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Keratinocytes, the main cells of the epidermis, are the first site of replication as well
as the first line of defense against many viruses such as arboviruses, enteroviruses,
herpes viruses, human papillomaviruses, or vaccinia virus. During viral replication,
these cells can sense virus associated molecular patterns leading to the initiation of
an innate immune response composed of pro-inflammatory cytokines, chemokines,
and antimicrobial peptides. Human keratinocytes produce and secrete at least nine
antimicrobial peptides: human cathelicidin LL-37, types 1–4 human β-defensins,
S100 peptides such as psoriasin (S100A7), calprotectin (S100A8/9) and koebnerisin
(S100A15), and RNase 7. These peptides can exert direct antiviral effects on the
viral particle or its replication cycle, and indirect antiviral activity, by modulating
the host immune response. The purpose of this review is to summarize current
knowledge of antiviral and immunomodulatory properties of human keratinocyte
antimicrobial peptides.
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INTRODUCTION

As the largest organ of human body, skin is not only a physical barrier but represents also
the first line of defense against environmental pathogens including viruses (Robert and Kupper,
1999; Ganz, 2002). Skin is organized in three layers, which differ structurally and functionally:
epidermis, the most superficial, dermis and hypodermis, the deepest. The epidermis is mainly
composed of keratinocytes at different levels of differentiation, from the stratum basale made
of the youngest keratinocytes, still dividing, at the dermis interface to the keratin containing
desquamating corneocytes on the surface of the skin. Langerhans cells (LCs), a skin-specialized type
of dendritic cells (DCs) constantly probing for antigens, represent the main immune resident cell
in the epidermis (Kubo et al., 2009). T cells, mainly CD8+, can also be found in the deepest strata,
stratum basale, and stratum spinosum, of the epidermis (Nestle et al., 2009). Finally, melanocytes,
responsible for the pigmentation of the skin, constitute the last cell type of the epidermis (Nestle
et al., 2009). Then, the dermis is a more complex conjunctive tissue composed of several specialized
cells, such as DCs, CD4 + T helper (Th)1, Th2, and Th17 cells, γδ T cells, macrophages, mast cells,
and fibroblasts, which all together play a role in the immune skin barrier. Contrary to the epidermis,
the dermis is an innervated tissue where blood and lymphatic vessels contribute to cell trafficking
(Nestle et al., 2009). Finally, hypodermis is an adipose-tissue mainly composed of fat cells.
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Keratinocytes allow, in vivo and in vitro, replication of many
viruses such as alphaherpesviruses [types 1 and 2 herpes simplex
viruses (HSV), varicella-zoster virus (VZV)], arboviruses such as
Dengue (DENV), Zika (ZIKV), and West Nile viruses (WNV),
enteroviruses, human papillomaviruses (HPVs) and vaccinia
virus (VACV), amplifying the viral load and facilitating viral
spread to the liver, the fetus or the central nervous system
(Lim et al., 2011; Crack et al., 2012; Puiprom et al., 2013;
Sayers and Elliott, 2016; Gourru-Lesimple et al., 2017; Phyu
et al., 2017; Duangkhae et al., 2018). Keratinocytes also act as
immune cells that can initiate an innate immune response to
fight viral infection (Nestle et al., 2009). Indeed, they express a
wide range of Pattern-Recognition Receptors (PRRs) including
cell-surface (-1, -2, -4, -5, -6) or endosomal (-3, -7, -8, -9)
transmembranal Toll-Like Receptors (TLRs). They also possess
cytosolic sensors like Retinoic acid Inducible Gene I (RIG-I)-Like
Receptors (RLRs): Melanoderma Differentiation-Associated gene
5 (MDA5), Retinoic acid-Inducible gene (RIG-I) and Laboratory
of Genetics and Physiology 2 (LGP2), or cytosolic DNA receptor
cyclic GMP-AMP Synthase (cGAS) (Almine et al., 2017; Nestle
et al., 2009). All these PRRs sense Pathogen Associated Molecular
Patterns (PAMPs) that are, in case of viruses, nucleic acid and
structural or non-structural protein motifs conserved among
pathogens (Yong and Luo, 2018). For RNA viruses, such as
arboviruses and enteroviruses, the main PRRs involved in the
detection of the viral infection are TLRs 3 and 7, and RLRs RIG-I
and MDA5, detecting single-stranded viral genomes or double-
stranded replication intermediates in endosomes and cytoplasm,
respectively. Activation of these PRRs triggers signaling pathways
leading to production of interferons (IFNs), proinflammatory
chemokines, cytokines and antimicrobial peptides (AMPs) that
are key players of the innate immune response Kalali et al.,
2008; Nestle et al., 2009; Takeuchi and Akira, 2009; Welte et al.,
2009; Aguirre et al., 2012; Dalpke and Helm, 2012; Garcia et al.,
2017). Then, secreted pro-inflammatory mediators participate to
the recruitment of monocytes, macrophages, polymorphonuclear
neutrophils (PMNs), and DCs to the site of viral infection
(Schmid and Harris, 2014; Pingen et al., 2016; Sharif et al.,
2016). These cells are innate immune sentinels playing a crucial
role in activation of innate and adaptive antiviral immunities.
For example, once activated by a viral antigen, LCs and DCs
start migrating to the draining lymph node in order to prime
T-cells and induce an immune memory (Johnston et al., 1996,
2000; Kubo et al., 2009). Other skin cells can also contribute
to the initiation of the innate immune response. It has been
suggested that melanocytes were contributing to the phagocytosis
of viral pathogens, presenting antigens to competent immune
cells or producing cytokines and chemokines (Gasque and
Jaffar-Bandjee, 2015). Overall, these data highlight the crosstalk
between the different kinds of skin cells in order to create an
antiviral environment. Thus, in the same way as respiratory,
genital or digestive epithelia, the cutaneous epithelium is an
interface between the organism and the outside environment
exposed to many microorganisms, functioning as a physical
but also as an immunological barrier (Grice and Segre, 2011).
Antimicrobial defense is therefore essential in order to preserve
the "aseptic" of deep skin tissue. For this purpose, AMPs,

which are small peptides synthesized and secreted by skin
cells and glands, display antifungal, antibacterial and both
direct and indirect antiviral activities (Zasloff, 2002). Indeed,
they can directly inactivate viral particles or inhibit virus
replication (Wilson et al., 2013). AMPs can also exert an indirect
antiviral activity by modulating the host immune response.
They can induce the production of cytokines and chemokines,
demonstrating both proper pro-inflammatory activities and
potentiating the inflammatory response caused by the infection.
AMPs may also exert a chemo-attractant activity on immune cells
at the site of infection contributing to viral clearance (De et al.,
2000; Koczulla and Bals, 2003; Tjabringa et al., 2006; Lai and
Gallo, 2009; Mookherjee et al., 2009).

