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Is high-density lipoprotein a modifiable
treatment target or just a biomarker
for cardiovascular disease?

Martin B Whyte

Abstract

Epidemiological data strongly support the inverse association between high-density lipoprotein cholesterol concentra-

tion and cardiovascular risk. Over the last three decades, pharmaceutical strategies have been partially successful in

raising high-density lipoprotein cholesterol concentration, but clinical outcomes have been disappointing. A recent

therapeutic class is the cholesteryl ester transfer protein inhibitor. These drugs can increase circulating high-density

lipoprotein cholesterol levels by inhibiting the exchange of cholesteryl ester from high-density lipoprotein for triacyl-

glycerol in larger lipoproteins, such as very low-density lipoprotein and low-density lipoprotein. Recent trials of these

agents have not shown clinical benefit. This article will review the evidence for cardiovascular risk associated with

high-density lipoprotein cholesterol and discuss the implications of the trial data for cholesteryl ester transfer

protein inhibitors.
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Introduction

Following the publication of several trials showing

little to no clinical improvement from raising high-

density lipoprotein cholesterol (HDL-C) with the cho-

lesteryl ester transfer protein inhibitor (CETPi) class of

drugs,1–4 it has been questioned whether HDL-C can

ever be a therapeutic target in its own right or whether

it simply serves as a biomarker of broader dysfunction

of the lipoprotein system. This article will review the

evidence for cardiovascular risk associated with HDL

and discuss the findings of the CETPi trials in light of

what we know of HDL functionality.

Outline of HDL structure and metabolism

The formation of HDL begins with the secretion of

lipid-poor apolipoprotein A-I (apoA-I) from the liver

and intestine. Once released into plasma, apoA1 rapid-

ly acquires free cholesterol and phospholipids from the

liver via the receptor ATP-binding cassette transporter

A1 (ABCA1), to form the discoidal, pre-b (nascent)

HDL particles (Figure 1 and Table 1). There are a

variable number of apoA-I proteins per HDL particle
and so it must be remembered that apoA-I concentra-
tion is not necessarily a one-to-one surrogate marker
for HDL particle number.5 High levels of apoA-I asso-
ciates with a reduced risk of cardiovascular disease.6

The enzyme lecithin–cholesterol acyltransferase
(LCAT) is carried by HDL and esterifies the cholester-
ol (acquired by ABCA1) to form cholesterol ester (CE).
The CE then moves into the centre of the HDL
particles as a hydrophobic core, altering the discoidal
pre-b HDL to form small, spherical, a-HDL particles
(HDL3). The a-HDL can continue to accept cholesterol
(for instance from macrophages within the vessel wall)
via ABCA1 and via ATP-binding cassette sub-family G
member 1 (ABCG1) which are further esterified by
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LCAT, leading to the conversion of HDL3 to the larger

HDL2 (Table 1).
Subsequently, in the ‘direct pathway’, HDL2 binds

to the extracellular domain of scavenger receptor B

type 1 (SR-B1) and CE then taken up by hepatocytes

via a lipophilic channel, for subsequent excretion in the

bile (this is the basis of the concept of reverse choles-

terol transport).7 The ‘indirect pathway’ involves the

transport of CE to the apolipoprotein B (apoB)-

containing lipoproteins. Cholesterol ester transfer pro-

tein (CETP) is mainly bound to HDL. This facilitates

the exchange of CE in mature HDL particles with

triacylglycerol (TAG) in chylomicrons and very low-

density lipoprotein (VLDL). Hepatic lipase then leads

to the release of TAG from the HDL particle, dramat-

ically reducing its size and releasing lipid-poor apoA-I,

which can be degraded by the kidney.
This is a highly simplified account of the HDL mol-

ecule and its metabolism. In fact, the HDL molecule is

highly complex and contains over 80 proteins, more of

which are acute-phase proteins than proteins involved

in lipid metabolism – giving credence to the idea that

HDL is involved in inflammation.8

Depending on the methodology used, HDL particles

may be classified in a number of ways which can make

discussion of HDL confusing (Table 1).
HDL may be classified by:

a. apolipoprotein content. Lipoprotein A-I contains

only apoA-I on its surface, whilst lipoprotein A-I/

A-II is an HDL with apoA-I plus A-II on its surface.
b. ultracentrifugation: separated by density which is pro-

portional to the protein and lipid composition: the

more protein and less lipid, the denser the particle.

