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Abstract
To overcome the increasing burden on pathologists in diagnosing gastric biopsies, we 
developed an artificial intelligence-based system for the pathological diagnosis of gas-
tric biopsies (AI-G), which is expected to work well in daily clinical practice in multiple 
institutes. The multistage semantic segmentation for pathology (MSP) method utilizes 
the distribution of feature values extracted from patches of whole-slide images (WSI) 
like pathologists’ “low-power view” information of microscopy. The training dataset 
included WSIs of 4511 gastric biopsy tissues from 984 patients. In tissue-level vali-
dation, MSP AI-G showed better accuracy (91.0%) than that of conventional patch-
based AI-G (PB AI-G) (89.8%). Importantly, MSP AI-G unanimously achieved higher 
accuracy rates (0.946 ± 0.023) than PB AI-G (0.861 ± 0.078) in tissue-level analysis, 
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1  |  INTRODUC TION

Artificial intelligence has played a crucial part in numerous fields of 
human research, including medicine. The DCNN is the major driver 
of this marked development,1 especially in the field of image analysis, 
such as in object recognition. A WSI is a digital image of a histologic 
section on glass slides that is viewed at high magnification through 
a microscopic lens of a WSI scanner. It has been used for consul-
tation, research, and education related to pathology. However, its 
daily use is still in its infancy due to the large image size of each WSI 
(several hundred mega to giga bases) and scanning time (1–3 min per 
slide).2 AI application to WSI is successful not only in the research of 
cancer pathology3 but in the practice of pathology, for example, to 
detect cancer in prostate biopsies or sentinel lymph nodes in breast 
cancer.4–6

Gastric cancer is a common cause of cancer-related death, es-
pecially in East Asia,7 and gastric biopsy specimens are commonly 
analyzed in pathology laboratories. In Japan, based on National 
Database of Health Insurance Claim Information, 4.0 million en-
doscopic biopsies are performed in 2016, and approximately half 
were estimated to be gastric biopsies. Furthermore, endoscopic 
examination is now part of the primary screening program for gas-
tric cancer in Japan and South Korea, which increases the need 
for second-expert endoscopy and gastric biopsy.8–11 Ideally, each 
pathological diagnosis is reviewed by another expert pathologist 
(secondary prospective review) to prevent human error in missing 
or overdiagnosing cancer, which might otherwise result in serious 
harm to patients. However, the significant error rates when de-
tected by a second pathologist range from 0.1% to more than 10%, 
depending on the review method and the lesion type. Random or 
targeted review is one solution, as recommended by the College of 
American Pathologists.12 However, pathologists are responsible for 
all pathological diagnoses; therefore, there is requirement for an al-
ternate solution, such as the application of the AI-review system of 
WSIs for reducing pathologists’ burden of second review (Figure 1A). 
After each gastric biopsy specimen is diagnosed by a pathologist, all 
WSIs are checked by an AI system. In case of differences in diagnosis 
between pathologists and the AI system, final diagnoses are made 
by pathologists during the second review. Pathologists can refer to 
the abnormal-marked images by the AI system that they previously 

considered as nonneoplastic. Pathologists can also confirm their 
abnormal or neoplastic diagnosis using the results of the AI system 
following nonneoplastic prediction by the AI system. To achieve this 
endpoint and to further improve the system, we tested the newly 
developed the “MSP” method.13 It utilizes the distribution of feature 
values extracted from patches such as “low-power view” information 
of WSI,13 whereas the conventional “PB” method utilizes only the 
features on a single patch (like “high-power view” information). The 
MSP method enables the application of the semantic segmentation 
to WSI at a practical level of graphics processing unit (GPU) ability.

The feasibility of the system is essential for multi-institutional 
use. The performance is influenced at least by two factors: (1) 
Technical factors of slide preparation. The color tone of the H&E 
stain considerably differs among different laboratories and WSI 
scanners.14 (2) Interobserver differences among pathologists. It is 
not uncommon in daily clinical practice of pathology that a definite 
distinction is difficult to determine between neoplastic and reactive 
changes in gastric biopsy specimens. Therefore, there is inconsistent 
border classification of normal cells and carcinomas even by gastro-
intestinal pathology specialists; this produces a gray zone diagnosis 
such as “indefinite for malignancy.” Some differences are inevitable 
among pathologists at different institutes for “indefinite for malig-
nancy” diagnosis; therefore, it is necessary to make fine adjustments 
in the AI system at each institution.