The purpose of this review is to summarize current knowledge
about direct antiviral and immunomodulatory properties of
human keratinocyte antimicrobial peptides.

MAIN CHARACTERISTICS OF
ANTIMICROBIAL PEPTIDES PRODUCED
BY HUMAN KERATINOCYTES AND
EXPRESSION IN THE CONTEXT OF
VIRAL INFECTION

Antimicrobial peptides are small peptides, classically less than
100 amino-acids, with a large structural diversity (Lehrer
and Ganz, 1999; Lei et al., 2019). They can form α-helices,
cysteine-rich pleated β-sheets with one or more disulfide
bridges, or be relatively non-structured peptides containing
a high percentage of one specific type of amino-acid (Lehrer
and Ganz, 1999). Human keratinocytes are known to produce
and secrete at least nine AMPs: human cathelicidin LL-37,
types 1–4 human β-defensins, psoriasin (S100A7), calprotectin
(S100A8/9), koebnerisin (S100A15), and RNase 7 (Braff et al.,
2005; Lai and Gallo, 2009). Their expression can be constitutive
or inducible, displaying an increased expression in case of stimuli
such as infection or inflammation. In addition, incubation
of primary human keratinocytes with pro-inflammatory
cytokines can stimulate AMP synthesis (Guilloteau et al., 2010;
Firat et al., 2014).

Human Cathelicidin LL-37
LL-37 is the only known human cathelicidin, although peptides
of this large family have been isolated from numerous non-
human species. This amphipathic α-helical peptide is produced
by human keratinocytes during inflammatory disorders like
psoriasis, lupus erythematosus and contact dermatitis where its
concentration can reach 20 µg/mL (Frohm et al., 1997; Braff
et al., 2005; Currie et al., 2013). Its up-regulation has also
been described during HSV-2 and DENV infections of human
keratinocytes (Ogawa et al., 2013; López-González et al., 2018).
Moreover, LL-37 expression in combination with hBD-3 was also
increased in epidermal and dermal lesions of patients suffering
from Kaposi’s sarcoma caused by human herpes virus 8 (HHV-8)
in comparison to normal skin of healthy controls (Fathy et al.,
2012). Finally, the secretion of LL-37 was observed during the
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infection of the respiratory epithelium by human rhinovirus
(HRV) C, influenza virus A (IAV)/H1N1 and respiratory
syncytial virus (RSV) (Hansdottir et al., 2008; Boda et al., 2018).
In cell culture supernatant of infected nasal epithelium, LL-37
secretion ranged from 10 to 25 ng/mL. Interestingly, its secretion
was not detected following HRV-B and coronavirus (HCoV-)
OC43 infection potentially related to a different cell tropism of
these two viral species (Boda et al., 2018).

β-defensins
Defensins are small molecules between 24 and 42 amino-acids
characterized by a β-sheet structure with 3 disulfide bounds.
In human, defensins are divided into α-defensins, referred
to as human neutrophil peptides (hNPs), and β-defensins
(hBDs) expressed in myeloid and epithelial cells. There are
about 37 hBDs (Wilson et al., 1999; Holly et al., 2017). Four
(hBD-1 to -4) are detected in the epidermis. Many viruses
were shown to stimulate hBD expression and/or secretion
in epithelial cells, even though the antiviral activity of these
peptides was not always demonstrated (Frohm et al., 1997).
In human keratinocytes, VACV, DENV and HSV-2 infections
were shown to induce hBD-1, hBD-2, and -3, and hBD-4
expression, respectively (reviewed in Surasombatpattana et al.,
2011; Wilson et al., 2013). HPV infection also increased hBD-
1 to -3 expression in oral epithelial lesions from patients
with recurrent respiratory papillomatosis (Chong et al., 2006).
hBD production was then demonstrated in vulvovaginal biopsy
samples of condylomata acuminata as well as in human amniotic
epithelial cells infected with HPV (Erhart et al., 2011; Szukiewicz
et al., 2016). Interestingly, expression of hBD-2 was paradoxically
diminished in HPV-induced carcinomas potentially defining
a mechanism of virus escape to the host immune response
occurring during carcinogenesis (Hubert et al., 2007). Type 1
human immunodeficiency virus (HIV-1) infection also induced
expression of hBD-2 and -3, but not that of hBD-1, in human
oral epithelial cells (Quiñones-Mateu et al., 2003). In respiratory
epithelial cells infected in vitro, hBD-2 and hBD-3 production
is stimulated by the replication of several HRV serotypes from
HRV-B and -C species. In vivo, a doubling of the concentration
of hBD2, from 150 ng/mL to more than 300, was assessed at 48
h post-infection in nasal swabs of patients infected with HRV-
A16 (Proud et al., 2004). Similarly, IAV/H1N1 as well as RSV
infections induced a huge increase in hBD-2 secretion whereas
HCoV-OC43 did not (Kota et al., 2008; Boda et al., 2018). In
intestinal epithelial cells, enterovirus (EV) infection enhanced
the secretion of hBD-3 but not that of α- and other β-defensins
(Chen et al., 2018). In fresh peripheral blood mononuclear
cells, the other major source of hBD production in human,
only hBD-1 coding mRNAs were detected in non-stimulated
cells among the four known hBDs (Oppenheim et al., 2003).
Its expression could be then induced as early as 3 h post-
infection with IAV, Sendai virus or, in a much lesser extent,
HSV-1 (Ryan et al., 2011). Finally, hBD concentrations have
been demonstrated to be elevated after exposure to Hepatitis
B (HBV) and C (HCV) viruses as well as to Crimean-Congo
hemorrhagic fever virus (CCHFV) (Bai et al., 2015; Aksoy et al.,
2016; Mattar et al., 2016a). Concentrations of hBDs were shown

to be significantly higher in HCV-infected patient sera, ranging
from 900 to 21,120 ng/mL, compared to controls where they
were less than 60 ng/mL (Mattar et al., 2016a). In the same
way, serum hBD2 levels were significantly increased in patients
infected with CCHFV compared to healthy controls and were
three-times higher in patients with non-fatal evolution of the
disease than in patients with fatal disease (89,480 vs. 30,580
ng/mL) suggesting a protective role of the peptide during the
infection (Aksoy et al., 2016).