Association of HDL with

cardiovascular disease

The HDL ‘story’ starts in the 1970s and the

Framingham cohort: when it was shown that HDL-C

had a strong association with coronary artery disease

(CAD) (Figure 2). Later, post hoc evaluation of the

Treating to New Targets study showed that even

Figure 1. Outline of HDL metabolism.
ABCA1: ATP-binding cassette transporter A1; ABCG1: ATP-binding cassette sub-family G member 1; CE: cholesterol ester; CETP:
cholesteryl ester transfer protein; HDL: high-density lipoprotein; LCAT: lecithin–cholesterol acyltransferase; LDL: low-density lipo-
protein; SR-B1: scavenger receptor B type 1; TAG: triacylglycerol; VLDL: very low-density lipoprotein.

Table 1. Classifications of the HDL molecule.

Gel

fractionation

Nuclear magnetic

resonance

spectroscopy

Surface

charge

Smaller particles HDL3c H1 Pre-beta (1,2,3)

HDL3b H2 Pre-alpha (1,2,3)

HDL3a H3

alpha 4

HDL2a H4 alpha 3

alpha 2

Larger particles HDL2b H5 alpha 1

Note: Illustrative only – equivalence of position between columns should

not be assumed.

HDL: high-density lipoprotein.
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when LDL-cholesterol (LDL-C) was tightly controlled,
there was still an association between low HDL-C and
increased risk for cardiovascular events.10 Overall,
increasing HDL-C by 2–3% was associated with a
reduction in the risk of cardiac events of 2–4%, inde-
pendent of the LDL-C level.11 However, more recent
data, from the Secondary Manifestations of Arterial
Disease study as well as the Justification for the Use
of Statins in Prevention: An Intervention Trial
Evaluating Rosuvastatin (JUPITER) study have sug-
gested that the inverse association between HDL-C and
vascular events can be abolished in patients who are
well-controlled on statin therapy.12,13

The Framingham data showed that patients
with diabetes had lower plasma HDL-C and higher
TAG concentrations. In these patients, HDL-C was
a less powerful prognosticator than non-HDL-C. The
metabolic syndrome is characterized by abdominal obe-
sity, low HDL-C, raised TAG, elevated blood
pressure, and impaired glucose tolerance.14,15 The
National Cholesterol Education Program (NCEP)
Adult Treatment Panel III adopted HDL-C levels of
<1.0mmol/l in men and <1.3mmol/l in women to indi-
cate the cutoff for lowHDL-C in metabolic syndrome.15

This recognizes the differential risk that HDL-C has
between genders. When NCEP III criteria were retro-
spectively applied to the National Health and Nutrition
Examination Survey II Mortality Study, there was a
near linear relationship between the number of metabol-
ic syndrome criteria present and mortality from cardio-
vascular disease.16 However, in this study HDL-C was
not independently associated with death.

Since the Framingham study, HDL-C has been
incorporated into a number of cardiovascular risk pre-
diction models. These models frequently utilize HDL-C
in a ratio with LDL-C, or with total cholesterol, as
this provides greater discriminatory and predictive
power for coronary heart disease than lipoproteins
considered in isolation.17 ApoB may also be usefully
measured as it represents the total number of potential-
ly atherogenic lipoproteins. As a result, apoB may
improve coronary heart disease (CHD) risk assessment
by identifying more high-risk individuals than the usual
lipid profile alone.18 The correlation between apoA-I
concentration and HDL particle number is less accu-
rate, with coefficients of 0.54 and 0.69.5 At a population
level, the information gained from measurement of these
apolipoproteins only adds moderately to the informa-
tion derived from traditional cholesterol measurements
(as used in the validated European Systematic Coronary
Risk Evaluation classification, for example) and so is
not advocated for routine use.19,20