In the present study, we developed an autonomous AI assess-
ment system for diagnosing gastric biopsy (AI-G) with a new devel-
oped MSP algorithm in addition to conventional PB one (PB AI-G).13 
Furthermore, to overcome the multi-institutional problem as de-
scribed above, we organized a nationwide group to collect anno-
tated WSI, named JP-AID. The members from the 10 institutions did 
not share their training program for pathologists, and the group was 
suitable for evaluating the usefulness of AI-G. The results showed 
that the MSP AI-G system is feasible in daily pathological prac-
tice, including the WSI-based telepathology network in the regions 
where the number of pathologists is insufficient.

2  |  MATERIAL S AND METHODS

Figure 1B shows the flowchart of the study.

when applied to the cohorts of 10 different institutes (3450 samples of 1772 patients 
in all institutes, 198–555 samples of 143–206 patients in each institute). MSP AI-G 
had high diagnostic accuracy and robustness in multi-institutions. When pathologists 
selectively review specimens in which pathologist’s diagnosis and AI prediction are 
discordant, the requirement of a secondary review process is significantly less com-
pared with reviewing all specimens by another pathologist.

K E Y W O R D S
artificial intelligence, deep learning, diagnosis, gastric biopsy, pathology
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2.1  |  Dataset

For the training dataset, the WSIs of 4605 tissue samples were an-
notated at the region level. The details of the training dataset and 
annotations are described in Document S1. To confirm the diag-
nosis, all delineated or encircled areas were annotated according 
to the Group Classification defined in the Japanese Classification 
of Gastric Carcinoma (3rd English edition)15 as follows: Group 1 
(G1): normal or nonneoplastic lesion; Group 2 (G2): diagnosis of 

neoplastic or nonneoplastic lesion is difficult (indefinite for neo-
plasia); Group 3 (G3): adenoma; Group 4 (G4): neoplastic lesion 
that is suspected to be carcinoma; and Group 5 (G5): carcinoma. 
The number of tissues was 2579 (G1), 48 (G2), 17 (G3), 29 (G4), 
and 1932 (G5). Only G1 and G5 (4511 tissues) were used for train-
ing, and detailed information on training dataset is presented in 
Table S1.

Both PB- and MSP-AIG were trained using the region-level data-
set and applied to the validation datasets. Malignant neoplasms 

F I G U R E  1  Proposed workflow for pathological practice incorporating AI; flowchart showing the construction and validation of the AI 
system for pathological diagnosis of gastric biopsies. (A) Proposed workflow for pathological practice incorporating AI. Following diagnosis 
of each gastric biopsy specimen by a pathologist, all WSIs are checked by the AI system. In case of discrepancy, the pathologist reviews 
the specimen for the final diagnosis. The rate of discrepancy should be less than 10% for AI to be acceptable in daily pathological practice. 
In this workflow, pathologists can take responsibility for all specimens. (B) Two artificial intelligence-based systems using the conventional 
patch-based and multistage semantic segmentation for pathology (PB AI-G and MSP AI-G, respectively) similarly trained with region-level 
annotated datasets (uppermost figures). Both systems are tested with two datasets. One dataset is from the same institution as that of the 
training dataset (Test 1), whereas the other dataset is collected from multi-institutions of the JP-AID Study Group for validation (Test 2). 
Sensitivity, specificity, accuracy, and AUC of ROC curves are compared in both tests. AI-G, artificial intelligence system for the pathological 
diagnosis of gastric biopsies; AUC of ROC curves, area under the curve of receiver operating characteristic curves; JP-AID, Japan Pathology 
AI Diagnostics Study Group; UTH, University of Tokyo Hospital.
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other than primary gastric carcinoma such as lymphoma and meta-
static carcinoma were excluded and separately analyzed.

The validation datasets were the tissue-level annotated dataset, 
and sample-by-sample analyses were performed. For Test 1 shown 
in Figure 1, H&E slides were from 999 consecutive patients under-
going gastric biopsy; finally, 2534 tissue samples were obtained 
at UTH in 2016 (Table S2). For the validation test of samples from 
multi-institutions (Test 2 in Figure 1B) (Table S3), 3450 tissues from 
1772 patients were collected from 10 institutions (median, 334 tis-
sues and 188.5 patients; range, 198–555 tissues and 143–206 pa-
tients per institution). As shown in Table S3, H&E staining methods 
and case selection (consecutive or selected for specific cases) var-
ied among institutions. Different WSI scanners were used among 
the institutions: eight institutions used NanoZoomer (Hamamatsu 
Photonics), two used Scanscope (Leica, Wetzlar, Germany), and the 
other one used Ventana DP (Roche, Basel, Switzerland). OpenSlide, 
which is the library to provide an interface for reading a various WSI 
format, enabled us to directly analyze WSIs produced by different 
scanners.