Peptides of the S100 Family
S100 family peptides are characterized by two calcium-
binding sites that can also chelate zinc and manganese. This
family regroups 25 molecules among those psoriasin S100A7,
calprotectin S100A8/9 and koebnerisin S100A15 are produced by
keratinocytes (Celis et al., 1990; Zhu et al., 2013). Constitutive
expression of psoriasin S100A7 is low in normal adult skin
ranging from 5 to 46 ng/cm2 regarding to the region of
the human body (Gläser et al., 2005). Its expression can be
enhanced in stimulated keratinocytes as seen in psoriasis (Gläser
et al., 2005). Conversely, high expression levels have been
detected in the fetal skin, suggesting a potentially protective
role in the innate immune system of the newborn (Yoshio
et al., 2003). Besides its antimicrobial activity, S100A7 is
associated with wound healing, neutrophil migration, Reactive
Oxygen Species (ROS) generation, antimicrobial peptide release
and cytokine/chemokine production (Niyonsaba et al., 2008;
Kozlyuk et al., 2019). S100A7 has further been reported to
be overexpressed in breast and bladder tumors, suggesting
that it may play a role in the regulation of cell growth,
survival and differentiation (Watson et al., 1998; Ostergaard
et al., 1999). Regarding viral infections, psoriasin expression
is induced in vulvovaginal and cervical HPV-associated lesions
(Erhart et al., 2011; Alvendal et al., 2019). Calprotectin S100A8/9
is a heterodimer composed of calgranuline A (S100A8 or
myeloid-related protein 8) and calgranuline B [S100A9 or
migration inhibitory factor-related protein 14 (MRP14)]. In
normal epidermis, S100A8 and S100A9 are both expressed at
low levels but, in inflammatory skin diseases such as psoriasis,
lichen planus and lupus erythematosus, or during wound healing,
their expression is highly induced (Gabrielsen et al., 1986;
Kunz et al., 1992; Thorey et al., 2001). Moreover, S100A8/9
expression has been identified as a general danger signature
of activated keratinocytes, as its expression can be induced
in response to a wide variety of skin stresses including tape
stripping, exposure to detergent, UV or cytokine stimulation
(IL-1α, IL-22) (Boniface et al., 2005; Ehrchen et al., 2009). This
overexpression prevents keratinocyte proliferation but triggers
cell differentiation (Ryckman et al., 2003; Voss et al., 2011).
Calprotectin expression has been also shown to be increased in
epithelial cells during viral infections by coronavirus and HPV
with antiviral properties against HPV type 16 (Reghunathan
et al., 2005; Tugizov et al., 2005). Finally, koebnerisin S100A15,
which has a sequence almost identical to that of psoriasin,
is overexpressed in psoriatic skin lesions and known for its
proinflammatory and chemotaxis properties (Wolf et al., 2011).
Infection with Escherichia coli also modulates its expression in
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keratinocytes through recognition of the pathogen by TLR4
(Büchau et al., 2007). To our knowledge, S100A15 expression in
the context of viral infection has so far never been studied.

RNase 7
While RNase 7 is usually considered as an AMP, it is actually
a larger protein of 14.5 kDa, composed of 128 amino acids
and belonging to the RNase A superfamily. RNase 7 exhibits
potent ribonuclease activity and its expression in the skin is
both constitutive and inducible in inflammatory and infectious
contexts (Harder and Schroder, 2002; Simanski et al., 2013;
Firat et al., 2014). In normal skin, RNase 7 concentration
varies according to the area of the body, from 0.17 ng/cm2,
in the palms of the hands, to 1.28 ng/cm2, in skin of
the legs (Rademacher et al., 2016). RNase 7 concentrations
are increased in patients with psoriatic, atopic dermatitis
and dermatophyte skin lesions (Becknell and Spencer, 2016).
In vitro studies have demonstrated that the treatment of
primary keratinocytes with proinflammatory cytokines such
as IL-17A, TNF-α, IL-1β, and IFN-γ or their infection with
Pseudomonas aeruginosa, Staphylococccus aureus, Staphylococcus
epidermidis, Corynebacterium amycolatum, Escherichia coli,
Enterococcus faecium or the dermatophyte Trichophyton rubrum
induced RNase 7 expression (reviewed in Becknell and Spencer,
2016; Rademacher et al., 2019). Keratinocyte infection with
DENV was also shown to induce RNase 7 gene expression
(Surasombatpattana et al., 2011).

The main characteristics of keratinocyte AMPs are
summarized in Table 1.

ANTIVIRAL ACTIVITIES OF
KERATINOCYTE AMPS

The antiviral activity of LL-37 has been reported against many
viruses, both naked and enveloped as reviewed previously
(Barlow et al., 2014; Ahmed et al., 2019a; Brice and Diamond,
2019). In particular, LL-37 was shown to inhibit viruses that
replicate in the skin such as HSV-1 and -2, VZV, HHV-8, DENV,
ZIKV, HPV16, or VACV (Howell et al., 2004; Buck et al., 2006;
Hazrati et al., 2006; Crack et al., 2012; Alagarasu et al., 2017;
Brice et al., 2018; He et al., 2018). Further antiviral activities were
identified against viruses responsible for enteric infections such as
Aichi virus A, respiratory diseases such as IAV, RSV and HRVs,
and ocular epithelium infections such as adenoviruses (Gordon
et al., 2005; Barlow et al., 2011; Uchio et al., 2013; Harcourt et al.,
2016; Schögler et al., 2016; Findlay et al., 2017; Sousa et al., 2017;
Vilas Boas et al., 2017). In vitro inhibition of HCV in hepatocyte-
derived carcinoma HuH-7 cells and HIV in peripheral blood
mononuclear cells (PBMCs) including CD4 + T cells was also
described (Bergman et al., 2007; Matsumura et al., 2016). In vivo,
the murine analog of LL-37, mCRAMP, reduced disease severity
and IAV replication in the lung of infected mice to a similar extent
as neuraminidase inhibitors (Barlow et al., 2011).