First intervention trials

In the late 1980s–1990s, therapeutic trials held promise
that raising HDL-C could reduce vascular burden. In
the Familial Atherosclerosis Treatment Study, patients
with CAD were randomized to niacin and the colesti-
pol (bile acid resin), statin monotherapy, colestipol
monotherapy, or placebo. After 2.5 years, HDL-C in
the niacin–colestipol group increased by 43%.
Multivariate analysis indicated that an increase in
HDL-C correlated independently with regression of
coronary lesions on angiography.21 Ten years later
the HDL-Atherosclerosis Treatment Study was pub-
lished. This was a study of 160 men with CAD
and low HDL-C and showed that coronary stenosis
progressed by 3.9% over three years in patients ran-
domized to placebo but regressed by 0.4% with simva-
statin–niacin.22 These promising results – showing that
raising HDL-C (with niacin) could improve surrogate
markers of cardiovascular disease – raised expectations
for the AIM-HIGH study.23 This was the first well-
powered trial (3414 participants) targeting HDL-C
increment, with a primary endpoint of cardiovascular
events. All patients received simvastatin, 40–80mg/day,
plus ezetimibe, 10mg/day, if needed, to maintain an
LDL-C level of 1.03–2.07mmol/l. The trial was
stopped early, after a mean follow-up period of three
years, owing to a lack of efficacy. At two years, niacin
therapy had significantly increased the median HDL-C
level from 0.91 to 1.08mmol/l. LDL-C fell from 1.91 to
1.60mmol/l. This was followed three years later by the
publication of the Heart Protection Study 2 Treatment
of HDL to Reduce the Incidence of Vascular Events.24

This study evaluated extended-release niacin in

Figure 2. Relative risk of CHD risk according to HDL-C con-
centration, from the Framingham study. Equivalent values for
HDL-C (in mmol/l): 25mg/dl¼ 0.65mmol/l; 45mg/dl¼
1.17mmol/l; 65mg/dl¼ 1.68mmol/l. Source: Modified with per-
mission from Kannel.9

CHD: coronary heart disease; HDL-C: high-density lipoprotein
cholesterol.
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combination with laropiprant (a prostaglandin recep-

tor antagonist to reduce facial flushing) to effective

statin-based LDL-C lowering treatment in 25,673

high-risk patients with prior vascular disease. Over

3.9 years follow-up, participants assigned to extended-

release niacin–laropiprant had an LDL-C level

0.25mmol/l lower and an HDL-C level 0.16mmol/l

higher than in those assigned to placebo. Despite this

biochemical improvement, there was no significant

effect on the incidence of major vascular events (13.2

and 13.7% of participants with an event, respectively).
Niacin is the most effective treatment to raise HDL-

C on the market15 and yet has not been conclusively

shown to improve clinical outcomes. Limited clinical

benefit was considered a consequence of successfully

treating LDL-C with statins, as thereafter only margin-

al incremental gains in clinical endpoints may occur

from raising HDL-C. Furthermore, the increase in

HDL-C was small in both of these studies.

CETP inhibition

Observational data of four families in Japan with high

HDL-C showed a shared mutation in the gene encod-

ing CETP.25 CETP inhibition offered the prospect of

much greater HDL-C increment than that seen with

niacin and could therefore address some of the con-

cerns with the AIM-HIGH and HPS2 studies. CETP

reduces circulating HDL-C levels by transferring cho-

lesteryl ester (CE) from HDL to larger lipoproteins,

such as chylomicrons, VLDL, and low-density lipopro-

tein (LDL), in exchange for TAG. The rational for

inhibition of CETP was that the CE would remain

within the HDL particle and be delivered to the liver

for uptake and clearance, thus completing the final step

of reverse cholesterol transport. CETPi is undoubtedly

effective at raising HDL-C. The first CETP inhibitor

evaluated in clinical trials was torcetrapib in the

ILLUMINATE study.1 Just over 15,000 patients at

high risk of CHD were randomized to treatment with

torcetrapib (60mg) plus atorvastatin versus atorvastat-

in alone (10–80mg). After 12months of torcetrapib

therapy, there was an increase of 72.1% in HDL-C

and a decrease of 24.9% in LDL-C. The trial was ter-

minated early because of excess in deaths in the torce-

trapib/atorvastatin versus atorvastatin groups (82

versus 51, respectively). Increases in heart failure,

angina, and revascularization procedures were also

observed. Were detrimental outcomes due to the class

of drug or specific to the molecule? With torcetrapib

there was increased blood pressure and increased

plasma levels of aldosterone. The picture was more

complex still as post hoc analysis indicated that lower

rates of major cardiovascular events occurred in those

with greater increases in HDL-C,1 holding out the
prospect of future success with CETPi.