The study was approved by the institutional review board of 
the Faculty of Medicine of the University of Tokyo (review number 
11603) and the Japanese Society of Pathology (review number 003-
2018). The study was performed in accordance with the Declaration 
of Helsinki.

2.2  |  Machine learning

We developed two AI assessment system; “PB” and “multistage 
semantic segmentation for pathology WSI (MSP)”. The DCNN was 
used for feature extraction and for the classifier. GoogLeNet (Google 
Inc., Mountain View, CA, USA)16 was adopted as the DCNN struc-
ture, because GoogLeNet is a light network with less parameters 
compared with other neural networks used for image classification, 
which is an advantage to popularize the developed model all over 
the world with less expensive GPU. During training and inference, 
we used a single GPU (NVIDIA Tesla V100 32GB) in NVIDIA DGX-1. 
However, we confirmed that our AI system training could run on a 
single GPU with 16 GB memory. Details of machine learning is de-
scribed in Document S1.

To confirm the technical validity of the machine learning, we 
evaluated the performance of PB and MSP AI-G by five-fold cross-
validation; five groups of samples were made (collecting the sam-
ples from the same patient into one), using four groups for training 
and one group for testing, respectively. In the training group, 5% of 
the training data were assigned to validation data to optimize the 
deep learning. We compared the pathologist’s annotation with our 
model’s prediction in each patch and calculated the precision recall 
area under the curve (PR-AUC). Experiments were repeated three 
times for each combination with the training set and test set. The 
output of both models was displayed as a heat map that showed 
the degree of anomaly (DegA; values from 0–1) as a color gradation 

of blue and red. The average number of patches extracted from a 
single tissue sample was 169.4 ± 99.5 for G1 and 58.7 ± 61.8 for G5. 
The patch-level concordance between the pathologist’s annotation 
and the prediction of G1 and G5 demonstrated that PR-AUC were 
0.959, on average, for conventional PB AI-G and 0.990 for MSP AI-G 
(p < 0.001) (Table S4).

We evaluated the feasibility of AI-G using WSIs for the tissue-
level annotated dataset by sample-by-sample analysis (Tests 1 and 2 
in Figure 1). The prediction ability of AI-G was determined as follows: 
First, the DegA of each patch (256 × 256 pixels) was calculated using 
AI-G. The value of DegA ranges from 0 to 1, and lower DegA implies 
a higher probability of G1. When DegA was more than the cutoff 
value in at least one patch, the tissue was classified as “G5” or “G2–
5.” When all the patches in the tissue showed DegA below the cutoff 
value, the tissue was classified as “G1.” The prediction ability of both 
models was compared with the original pathological diagnosis (G1 
and G5, and G1 and G2, G3, G4, G5) (Figure S1). We then calculated 
the following indices: sensitivity for G5, sensitivity for G2–G5, spec-
ificity for G1, and concordance rate (accuracy) (Figure S1). Next, we 
created a ROC curve and calculated the AUC based on the results 
with various cutoff DegA values (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 0.95, and 0.99). The optimal cutoff DegA values, in 
which both sensitivity and specificity are near 1, was also calculated 
in each institution. Individual sensitivities for G2, G3, and G4 were 
also calculated using the optimal cutoff DegA value of G1/G2–5. 
These evaluations were performed for both PB and MSP AI-G. In 
multi-institutional analyses, the original diagnosis of the individual 
institution was adopted as a ground truth because the discrepancy 
between pathologists could also affect the accuracy of AI-G.

2.3  |  Color normalization of WSIs and its effect 
on the assessment of AI-G

Color normalization of WSIs was performed to assess the ef-
fect of color variation on optimal cutoff values in each institution. 
Specifically, the distribution of red, green, and blue values in each in-
stitution was calculated and adjusted to that of UTH, the institution 
where the training datasets were obtained. After color normaliza-
tion, ROC curves were constructed and optimal cutoff values were 
calculated in each institution.