In the context of skin infections, antiviral properties of
hBDs have been demonstrated against HSV, VZV, and VACV,
similarly to LL-37, but also against EV-71 and Coxsackievirus

(CV) A16, the main etiological agents of hand, foot and mouth
disease (Hazrati et al., 2006; Howell et al., 2004; Crack et al.,
2012; Chen et al., 2018). hBD-3, and in a lesser extent hBD-
1, exerted anti-HSV-2 activities whereas hBD-2 did not but
diminished VZV replication in HaCat cells, a keratinocyte cell
line (Hazrati et al., 2006; Scudiero et al., 2010). Moreover, hBD-
3, but not hBD-2, significantly reduced the expression of the
VACV DNA-dependent RNA polymerase and the number of
viral plaques in African green monkey kidney cell line BS-C-
1 in a concentration-dependent manner from 5 µM (Howell
et al., 2007). Finally, addition of recombinant hBD-3 to colon
adenocarcinoma HT-29 cells inhibited EV-71, CV-A16, CV-B5,
and poliovirus 1 infection. However, enterovirus replication was
not impaired in genetically modified HT-29 cells overexpressing
hBD-3 intracellularly, suggesting extracellular antiviral activity of
the peptide (Chen et al., 2018). Regarding other viral species,
hBD-1 and, more markedly, hBD-2 neutralized infectivity of
the Phil82 strain of IAV (Doss et al., 2009). Antiviral activity
of hBD-2 was also shown against RSV and type 3 human
parainfluenza virus (HPIV-3) (Kota et al., 2008). Treatment of
human lung epithelial A549 cells with 4 µg/mL hBD-2 reduced
RSV and HPIV-3 viral titers by more than 100-fold whereas hBD-
1 treatment had no effect against these two respiratory viruses
(Kota et al., 2008). In addition, hBD-1 to -3 have been shown
to render less infectious HIV-1 virion particles. Interestingly, this
effect was higher when combining hBD-2 and hBD-3 than that of
the peptides added separately (Quiñones-Mateu et al., 2003; Sun
et al., 2005). Finally, hBD-1 to -4, used at 10, 20, and 50 µg/mL,
diminished HCV gene expression and cytotoxicity associated
with infection in PBMCs and HuH7.5 liver cell line (Mattar
et al., 2016b). Conversely, other studies aimed at describing hBD
antiviral properties found little or no activity. For example, hBD-
1 and hBD-2 peptides had no effect on HPV16 infection of
the cervical cancer cell line HeLa (Buck et al., 2006). However,
polymorphisms in the gene DEFB1, encoding hBD-1, has been
associated with higher susceptibility to HPV infection suggesting
nevertheless a role for this peptide in the antiviral response.
In the same way, BK and JC viruses were not or modestly
inhibited by hBD-1 and hBD-2 while hBD-2 was found to
be ineffective against HRVs (Dugan et al., 2008). Overall, the
antiviral properties of hBDs are sometimes restricted to a given
viral species suggesting a specific mechanism of action depending
on the structure of the viral particle or its replication cycle.
Finally, their ability to inhibit viral infection generally appears to
be lower than that of LL-37 or other defensins.

To our knowledge, antiviral activity of psoriasin S100A7,
calprotectin S100A8/9, and koebnerisin S100A15 has so far never
been studied despite induction of their expression during many
viral infections as described above. Similarly, RNase 7, despite
its abundance in the skin, induction of its expression in an
inflammatory or infectious context, and its high antimicrobial
activity demonstrated in vitro against a broad spectrum of
microorganisms such as Gram-positive and Gram-negative
bacteria like Pseudomonas aeruginosa, Staphylococcus aureus,
Enterococcus faecium, Mycobacterium vaccae, the yeast Candida
albicans and Pichia pastoris, and the dermatophyte Trichophyton
rubrum, has so far poorly been tested against viruses (Pulido
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TABLE 1 | Main characteristics of the antimicrobial peptides synthesized by the keratinocyte.

AMP Producing cells Structure Properties References

LL-37 Keratinocytes, monocytes,
mast cell granules, PMNs,
natural killer (NK) cells,
sweat glands

N-terminus signal peptide,
cathelin domain, and
C-terminus peptide

Antimicrobial, chemotaxis,
cytokine/chemokine
production, cell
migration/proliferation

Frohm et al., 1997;
Sørensen et al., 2001;
Murakami et al., 2002; Di
Nardo et al., 2003; Braff
et al., 2005)

hBD1 Keratinocytes, monocytes,
macrophages, DCs,
sebaceous glands, canals
of the sudoriparous glands

3 antiparallel beta sheets
structure, and 3 disulfide
bonds

Antimicrobial, chemotaxis,
cytokine/chemokine
production, wound healing,
proinflammatory
mediators/suppressors

Fulton et al., 1997; Ali et al.,
2001; Semple and Dorin,
2012; Pace et al., 2017

hBD2 Keratinocytes, monocytes,
macrophages, DCs

hBD3 Keratinocytes

hBD4 Keratinocytes

S100A7 Keratinocytes 1 monomer consists of 5
helices each and carries
only 1 calcium-binding
EF-hand

Antimicrobial, chemotaxis,
cytokine/chemokine
production, wound healing,
neutrophil migration,
epithelial tumor progression
marker

Gläser et al., 2005; Wolf
et al., 2011

S100A8/9 Keratinocytes,
macrophages, PMNs

Antimicrobial, chemotaxis,
cytokine/chemokine
production, antitumoral,
antinociceptive

