paraiba, Brazil, 2000–2001 
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Table 1. Cont. 

Strain Serotype Gene Toxin expression Geographic origin/period of isolation 

170A1 O6:H16 elt/estA (LT+ ST+) Paraiba, Brazil, 2000–2001 

40T OR:H- elt/estA (LT+ ST+) São Paulo, Brazil, 1989–1990 

99237 O78:H12 elt/estA (LT+ ST+) Rio de Janeiro, Brazil, 1998 

237 O6:H16 elt/estA (LT+ ST+) Bahia, Brazil, 2003–2004 

2355 OR:H16 elt/estA (LT+ ST+) Bahia, Brazil, 2003–2004 

3026 O6:H16 elt/estA (LT+ ST+) Bahia, Brazil, 2003–2004 

3095 O6:H16 elt/estA (LT+ ST+) Bahia, Brazil, 2003–2004 

3238 O6:H16 elt/estA (LT+ ST+) Bahia, Brazil, 2003–2004 

3950 O6:H16 elt/estA (LT+ ST+) Bahia, Brazil, 2003–2004 

15 ONT:H19 elt/estA (LT+ ST+) São Paulo, Brazil, 1994–1996 

170 O6:H16 elt/estA (LT+ ST+) São Paulo, Brazil, 1994–1996 

3.2. O:H Identification 

Identification of O and H antigens was carried out following standard methods [53] using currently 

available O (O1–O181) and H (H1–H56) antisera prepared at Instituto Adolfo Lutz with reference 

strains from E. coli and Klebsiella (International Reference Centre, Copenhagen, Denmark). 

3.3. Media, Culture Conditions and Treatments for Toxin Release 

Production of ST and LT toxins by the prototype strain (H10407) was evaluated after bacterial 

cultivation in E. coli broth (EC broth; Merck, Rio de Janeiro, Brazil). For culture, just prior to testing, 

30 μL of bacteria from the frozen stock (−20 °C) were added to 3 mL of TSB and grown at 37 °C, 

under stirring conditions (180 rpm), for 18 h. Afterwards, 30 μL of TSB culture were added to tubes 

containing 3 mL of EC broth and incubated at 37 °C with shaking (250 rpm), either in the absence or 

presence of 0.1 mg/mL lincomycin and/or 5 ng/mL ciprofloxacin (Cefar, São Paulo, Brazil). 

Afterwards, cells were removed by centrifugation at 10,000 × g and toxin production was measured 

every hour for 8 h and also after 24 h of incubation by capture or indirect ELISA.  

Conditions for the release of the toxins were evaluated using the prototype ETEC strain cultivated 

in EC broth for 16–18 h and the cell pellets were treated with: (a) 1 mL of 0.2 mg/mL polymyxin B 

sulfate (approximately 1606 IU/mL; Sigma-Aldrich Co, St Louis, MO, USA), or (b) 0.1 M EDTA, or 

(c) 2% triton X-100 (Mallinckrodt Baker, Phillipsburg, NJ, USA), or (d) not treated at 37 °C with 

shaking (250 rpm) for 1 h. The suspensions (treated or not) were centrifuged at 10,000 × g and the 

supernatants assayed for LT and ST release by capture ELISA. Alternatively, these compounds were 

added directly to the growth medium and cultures maintained under stirring conditions (250 rpm) at  

37 °C for 1 h. After this period, the treated cultures were centrifuged at 10,000 × g for 10 min, and the 

supernatants assayed for LT and ST by capture ELISA. When necessary, the supernatants were stored 

at −20 °C until use. The best conditions for toxin production and release by the prototype strain were 

employed to evaluate the 90 ETEC isolates, which were cultivated as described above.  
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3.4. Rabbit Polyclonal and Mouse Monoclonal (MAb) Anti-LT Antibodies 

IgG-enriched fraction of rabbit polyclonal antiserum and IgG2b anti-LT monoclonal antibodies 

employed were previously described [24,25]. 

3.5. Rabbit Polyclonal and Mouse Monoclonal (MAb) Anti-ST Antibodies 

For rabbit immunization, the ST toxin was obtained as follows: the strain 3321-4 was cultivated in 3 L 

of Staples medium [54] at 37 °C, under stirring conditions (180 rpm), for 18 h. The bacterial 

supernatant was centrifuged at 10,000 × g for 15 min and dialyzed against 40 mM ammonium acetate 

in dialysis tubing (3.5 kDa MWCO) (Spectrum Laboratories Inc., Rancho Dominguez, CA, USA) at  

4 °C for 18 h. After dialysis, the buffer containing protein fractions smaller than 3.5 kDa was 

lyophilized, and the dried material resuspended in PBS. The protein content was measured using the 

Micro BCA Protein Assay Kit (Pierce, Rockford, IL, USA) as indicated by the manufacturer.  

A New Zealand White male rabbit (60 days old) was immunized intramuscularly three times at  

two-week intervals, with a dose of 0.75 mg ST previously coupled to rabbit albumin [55] and adsorbed 

to 2.5 mg Al3+ as adjuvant. Serum was obtained 50 days after immunization. The IgG-enriched 

fraction of the antiserum was obtained after caprylic acid and ammonium sulfate precipitation [56]. 

Immune serum reactivity was tested by indirect ELISA. 

MAb anti-ST was obtained after immunization of four- to six-week-old female Balb/c mice with  

2 µg purified ST. The toxin was purified according to Staples et al. [54] previously coupled to mouse 

albumin [55] and adsorbed to 2.5 mg Al3+ as adjuvant. The immunization protocol, hybridoma 

selection, MAb isotyping and purification were done as already described [24,25,57,58]. The 

experiments were conducted in agreement with the Ethical Principles in Animal Research, adopted by 

the Brazilian College of Animal Experimentation, and they were approved by the Ethical Committee 

for Animal Research of Butantan Institute (469/08). 