2.4  |  Statistical analyses

We used a paired or unpaired t-test for continuous variables. For 
comparisons of a pathologist’s diagnosis and the prediction of our 
model, sensitivity, specificity, accuracy, and AUC of the ROC curve 
were calculated. All statistical analyses were performed using EZR 
software (Saitama Medical Center, Jichi Medical University, Saitama, 
Japan), which is a graphical user interface for R (The R Foundation 
for Statistical Computing, Vienna, Austria). More precisely, EZR is a 
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modified version of R commander designed to add statistical func-
tions frequently used in biostatistics.17

3  |  RESULTS

3.1  |  Performance of PB AI-G and MSP AI-G

Preliminary study demonstrated that MSP AI-G was superior to 
PB AI-G even in patch-level comparison, as described in Materials 
and Methods (Table S4). Representative images of the original WSI 
and the AI prediction heat map of both AI-Gs are shown in Figure 2 
and Figure S2. The heat map was displayed so that the degree of 
anomaly (DegA; values from 0–1) was presented as a color gradation 
from blue (DegA = 0) to red (DegA = 1). Both AI-Gs detected gastric 
carcinoma of two major types, namely, well differentiated tubular 
adenocarcinoma, as shown in Figure 2A,E, and poorly cohesive ad-
enocarcinoma, as shown in Figure 2F,J. In the former case, MSP AI-G 
frequently detected a larger area than PB AI-G because of the inclu-
sion of cancer glands at the border to normal glands. Furthermore, 
MSP AI-G excluded scattered false-positive patches of PB AI-G in 
the nonneoplastic mucosa (Figure 2C,D). In the poorly differentiated 
adenocarcinoma, MSP AI-G also detected cancer cells at the border 
in addition to the area detected by PB AI-G (Figure 2H,I).

3.2  |  Comparison of prediction ability between 
PB and MSP AI-Gs (Test 1)

The prediction abilities of both AI-Gs were further evaluated using 
WSI images of different datasets of gastric biopsy samples (2534 
tissue samples [2107 G1, 123 G2-4, and 304 G5] of 999 patients) 
with the pathologist’s tissue-level annotation from the same insti-
tute (UTH) (Table S2).

All the data in the analyses below were results on a sample-by-
sample basis. To compare the prediction abilities of both AI-Gs, the 
sensitivity and specificity (Figure S1) were obtained with different 
DegAs to generate receiver operating characteristic (ROC) curve 
(Figure 3A–D). Analyses were performed in two ways: to compare 
the classification of carcinoma (G1/G5) or abnormal (G1/G2–5). In 
the former, only G1 (2107 samples) and G5 samples (304 samples) 
were used. In the latter, which was similar to real daily clinical prac-
tice, G2–4 samples (123 samples) were grouped and all 2534 sam-
ples were used for evaluation. AUCs of MSP AI-G and PB AI-G were 
almost equal in both analyses (Figure 3A, B for G1/G5 and Figure 3C, 
D for G1/G2–5), but the configuration of AUC was more flexible in 
MSP AI-G, as shown by the changes in optimal DegA. The results 
showed a difference of increased specificity and accuracy by MSP 
AI-G (91.3% and 91.0%) compared with those by PB AI-G (89.2% 
and 89.8%), which affected the number of samples necessary for 

F I G U R E  2  Original images of gastric cancer biopsy and prediction heat maps prepared using PB AI-G and MSP AI-G. The probability of 
adenocarcinoma (degree of anomaly) is shown as a color gradation from deep blue, indicating low probability, to deep red, indicating high 
probability. Two panels are examples of a well differentiated adenocarcinoma (A–E) and a poorly cohesive adenocarcinoma with signet 
ring cells (F–J). The panels are arrayed as original whole-slide images (A, F) annotated images by pathologists (ground truth distribution 
delineated in green) (B, G), prediction heat maps prepared using PB AI-G (C, H) and MSP AI-G (D, I), and high-power views of the original 
whole-slide images (E, J; corresponding to the black squares in A and F). Both AI-G detected cancer regions, almost corresponding to the 
annotated regions; their borders were delineated in (B) and (G). However, patches with intermediate color between blue and red markedly 
decreased in MSP AI-G (D, I) compared with PB AI-G (C, H). Heatmaps of MSP AI-G corresponded more to the annotated cancer region. AI-
G, artificial intelligence system for the pathological diagnosis of gastric biopsies; MSP, multistage semantic segmentation for pathology; PB, 
patch-based.