Ryckman et al., 2003

S100A15 Basal keratinocytes,
melanocytes, DCs, LCs,
sebocytes, smooth
muscles and endothelial
cells of the dermis

Antimicrobial, chemotaxis,
cytokine/chemokine
production, wound healing,
neutrophil migration,
epithelial tumor progression
marker

Wolf et al., 2011; Hattinger
et al., 2013

RNase 7 Keratinocytes Hydrophobic signal
peptide, mature peptide
(12–16 kDa) with 3–4
disulfide bounds

Antimicrobial,
immunomodulation

Becknell and Spencer,
2016; Rademacher et al.,
2016

AMP, Antimicrobial peptide; PMNs, polymorphonuclear neutrophils; DCs, dendritic cells; LCs, Langerhans cells.

et al., 2013; Rademacher et al., 2016). Recently, it was reported
that RNase 7 failed to reduce HSV-1 infection in keratinocytes
(Kopfnagel et al., 2020).

DIRECT ANTIVIRAL EFFECTS OF
KERATINOCYTE AMPS

AMPs can inhibit viral infection by targeting the steps preceding
the entry of the virus into the cell but also intracellular stages
of viral replication (Ahmed et al., 2019a). Before virus entry,
they can directly alter viral particles by creating pores within the
viral envelope thanks to their cationic and amphiphilic nature
(Hsieh and Hartshorn, 2016). Electron microscopy observation
of VACV and RSV, respectively exposed to LL-37 and hBD-
2, thus showed a disruption of the viral envelope (Watson
et al., 1998; Howell et al., 2004; Niyonsaba et al., 2005; Kota
et al., 2008). LL-37-related inhibition of HHV-8 internalization
in oral epithelial cells (OECs) relied on the same mechanism.
The authors showed that LL-37 did not alter OECs, but, instead,
the virions by disrupting the viral envelope then preventing viral
entry into epithelial cells. This was observed from concentration

of 10 µg/mL compatible with concentrations measured during
inflammation in epithelial tissue reaching up to 20 µg/mL (Currie
et al., 2013; Brice et al., 2018). Pre-incubation of ZIKV, IAV,
VACV, and HCV with LL-37, or one of its analog, resulted in a
significant decrease in the number of active virions suggesting,
here again, an alteration of the viral particle (Ehrchen et al.,
2009; Dean et al., 2010; Tripathi et al., 2013; Becknell and
Spencer, 2016; Matsumura et al., 2016; Ulaeto et al., 2016; He
et al., 2018). Similarly, hBDs, namely hBD-2, incubated with HIV,
HPIV, and RSV also decreased virion infectivity, likely because of
permeabilization of the viral envelope lipid bilayer since electron
microscopy showed direct binding of hBDs to viral particles
(Quiñones-Mateu et al., 2003; Kota et al., 2008). This detergent-
like role is reported as the main AMP antiviral mechanism of
action. However, direct interaction with AMPs can also cause
viral particles extracellular aggregation blocking virus entry and
leading to an increase of virus uptake by phagocytes. Treatment
with LL-37 caused clumping of Venezuelan equine encephalitis
virus (VEEV), thereby preventing cell infection (Ahmed et al.,
2019b; Lai et al., 2011). Finally, the pre-fusion antiviral activity
of AMPs can be linked to an inhibition of virus attachment to
its receptor at the cell surface. LL-37 bound DENV-2 envelope
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protein acting as an entry inhibitor (Voss et al., 2011; Alagarasu
et al., 2017). LL-37 also prevented HSV-1 infection in corneal
epithelial cells by blocking viral-cell attachment (Sunahori et al.,
2006; Lee et al., 2014). hBD-3 interacted with either the HSV
receptor at the target cell surface or the HSV glycoprotein on the
viral envelope, thereby eliciting a stronger inhibition of viral entry
(Hazrati et al., 2006; Niyonsaba et al., 2008).

In addition to these antiviral properties based on the
inhibition of the virus entry into the target cell, AMPs can
interfere with intracellular steps of viral replication (Hazrati et al.,
2006; Niyonsaba et al., 2008; Wilson et al., 2013). Indeed, several
studies reported that AMPs added after the virus entry could
lead to virus gene expression or genome replication inhibition
(Howell et al., 2006; Crack et al., 2012; Currie et al., 2013; Sousa
et al., 2017). Moreover, the hypothesis of intracellular antiviral
activity of AMPs is supported by the fact that recombinant
peptides added to the cell culture medium can be internalized by
the epithelial cells (Lau et al., 2005). Unfortunately, most of the
time, the exact mechanism of the post-fusion antiviral activity
of AMPs is not clearly defined. An elegant study nonetheless
described the anti-HIV-1 intracellular activity of LL-37 that
occurs through direct protein-protein interactions with reverse
transcriptase and, in a lesser extent, protease (Wong et al., 2011).
In contrast, the LL-37 did not have the ability to prevent the
translocation of HIV-1 integrase from the cytoplasm into the
nucleus, which is its site of action. Furthermore, inhibition of
early HIV-1 transcription by hBD-2 has also been reported
(Klotman and Chang, 2006; Yong and Luo, 2018). Overall, the
direct mechanisms by which AMPs inhibit virus infection remain
little known, particularly regarding the intracellular steps of
replication. The immunomodulatory functions of AMPs were,
however, better studied, although much progress remains to be
made in the context of viral infection.

INDIRECT ANTIVIRAL ACTIVITIES
THROUGH MODULATION OF THE HOST
CELL IMMUNE RESPONSE

Induction of Cytokine and Chemokine
Expression by Keratinocyte AMPs
The expression of antimicrobial peptides synthesized by
the keratinocyte is increased or induced in context of
inflammation and/or infection. In turn, these peptides
can stimulate the expression of cytokines and chemokines
because of their own pro-inflammatory properties or
by their capacity to potentiate an already in progress
inflammatory response.