Another CETPi, dalcetrapib, was also in development
(Dal-HEART programme). Although no adverse effects
were seen on endothelial function or vascular struc-
ture,26,27 a large phase 3 clinical trial of 15,871 patients
was terminated early after an interim analysis showed no
benefit despite increasing HDL-C by 31–40%.4

The background to the ACCELERATE trial was
therefore not auspicious. The ACCELERATE trial
comprised 12,092 patients who had at least one of the
following conditions: an acute coronary syndrome
within the previous 30–365 days, cerebrovascular ath-
erosclerotic disease, peripheral vascular arterial disease,
or diabetes mellitus with CAD. At three months, LDL-
C had decreased by 31% with evacetrapib versus a 6%
increase with placebo, and HDL-C had increased by
133.2% with evacetrapib versus a 1.6% increase with
placebo. Despite this, the trial was terminated early due
to no difference in primary outcome of macrovascular
event (hazard ratio, 1.01; 95% confidence interval,
0.91–1.11; P¼ 0.91).3 The REVEAL study assessed
the efficacy of adding anacetrapib or placebo to effec-
tive LDL-lowering treatment with atorvastatin among
patients with pre-existing atherosclerotic vascular
disease.2 Anacetrapib led to a 1% absolute risk reduc-
tion in coronary event rate, over a median of four
years, compared to placebo (10.8% versus 11.8%;
P¼ 0.004). However, there was no difference in all-
cause mortality or death from coronary disease. It is
possible that anacetrapib uniquely impacts HDL struc-
ture and function compared to other CETPi,28 which
could lead to improved clinical outcomes. Although
statistically significant, the trial was clinically disap-
pointing and well below that of a competitor drug
class targeting LDL receptor degradation (proprotein
convertase subtilisin-kexin type 9 inhibitors)29 and so
regulatory approval was not pursued.

At this point, it appears the idea that the lack of
clinical effect of niacin was due to inadequate elevation
of HDL-C was incorrect. It is looking more likely that
an increase in the cholesterol content of HDL does not
necessarily affect plaque biology. As an example, pre-
clinical studies in SR-B1 transgenic mice have shown a
disconnect between plasma HDL-C and the level of
reverse cholesterol transport and athero-protection.30

The principle that the predominant action of HDL is
the reverse transport of cholesterol (from tissues to the
liver) may therefore be wrong. It may well be that one
or more of HDL’s pleiotropic actions (including main-
tenance of endothelial function, preventing lipoprotein
oxidation, anti-inflammatory and anti-thrombotic
functions) is responsible for any clinical benefit of
HDL.31 It is important to note that none of these
actions is mediated by the cholesterol content but
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rather by the multitude of proteins and microRNAs
carried on the HDL molecule.

Can HDL have a therapeutic action?

ApoA-I Milano is a naturally occurring variant of the
ApoA-I HDL lipoprotein, due to the replacement of
arginine by cysteine at position 173, which was first
described in a population in northern Italy. This muta-
tion is characterized by low plasma HDL-C, likely
mediated by reduced LCAT activation.32 Despite low
levels of HDL-C, carriers of this variant have minimal
burden of coronary atherosclerosis leading to specula-
tion that this is a gain-of-function mutation.32

Cholesterol efflux promoters are molecules that
mimic pre-b HDL structure by containing ApoA-I
Milano and phospholipid. Initial studies of its use
were promising.33 These included a study in patients
with acute coronary syndromes whereby weekly infu-
sion of apoA-I Milano, for five weeks, produced signif-
icant regression of coronary atherosclerosis, as assessed
by intravascular ultrasound.34

However, phase 2 trials of MDCO-216 in the
MILANO-pilot study,35 and CER-001 in the
Atherosclerosis Regression Acute Coronary Syndrome
Trial,36 have not been able to confirm these effects on
intracoronary atherosclerotic plaque. A third compound
(CSL-112) has shown promising effects on cholesterol
efflux capacity.37,38

The rationale for the infusion of apoA-I Milano was
to provide pre-b-HDL-like particles to promote choles-
terol efflux from atherosclerotic lesions. A possible
limitation of this approach may be that pre-b-HDL
levels are often already elevated in patients with
CHD, together with low levels of large, CE-rich HDL
(a1-HDL).39,40 It may be that therapeutic agents are
required to promote the evolution of pre-b-HDL to
mature a-HDL, not least because many of the benefi-
cial functions of HDL are performed by larger, spher-
ical particles. A drug class that may achieve HDL
maturation is recombinant LCAT.