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)
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secondary review. In total, 94 G1 tissues were wrongly assigned as 
G5 by PB AI-G but correctly assigned as G1 by MSP AI-G, whereas 
49 G1 tissues were wrongly assigned as G5 by MSP AI-G but cor-
rectly assigned as G1 by PB AI-G. As a result, the number of G1 

tissues wrongly assigned as G5 decreased by 45 from 228 to 183 
by MSP AI-G.

To evaluate the characteristics of MSP AI-G performance, we 
chose patch images of G1 evaluated by both pathologists and MSP 

F I G U R E  3  PB AI-G and MSP AI-G applied to validation datasets from the same institute (Test 1). Receiver operating characteristic (ROC) 
curves were constructed for G1/G5 classification by PB AI-G (A) and MSP AI-G (B), and for G1/G2–5 classification by PB AI-G (C) and MSP 
AI-G (D). The red point indicates the nearest cutoff value that makes both sensitivity and specificity close to 1. Panels (E–G and H–J) are 
examples of G1 diagnosed by pathologists, neoplasm predicted by PB AI-G, and normal predicted by MSP AI-G with the cutoff value for 
G1/G2–5. The panels are arrayed as original whole-slide images, heat maps, and discordant patches. There are three heat maps (F, I). The 
top shows DegA predicted by PB AI-G as a color gradation (blue to red), the middle shows patches where DegA predicted by PB AI-G was 
more than 0.95 as red, and the bottom shows DegA predicted by MSP AI-G as a color gradation (blue to red). Each red square in (E) or (H) 
points out the location of the false-positive patch in PB AI-G (G) or (J), respectively. Other patch images (K–R) are examples of G1 diagnosed 
by pathologists, neoplasia predicted by PB AI-G, and normal predicted by MSP AI-G with the cutoff value of G1/G2–5; glandular cells with 
reactive enlarged nuclei (K–M), degenerative glandular cells (N, O), and various types of stromal cells (P–R). Ac, accuracy; AI-G, artificial 
intelligence system for gastric biopsy; AUC, area under the curve; MSP, multistage semantic segmentation for pathology; PB, patch-based; 
ROC, receiver operating characteristic; Se, sensitivity; Sp, specificity.
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AI-G, which were assigned as neoplasia by PB AI-G (106 patches 
from 94 tissues) (Figure 3E–R). Forty-nine (46%) patches were found 
in the peripheral location (Figure 3E-G), and 57 (54%) patches were 
found in the central location (Figure 3H–J). In total, 83 patches (78%) 
included glands with reactive nucleus enlargement (Figure  3G, 
K–O), and 48 patches (45%) contained considerable amounts of the 
stromal component, such as inflammatory cells and xanthoma cells 
(Figure 3J, P–R). These glands and stromal cells might be consistent 
with atypia within a limited frame of visual fields.

3.3  |  Multi-institutional validation of PB and MSP 
AI-Gs

To further validate the feasibility of MSP AI-G in practical appli-
cation, WSIs of gastric biopsy were collected from 10 institutions 
of the JP-AID Study Group other than UTH. The number of tissue 
samples was 3450 in total (range 198–555 samples, consisting of 
G1, 2514; G2–G4, 350; and G5, 586) (Table  S3). The pathologist’s 
diagnosis and AI-G prediction of each sample were compared. ROC 
curves of each institution are presented in Figure 4A–D, and sen-
sitivities, specificities, accuracies, AUCs, and optimal thresholds of 
DegA are summarized in Table S5. MSP and PB AI-Gs are compared 
in bar graphs with the mean data of mean of 10 institutes and UTH 
(Figure 4E–H). When the analysis was restricted to G1 and G5, the 
AUC of MSP AI-G was higher than that of conventional PB AI-G in all 
institutions (p < 0.001, paired t-test) (Figure 4E). As for the predic-
tion ability of G1/G2–5, the AUC of MSP AI-G was higher than that of 
conventional PB AI-G in nine of the 10 institutions (p < 0.001, paired 
t-test) (Figure 4F). Accuracy (Figure S1) was also significantly higher 
in MSP AI-G than in PB AI-G (p = 0.002 (paired t-test) for G1/G5, and 
p = 0.002 (paired t-test) for G1/G2–5, respectively) (Figure 4G,H). 
The reason for the high performance of MSP AI-G compared with 
that of PB AI-G was derived from a marked decrease in the number 
of false-positive samples in MSP (Figure S3).