Intrinsic Pro-inflammatory Properties of AMPs
AMPs are known to have intrinsic pro-inflammatory properties
through induction of various inflammatory mediator production
by resident skin cells, such as keratinocytes, and cutaneous
immune cells such as PBMCs and PMNs. AMPs act by
binding cellular receptors leading to signaling pathway activation
and up-regulation of cytokine or chemokine expression.

CC Chemokine Receptor 6 (CCR6), TLR4, and G Protein-
Coupled Receptor (GPCR) are the three receptors identified
so far with which AMPs interact to induce the cellular
inflammatory response.

CCR6 is a seven-transmembrane domain G-protein-coupled
receptor with only one known chemokine ligand, CCL-20,
which was involved in DC, memory T cell and selected
B cell subtype chemotaxis (Lee and Körner, 2017). hDB-3
binding to CCR6 upregulated IL-37 expression and release by
human keratinocytes through caspase-1 and -4, mothers against
decapentaplegic homolog 3 (SMAD3), mitogen activated protein
kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathway
activation (Smithrithee et al., 2015).

TLR4 normally senses bacterial peptidoglycan and
lipopeptides as well as viral envelop glycoproteins. Its interaction
with S100A8 and S100A9 homodimers induced IL-1β, IL-6,
INF-γ, and TNF-α secretion in human PBMCs. Interestingly,
S100A8/S100A9 heterodimer binding to TLR4 failed to induce
this secretion (Chen et al., 2015). Furthermore, treatment with
the recombinant S100A8-GST peptide stimulated macrophages,
again through TLR4 activation, increasing TNF-α, CCL-2, IL-1β,
IL-6, IL-12, IL-22, IL-23, and IL-24 mRNA expression and
contributing to their migration (Figure 1; Inoue et al., 2018).

G protein-coupled receptor (GPCR) and phospholipase C
(PLC) signaling pathway are involved in hBD-2, -3, and -4-
mediated induction of IL-6, IL-10, IFN-γ, CXL-10, CCL-2, and
CCL-5 expression and secretion in human primary keratinocytes
playing a role in their migration and proliferation (Figure 1;
Niyonsaba et al., 2007).

Other signaling pathways have been described activated by
the PAMPs expressed by keratinocytes even if the receptor
involved has not always been identified. Niyonsaba et al. (2005)
demonstrated that IL-18 mRNA expression and IL-18 secretion
were induced by stimulation of keratinocytes with hBD-2, -3, -
4, but not -1, and LL-37 through the phosphorylation of p38
and ERK1/2. Moreover, the involvement of p38 and ERK1/2
was also described in IL-6, CXCL-8, CCL-3, CCL-20, TNF-α,
and ROS production a dose- and time-dependent manner after
human PMN treatment with S100A7 (Zheng et al., 2008). Similar
results were obtained by addition of S100A7 to keratinocytes
that increased production of CXCL-8, CXCL-10, and CCL20
(Niyonsaba et al., 2008). hBD-2 and, in a lesser extent, hBD-1
and hBD-3 were shown to induce expression and secretion of
IL-6, IL-10, and CXCL-8 in PBMCs in a dose-dependent manner
(Boniotto et al., 2006). hBD-3 can also stimulate the expression of
IL-1α, IL-6, CXCL-8, and CCL-18 in differentiated macrophages
as well as CXCL-1, CCL-2, CCL-22, MIP-1α, IL-1β, and VEGF in
monocytes (Jin et al., 2010; Petrov et al., 2013). hBD-2 also causes
pro-inflammatory cytokine secretion by lymphocytes through
activation of JNK, MERK/ERK and PI3K/Akt pathways (Kanda
et al., 2011). Concerning RNase 7, its ability to induce IFN-
α and IFN-stimulated gene expression in human plasmacytoid
DCs and PBMCs has been reported (Kopfnagel et al., 2018).
Finally, TNF-α, IL-1β, IL-6, and CXCL-8 production observed in
S100A8/A9-stimulated monocytes involved both p38 MAPK and
NF-κB signaling pathway activation in an independent manner
(Figure 1; Sunahori et al., 2006).
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FIGURE 1 | Schematic representation of the known mechanisms involved in the intrinsic proinflammatory properties of LL-37, human β-defensins (hBDs), and
peptides from the S100 family. CC Chemokine Receptor 6 (CCR6), Toll-like receptor (TLR)4, and G Protein-Coupled Receptor (GPCR) are the three main receptors
identified for antimicrobial peptides (AMPs) at the cell surface. AMPs exert direct proinflammatory effects downstream receptor binding through activation of several
signaling pathways involving p38 mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK), nuclear factor-kappa B (NF-κB), and
phospholipase C (PLC) leading to cytokine and chemokine production. Some pro-inflammatory effects have also been described involving p38 and ERK signaling
pathways without identification of the receptor involved. AMPs can finally modulate pathogen associated molecular patterns (PAMPs) inflammatory response as seen
with poly(I:C). When co-administrated with poly(I:C), hBD3 lead to an increase in IFNβ production by reducing the poly(I:C) uptake in endosome and thus increasing
signaling through MDA5. LL-37 and poly(I:C) form a complex that can enhance or decrease TLR3 signaling.

Modulation of Inflammatory Response by AMPs
Besides leading to cytokine and chemokine expression and
secretion, AMPs can also contribute to enhance or inhibit
inflammatory response induced by PAMPs.

Polyinosinic:polycytidylic acid [poly (I:C)] is a synthetic
analog of double stranded RNA, mimicking a molecular pattern
associated with viral replication known to activate TLR3, RIG-
I, and MDA5. LL-37 was shown to increase IFNβ-1 mRNA
expression induced by poly (I:C) stimulation in human epidermal
keratinocytes leading to an enhanced antiviral activity against
HSV-1 (Takiguchi et al., 2014; Sato et al., 2018). Lai et al.
(2011) demonstrated that this LL-37-dependent enhancement
of the inflammatory response required TLR3. Indeed, LL-
37 forms, with poly (I:C), a complex that enhances TLR3
signaling pathway (Singh et al., 2013). In contrast, the innate
immune response induced by poly (I:C) in macrophages was

inhibited by high concentrations of LL-37 (5 µM) resulting in
a decreased TNF-α and nitrite production as well as IL-1β and
IL-6 mRNA expression (Hasan et al., 2011). This apparently
paradoxical effect could be due to the capacity of LL-37 to inhibit
phosphorylation of Iκb, MAPKs p38, and JNK induced by poly
(I:C) in macrophages (Hasan et al., 2011). Thus, the LL-37-poly
(I:C) complex could either prevent TLR3 activation or potentiate
TLR3-dependant signaling (Singh et al., 2013).