LCAT

LCAT is an enzyme produced by the liver that converts
cholesterol to CE. The CE can be sequestered into the
core of the lipoprotein particle, eventually making the
HDL spherical (Figure 1). Therefore, LCAT is thought
to play a role in reverse cholesterol transport, and
hence may protect against the development of CHD.40

Recombinant LCAT has been evaluated in phase 1
studies. Six hours after a single infusion, HDL-C rose
by up to 42% and remained elevated up to four days
later. Pre-b-HDL also rapidly decreased and was unde-
tectable within 12 h.41

It may also be possible to activate LCAT with ‘small
molecules’ which would not require intravenous
administration. One such catalyst is a small heterocy-
clic amine called ‘Compound A’ or (3–(5-(ethylthio)-
1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile).42

HDL diagnostics – What should we

be measuring?

Measurements of HDL that are currently available in
routine clinical practice include HDL-C and apoA-I
quantification. Given the data outlined above, these
HDLmeasures, although useful biomarkers of cardiovas-
cular risk, do not reflect HDL functionality or reflect the
ability to prevent atherosclerosis. At present, functional
measures have yet to be validated for clinical use. In light
of the pleiotropic actions of HDL, choosing what to mea-
sure may be fraught with difficulty. For instance, a mea-
sure of cholesterol efflux capacity may be suitable if it is
felt that reverse cholesterol transport is a key component
of HDL function.43,44 Total efflux mediated by pathways
of cholesterol efflux from macrophages (as described ear-
lier: ABCA1 and ABCG1, SR-B1) may be quantified.
However, other pathways may prove to be clinically
more relevant, and so worthy of measurement (Figure 3).

Once a critical, clinically relevant, function of HDL
is identified, the question arises as to what component
of the HDL molecule drives this functional benefit and
whether it may itself be measured? Proteomic techni-
ques have shown that over 80 proteins exist on the
HDL molecule.8 Examples of candidate proteins that
are currently under investigation include serum amy-
loid A1 – this may displace apoA-I thereby reducing
the ability of HDL to promote cholesterol efflux as
well as reducing its anti-inflammatory ability46:
Sphingosine-1-phosphate (S1P) is carried on the HDL
molecule and binds to G-protein receptors in the endo-
thelium, through which it elicits anti-inflammatory
effects and may mediate ischaemic preconditioning.47

HDL subclass

Analysis of the JUPITER data suggested that HDL
particle number had a greater association with incident
cardiovascular disease than HDL-C levels, apoA-I, or
cholesterol efflux capacity.44

As discussed earlier in this review, many of the ben-
eficial functions of HDL are performed by larger,
spherical particles. It is conceivable therefore that con-
centrations of HDL subpopulations could demonstrate
stronger associations with cardiovascular risk com-
pared to total HDL particle number. However, data
are conflicting with regard to relationships between
HDL size and vascular disease. For instance, small
HDL particles have been positively associated with

Whyte 5



carotid intima-media thickness48 – a measure of carotid

atherosclerotic vascular disease, and with CAD49 but

inversely associated to coronary calcification.50 Small

HDL size is associated with the metabolic syndrome

however and the positive association between small

HDL size and CAD risk was abolished after adjustment

for apoB and triglyceride levels.49 Similarly, when

adjusted for both apoA-I and apoB, large HDL mole-

cules (measured by NMR) were adversely associated

with cardiovascular risk51 further illustrating the diffi-

culties of making inferences of HDL behaviour from

measurement of volume or size. It is possible that very

large (cholesterol enriched) HDL molecules may switch

to become cholesterol donors, rather than acceptors. It

has also been hypothesized that in disease states of

chronic oxidative stress, rather than HDL being anti-

inflammatory, it may become pro-inflammatory.52

Conclusion

Epidemiological data strongly support the inverse asso-

ciation between HDL concentration and cardiovascu-

lar risk. HDL-C has proved to be a useful biomarker

for cardiovascular risk assessment. Pharmaceutical

strategies to raise HDL-C concentration have not met

with clinical success. Although disappointing, this has

led to a much greater understanding of the composition

and role of the HDL molecule which holds potential

for future therapeutic approaches.
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