To evaluate the prediction of G2–4 by both AI-Gs in detail, the 
results of G2, G3, and G4 in UTH and the other 10 institutions were 
analyzed. The results from 10 institutions were combined because 
they varied considerably in number (Figure S4). When the optimal 
cutoff value of G1/G2–5 (Table S5) was adopted, the sensitivity of 
G2–4 was not different in both AI-Gs, but the percentage of AI pre-
diction was lowest in G2 in MSP AI-G.

3.4  |  Potential factors influencing multi-
institutional differences

There were several potential factors influencing the differences 
among multiple institutions. Consecutive cases were analyzed in 
eight of the 10 institutions, but the selected samples, which included 
more samples of G2–5, were analyzed in two institutions (D and I) 
(Table S3). The same WSI scanners were used in seven institutions 

with that in UTH, but they were different in the institutes C, D, 
and J. There appeared no differences in the AUC of the ROC curve 
(Figure 4E, F) and accuracy (Figure 4G, H) in these institutes com-
pared with those of others.

To estimate the effect of color variation on the performance of 
both AI-Gs, the distribution of red, green, and blue values in each in-
stitution was adjusted to that of UTH (Tables S6 and S7), from which 
images were used for the development of AI-Gs. An example of color 
normalization is presented in Figure S5. In G1/G5 and G1/G2–5 test-
ing (Figure S6), color normalization did not affect the AUC of MSP 
AI-G, when optimization was performed. However, the effect on PB 
AI-G was considerable in four institutions, but unpredictable.

3.5  |  Samples escaping from both PB AI-G and 
MSP AI-G

In UTH test datasets, nine (3.0%) of 304 G5 samples were classi-
fied as G1 by both AI-Gs. Three of them were fundic gland-type ad-
enocarcinoma (oxyntic type adenoma) with minimal nuclear atypia 
(Figure  S7A,B). When samples of neoplasms other than gastric 
carcinoma or adenoma were tested (Table S8), both AI-G detected 
diffuse large B-cell lymphoma, gastrointestinal stromal tumor, neu-
roendocrine tumor, and metastatic melanoma. However, low-grade 
lymphomas (mucosa-associated lymphatic tissue [MALT] lymphoma, 
mantle cell lymphoma, and follicular lymphoma) were missed by both 
PB and MSP AI-Gs (Figure S7C,D).

4  |  DISCUSSION

Autonomous AI assessment system for gastric biopsy evaluation 
(AI-G) has been constructed using the WSI MSP method, which we 
recently developed to process gigabase-sized WSIs in daily clinical 
practice of diagnostic pathology with standard GPU abilities. MSP 
AI-G enables us to integrate global information of the whole-tissue-
scale to high-resolution local information, such as the way of human 
pathologists correcting the impression at high-power view by low-
power view. MSP AI-G showed higher patch-level performance than 
the conventional PB method (PB AI-G) and improved accuracy and 
specificity in the validation tests of G1/G2–5 classification in gastric 
biopsy. Furthermore, in the multi-institutional study of the JP-AID 
Study Group, MSP AI-G achieved higher performance in both the 
G1/G5 and G1/G2–5 tests in samples collected from other 10 in-
stitutions. There are already a few reports on the use of AI in the 
detection of cancer in gastric biopsy, some of which showed almost 
equal accuracy to our AI-G; however, they were tested in only two 
or three institutions including the same institution as that of the 
training datasets.18–21 These results proved the effectiveness of the 
multistage segmentation approach to image recognition in diagnos-
tic pathology. In future, MSP AI-G is highly recommended for imple-
mentation in daily pathological practice.



    |  3615ABE et al.

There is currently no consensus on how to integrate AI into daily 
pathological practice. AI prediction is not allowed to substitute for 
pathologists in any fields unless 100% reliability is gained in general; 

currently, pathologists take responsibility for every pathological 
diagnosis. However, it is acceptable to use AI prediction to check 
the pathologist’s diagnosis. In case of discrepancy between the 