Modulation of the innate immune response to TLR agonists
was also demonstrated with hBD-3. Semple et al. (2015) observed
an increased production of IFN-β, TNF-α, CXCL-8, and IL-6 in
monocytes and PBMCs stimulated with poly (I:C) in presence of
hBD-3. Higher levels of IFN-β and TNF-α were also observed in
transgenic mice expressing hBD-3 and stimulated with poly (I:C)
as compared to control mice (Semple et al., 2015). In contrast to
LL-37, hBD-3 doesn’t form a complex with poly (I:C) to modulate
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its effects since the two molecules do not co-localize. However,
hBD-3 altered poly (I:C) localization within the cell cytoplasm
since, in the presence of HBD-3, less poly (I:C) localized to
the early endosome. The authors demonstrated that hBD-3
suppressed the poly (I:C)-induced TLR3 response mediated by
TIR-domain-containing adapter-inducing interferon-β (TRIF),
while exacerbating the cytoplasmic response through MDA5 and
MAVS (Vazquez and Horner, 2015).

In other hand, TLR9-mediated DNA sensing was strongly
enhanced in presence of RNase 7 leading to secretion of
antiviral level of IFN-α by human plasmacytoid DCs (Kopfnagel
et al., 2018). Among the known immunomodulatory activities
of RNase 7 (reviewed in Rademacher et al., 2019), it was
shown that RNase 7 can contribute to antiviral immune
response of human keratinocytes through promotion of self-
DNA sensing (Kopfnagel et al., 2020). Indeed, pretreatment
with both RNase 7 and DNA reduced HSV-1 replication in
keratinocyte, a phenomenon mediated by induction of IFN-β
production (Kopfnagel et al., 2020).

AMPs are also able to modulate inflammatory response
induced by viral infection. The addition of LL-37 to HRV-
infected human bronchial epithelial cells enhanced IL-6 and
CCL-2 production (Lai et al., 2011). It also increased the
expression of type I IFN during VEEV infection (Lai et al.,
2011; Ahmed et al., 2019b). However, paradoxical pro- and
anti-inflammatory properties of LL-37 were also observed in
the context of viral infection (Tripathi et al., 2014). In one
hand, CXCL-8 production induced by PMN infection with
IAV was reduced in cell supernatant in presence of LL-37,
while on the other, LL-37 enhanced PMN extracellular traps
(NETs) formation and stimulated respiratory oxidative bursts
in IAV-infected PMN (Tripathi et al., 2014). It is interesting
to note that the anti-IAV mechanism of LL-37 through PMN
activation was different from that reported for hNPs and hBD-
2, which promoted virus aggregation and then phagocyte uptake
by PMNs (Tecle et al., 2007). hBD-2 had also the ability to
stimulate antiviral immunity both in vitro and in vivo (Kim et al.,
2018). When conjugated with the receptor-binding domain of
Middle East respiratory syndrome-coronavirus spike protein (S-
RBD), it significantly increased the expression levels of IFNs,
IFN-stimulated genes and chemokines capable of recruiting
leukocytes including macrophages, T cells, and DCs at the site of
infection. In vivo, immunization of mice with hBD-2-conjugated
S-RBD enhanced the immunogenicity of the S-RBD and elicited
a higher S-RBD-specific neutralizing antibody response than
S-RBD alone. Finally, hBD-4 may also enhance antiviral host
protection. Administration of recombinant murine hBD-4 into
animals immediately prior to IAV infection resulted in a
significant increase of IFN-γ concentration in bronchoalveolar
lavage (LeMessurier et al., 2016).

Chemotaxis and Immune Cell Activation
In addition to cytokine and chemokine production modulation,
keratinocyte AMPs can also modify the innate immune cell
profile at the site of infection and inflammatory response. They
can modulate the cellular composition of the inflammatory

infiltrate but also the state of maturation and activation of the
infiltrating cells.

Chemotactic Properties of Keratinocyte AMPs
AMPs can attract immune cells at the site of infection promoting
an inflammatory context favorable to pathogen eradication. LL-
37, hBD-2, -3, and -4 chemotactic activity has been observed
on PMNs, T cells and monocytes (Figure 2; De et al., 2000;
García et al., 2001; Röhrl et al., 2010). For hBDs, the mechanism
was mediated through binding to the chemokine receptor
CCR2 attracting CCR2-expressing inflammatory cells such as
monocytes/macrophages, DCs, and PMNs to the sites of infection
while LL-37 chemotactic activity was mediated by the G protein-
coupled formyl peptide receptor-like 1 (FRPL-1) (De et al., 2000;
Jia et al., 2008; Lin et al., 2008; Röhrl et al., 2010). In vivo,
injection of hBD-2 in mice peritoneal cavity induced macrophage
migration, a mechanism shown to be independent of the CCR6
receptor (Soruri et al., 2007). Other studies demonstrated an
AMP-related chemotaxis on mast cells (Niyonsaba et al., 2002;
Soruri et al., 2007). While hBD-2,-and LL-37 were shown to act as
a specific mast cell chemotaxin through activation of G-protein-
PLC-sensitive signaling pathway (Figure 2; Chen et al., 2007;
Soruri et al., 2007), hBD3 and -4 were involved in mast-
cell chemotaxis through MAPK pathway activation (ERK, JNK,
and p38 phosphorylation) (Soruri et al., 2007). Finally, hBD-2-
induced chemoattraction was also observed with immature DCs
and memory T cells through CCR6 binding, while hBD-3, after
CCR7 binding, promoted migration and lymph node localization
of treated LC-DCs (Figure 2; Yang et al., 1999). Otherwise,
S100 peptides may also display chemotactic activity. S100A7 was
shown as a potent and selective chemotactic protein for CD4 + T
lymphocytes and PMNs but had no effect on monocytes (Jinquan
et al., 1996). Chemotactic effect of the S100A8/A9 heterodimer
was observed with macrophages and PMNs (Figure 2; Ryckman
et al., 2003; Hiratsuka et al., 2008; Chen et al., 2015). Taken
together, these data suggest that AMPs can favor the migration of
immune cells crucial for mounting successful immune responses
against viruses.