3.6. Evaluation of Anti-ST MAb Reactivity  

The reactivity of anti-ST MAb was evaluated by immunoblotting. Bacterial lysates (3321-4, or 30, 

or 127 strain) were obtained after strain cultivation on colonization factor antigen (CFA) agar plates. 

Each bacterial growth was removed from the plates and incubated with 1 mg/mL polymyxin B at 37 °C, 

for 30 min under stirring conditions (200 rpm). After incubation, each bacterial lysate was centrifuged 

at 10,000 × g for 15 min, and the supernatant was stored at −20 °C until use. Through this procedure 

the toxin was obtained in the pre-pro-peptide form. Three micrograms ST per slot were separated by 

10% tricine SDS-PAGE electrophoresis under reducing conditions [59] and transferred to a PVDF 

membrane (Amersham Biosciences, Little Chalfont, UK) at 150 mA at 4 °C for 18 h. The membrane 

was cut into 0.5-cm strips and blocked for 1 h with 1% BSA (Sigma-Aldrich, St Louis, MO, USA). 

The strips were washed three times for 5 min with PBS plus 0.05% Tween-20 (PBS-T) and incubated 

with anti-ST MAb (30 μg/mL) at 4 °C for 18 h. The strips were washed and incubated for 1 h with goat 

anti-mouse IgG peroxidase-conjugate (Invitrogen, Carlsbad, CA, USA) diluted 1:5000 in blocking solutions. 

After washing, immunodetection signals were visualized by addition of diaminobenzidine (DAB) plus 

H2O2 (Promega Corporation, Madison, WI, USA) and the reaction was stopped with distilled water.  
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3.7. Indirect ELISA for ST 

For the evaluation of rabbit immune serum, microplates (MaxiSorp microplates, Nunc, Rochester, 

NY, USA) were coated with ST at 15 μg/mL in 0.05 M sodium carbonate-bicarbonate buffer, pH 9.6, 

at 4 °C for 18 h. On the other hand, for the evaluation of ST production, microplates were coated at 4 °C 

for 18 h with supernatant of H10407 strain growth. At each step, plates were washed with PBS-T. 

Plates were then blocked with 1% BSA in PBS at 37 °C for 30 min. Next, serial dilutions of rabbit 

serum and IgG-enriched fraction in blocking solution were added and plates incubated at 37 °C for 30 min. 

Antigen-antibody reaction was detected by addition of goat anti-rabbit IgG peroxidase-conjugate 

(Sigma-Aldrich, St Louis, MO, USA) diluted 1:5000 in blocking solution at 37 °C for 30 min followed 

by 0.5 mg/mL O-phenylenediamine (OPD; Sigma Aldrich Co, St Louis, MO, USA) plus 0.5 μL/mL 

hydrogen peroxide in 0.05 M citrate-phosphate buffer, pH 5.0, in the dark at room temperature. The 

reactions were interrupted after 15 min by addition of 50 μL of 1 M HCl. The absorbance was 

measured at 492 nm in a Multiskan EX ELISA reader (Labsystems, Milford, MA, USA). At each step, 

the volume added was 100 μL/well, except in the washing and blocking steps, when the volume was 

200 μL/well. All samples were tested in duplicate unless otherwise noted. In contrast, for monoclonal 

antibodies production, the hybridoma supernatants or dilutions of purified MAb were employed 

followed by goat anti-mouse IgG peroxidase-conjugate (Invitrogen, Carlsbad, CA, USA) at a dilution  

of 1:10,000. 

3.8. Capture ELISA for ST 

The production and release of ST by ETEC bacterial isolates was determined by a ST-capture 

ELISA (c-ELISA) as described below. Microplates (MaxiSorp microplates, Nunc, Rochester, NY, 

USA) were coated at 4 °C for 18 h with monoclonal anti-ST antibodies at 10 μg/mL in 0.05 M sodium 

carbonate-bicarbonate buffer, pH 9.6 and blocked with 1% BSA in PBS at 37 °C for 30 min. At each 

step, plates were washed four times with PBS-T. Next, bacterial supernatants (from culture treated or 

not) were added and incubated at 37 °C for 2 h. The IgG-enriched fraction of rabbit polyclonal anti-ST 

antibodies at 50 μg/mL was then added and plates were incubated at 37 °C for 60 min. Goat anti-rabbit 

IgG peroxidase-conjugate (Sigma-Aldrich, St Louis, MO, USA) diluted 1:5000 in blocking solution 

was then added followed by further incubation at 37 °C for 30 min. The reactions were developed as 

described above. The absorbance values represent the mean of duplicates of each strain of three 

different experiments. 

3.9. cELISA for LT 

The production and release of LT was determined by cELISA as described above with the 

following exceptions. Capture was done with an IgG-enriched fraction of rabbit polyclonal anti-LT 

antibodies at 30 μg/mL, and antibody detection was done by incubation with anti-LT MAb (15 μg/mL) 

followed by goat anti-mouse IgG peroxidase-conjugate diluted 1:10,000 (Invitrogen, Carlsbad, CA, 

USA). The absorbance values represent the mean of duplicates of each strain of three different 

experiments. 
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3.10. Statistical Analysis 

Absorbance results for the production and release of ST and LT in the absence or presence of 

antibiotics and after chemical treatments of H10407 strain were evaluated by analysis of variance with 

GraphPad Prism5®; p < 0.05 was considered statistically significant. 

4. Conclusions  

The common protocol described in the present work can increase the production and release of LT 

and ST toxins, which could facilitate and enhance the sensitivity of diagnostic tests for ETEC using the 

raised and described antibodies herein. 
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