F I G U R E  4  PB AI-G and MSP AI-G applied to validation datasets from multiple institutes of the JP-AID Study Group (Test 2). ROC curves 
were constructed for G1/G5 classification by PB AI-G (A) and MSP AI-G (B) and MSP AI-G (C) and for G1/G2-5 classification by PB AI-G 
(D). Bar graphs (E, F) show AUC values of ROC curves by PB AI-G and MSP AI-G in 10 institutions for G1/G5 classification and G1/G2-5 
classification, respectively. The data from the University of Tokyo Hospital (institute of the training dataset) were also included in the bar 
graphs. Bar graphs (G, H) showing the accuracies of PB AI-G and MSP AI-G in the 10 institutions are compared for G1/G5 classification and 
G1/G2-5 classification, respectively; higher performance of MSP AI-G than that of PB AI-G. AUC, area under the curve; MSP, multistage 
semantic segmentation for pathology; PB, patch-based; ROC, receiver operating characteristic; UTH, the University of Tokyo Hospital. 
*p < 0.001.
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pathologist’s diagnosis and AI prediction, the diagnosis is re-checked 
by the pathologist and corrected if necessary (Figure 1A). First, we 
set our endpoint to extract 10% of the total specimens at most, 
that is, to achieve more than 90% accuracy of AI-G. The predictive 
power of the system is a function of sensitivity and specificity, and 
the incidence of the events. The incidence of gastric cancer in bi-
opsy specimens is reportedly 5%–10% in community hospitals,22,23 
and the specificity should be higher than 89.5% to accomplish this 
condition when sensitivity is 95% according to [(sensitivity × inci-
dence) + (specificity × (1-incidence))]. With these considerations, in 
this study, the accuracy of MSP AI-G was 91.3%, which means that 
the percentage of WSI images necessary for review by human pa-
thologists is less than 9.0%. Furthermore, the pathologists can refer 
to the heat map of MSP AI-G at their second review, which creates 
benefits for them to check the lesions at glance.

The usefulness of the AI system, such as AI-Gs, should be proven 
by applying it to different datasets of other institutes before it is 
widely accepted. In the present study, to evaluate robustness to 
this issue, we conducted a multi-institutional validation study and 
collected 3450 WSIs from 10 institutes in Japan. Although there 
were many differences in WSIs of each institute, such as the collec-
tion method (consecutive or selective) and the proportion of G2–5 
and scanner instruments, MSP AI-G showed higher performance 
and flexibility in all institutes than conventional AI-G after appro-
priate optimization. Differences in the color of H&E staining may 
be a possible factor relating to decreased performance of PB AI-
G. Adjusting the color distribution to that of originally developed 
datasets improved the performance of PB AI-G in half of the insti-
tutes, but the effect was barely predictive, while the performance 
of MSP AI-G was quite stable. Therefore, MSP AI-G is robust for 
color variation, and color adjustment might not be necessary for 
MSP AI-G.

In the present study, we considered two situations; G1/G5 clas-
sification and G1/G2–5 classification. It depends on the situation for 
pathologists which classification system is adopted in daily clinical 
practice. It is possible to restrict secondary review to G1 and G5 
samples with the G1/G5 cutoff value. However, it is more practical 
to submit all of the samples to MSP AI-G for the selection of sec-
ondary review.

There are limitations of the present study. Both AI-Gs could not 
recognize abnormalities in oxyntic gland adenoma/fundic gland ad-
enocarcinoma and low-grade lymphomas, in which nuclear atypia of 
the epithelial cells or lymphocytes was minimal.24,25 However, both 
types of neoplasms are difficult to diagnose properly by human pa-
thologists without any knowledge of clinical information including 
endoscopy findings. Integrating this information into the AI-G sys-
tem might increase its overall performance. Implementation of the 
AI-G in daily clinical practice of pathological laboratories is another 
problem because it is necessary to digitize glass slides before apply-
ing the AI-G. The telepathology network, which sends WSIs from 
regional hospitals that do not have pathologists to institutions with 
pathologists, might be a likely candidate to apply the AI-G. The JP-
AID Study Group is now addressing this issue by using AI-G in the 

regional telepathology networks for pathological diagnoses, that is 
WSIs are sent from regional hospitals to a core hospital through the 
cloud server; pathologists diagnose these WSIs using an AI-assisted 
review system.

In conclusion, we developed AI-G, an autonomous prediction 
system for gastric biopsy, which was validated in multi-institutions. 
The concordance rate for AI-G, especially that of MSP AI-G, was suf-
ficiently satisfactory. The present study showed the possibility of 
machine learning applications in daily pathological practice. Using 
AI-G, we can extract samples in which the pathologist’s diagnosis 
and AI prediction are discordant. If pathologists review these ex-
tracted samples, efficient and feasible secondary reviews are possi-
ble even if a single pathologist is employed at the hospital.
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