Immune Cell Activation by Keratinocyte AMPs
In addition to chemotaxis, keratinocyte AMPs can cause
maturation and activation of innate immune cells. LL-37
enhanced CD86, CD83, and CCR7 expression on the surface of
murine LCs indicating cell maturation (Figure 2; Ogawa et al.,
2013). Moreover, incubation with hBD-3 resulted in monocyte
and myeloid DCs maturation revealed by CD80, CD86, and
CD40 upregulation (Figure 2). This was not observed with
plasmacytoid DCs or B lymphocytes. MyD88 was involved in this
maturation suggesting a TLR4-mediated process (Funderburg
et al., 2007). Another study confirmed induction of phenotypic
LC-DCs maturation by hBD-3 (Ferris et al., 2013). In the
presence of the peptide, an increase in HLA-DR, CD83, CD86,
and CCR7 expression on human immature LCs and DCs was
assessed (Figure 2). These data also demonstrated that hBD-3
exposure allowed potent antigen presentation capacity in LC-
DCs and high levels of IFN-γ production by primed T-cells
suggesting that the peptide skewed cell activation toward a
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FIGURE 2 | Chemotactic and immune cell activation properties of keratinocyte antimicrobial peptides (AMPs). Keratinocytes infected with RNA viruses, such as
arboviruses, sense viral single-stranded and double-stranded RNA generating an innate immune response made of cytokines, chemokines and AMPs. AMPs can
then trigger the inflammatory response of the infected cells as well as non-infected cells. They also attract a wide range of immune cells at the site of the infection
through several receptors as CC Chemokine Receptor (CCR)-2, CCR-6, CCR-7, and Formyl Peptide Receptor-Like (FPRL)-1 contributing to enhance the innate
immune response and initiate the adaptative one. These receptor-dependent chemoattractant effects are represented with full blue arrows. Chemotactic effects
described without identification of the AMP receptor are represented by a discontinuous blue arrow.

Th1-type immune response (Ferris et al., 2013). In addition to
the binding to CCR6 and CCR2, hBD-3 was shown to interact
with TLR1 and TLR2 on antigen-presenting cells, such as myeloid
dendritic cells, leading to their activation (Funderburg et al.,
2007). This peptide also induced the monocytes costimulatory
molecules, CD80 and CD86, necessary for T cell activation
(Figure 2; Petrov et al., 2013). Finally, Chen et al. (2007)
demonstrated the abilities of hBD-3 and -4 to cause mast cell
degranulation, prostaglandine D2 production and chemotaxis
(Figure 2). Thus, AMPs, through their immune cell activation
ability, can contribute to stimulate innate immunity and
activate lymphocytes, key components of adaptive immunity
against viruses.

OTHER CELL MODIFICATION CAUSED
BY KERATINOCYTE AMPS IMPACTING
VIRAL INFECTION

Induction of APOBEC Expression
Cell signaling pathways mediated by the chemokine receptor
CCR6 also play a role in defensin-mediated HIV replication

inhibition. hBD-2 treatment was shown to up-regulate expression
of host restriction factor apolipoprotein B mRNA-editing
enzyme-catalytic polypeptide-like 3G (APOBEC3G) in PBMCs
or CD4 + T cells. APOBEC3G is an HIV-1 restriction factor
that inhibits the accumulation of early reverse transcription
products during virus replication cycle (Wilson et al., 2013).
This induction was mediated through the activation of CCR6 by
hBD-2 (Lafferty et al., 2010).

Modulation of Chemokine Receptor
Expression at the Surface of the Target
Cell
Chemokine receptors CXCR4 and CCR5 are HIV-1 co-
receptors in addition to CD4. The HIV-1 strains use either
of these two co-receptors to infect CD4 + cells. hBD-2
and -3 reduced cell surface expression of CXCR4, but not
CCR5, in PBMCs and a human T cell line (Quiñones-
Mateu et al., 2003; Feng et al., 2006). Those peptides,
by modulating host surface receptors expression, acted as
antiviral compound restricting cell binding and entry of HIV-
1 strain with CXCR4 tropism (Quiñones-Mateu et al., 2003;
Feng et al., 2006).
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Conversely, LL-37 enhanced HIV-1 infection of monocyte-
derived Langerhans cells (mLCs) (Ogawa et al., 2013). LL-37
treatment increased CCR5 and CD4 expression on mLCs surface,
which could explain the potentiating effect of LL-37 on HIV-
1 infection. Effects of the peptide were also studied in DCs.
Inhibition of HIV-1 infection was observed in LL-37 treated
DCs, a phenomenon which may be due to down regulation
of DC-SIGN and/or CCR5 expression (Ogawa et al., 2013).
Finally, LL-37 facilitated HIV-1 transmission from mLCs to
CD4 + T cells whereas opposite effect was observed using DCs
(Ogawa et al., 2013).

CONCLUSION

The keratinocyte is the target cell of many viruses of major
importance in human health. As an immune cell that can
detect viral PAMPs, it has the ability to secrete a wide range
of molecules in response to the infection including many
antimicrobial peptides. These peptides may then act directly on
the viral particle or its replication cycle as well as modulate
the innate immune response of the host. The first objective of
this immunomodulation is likely to create an antiviral state by
potentiating the production of cytokines and chemokines, and
attracting immune cells to the site of infection. However, its
precise role in the pathophysiology of viral infection remains to

be defined. Furthermore, this dual mode of direct and indirect
antiviral action suggests that AMPs may have a promising
therapeutic role with direct virucidal activity and limited risk of
engendering viral resistance. The deployment of such potentially
impactful, innovative and reliable compounds awaits success
in future research on how to effectively administer them and
possibly stimulate them in situ.
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