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Abstract 

Background:  Precise quantification of health service utilisation is important for the estimation of disease burden 
and allocation of health resources. Current approaches to mapping health facility utilisation rely on spatial accessibil-
ity alone as the predictor. However, other spatially varying social, demographic and economic factors may affect the 
use of health services. The exclusion of these factors can lead to the inaccurate estimation of health facility utilisation. 
Here, we compare the accuracy of a univariate spatial model, developed only from estimated travel time, to a multi-
variate model that also includes relevant social, demographic and economic factors.

Methods:  A theoretical surface of travel time to the nearest public health facility was developed. These were 
assigned to each child reported to have had fever in the Kenya demographic and health survey of 2014 (KDHS 2014). 
The relationship of child treatment seeking for fever with travel time, household and individual factors from the 
KDHS2014 were determined using multilevel mixed modelling. Bayesian information criterion (BIC) and likelihood 
ratio test (LRT) tests were carried out to measure how selected factors improve parsimony and goodness of fit of the 
time model. Using the mixed model, a univariate spatial model of health facility utilisation was fitted using travel time 
as the predictor. The mixed model was also used to compute a multivariate spatial model of utilisation, using travel 
time and modelled surfaces of selected household and individual factors as predictors. The univariate and multivari-
ate spatial models were then compared using the receiver operating area under the curve (AUC) and a percent cor-
rect prediction (PCP) test.

Results:  The best fitting multivariate model had travel time, household wealth index and number of children in 
household as the predictors. These factors reduced BIC of the time model from 4008 to 2959, a change which was 
confirmed by the LRT test. Although there was a high correlation of the two modelled probability surfaces (Adj 
R2 = 88%), the multivariate model had better AUC compared to the univariate model; 0.83 versus 0.73 and PCP 0.61 
versus 0.45 values.

Conclusion:  Our study shows that a model that uses travel time, as well as household and individual-level socio-
demographic factors, results in a more accurate estimation of use of health facilities for the treatment of childhood 
fever, compared to one that relies on only travel time.
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Background
Health facility utilisation is an important metric for 
understanding the uptake of health services [1, 2], quanti-
fication of health commodities and estimation of disease 
burden [3–5]. Developing spatial models of utilisation 
has been the subject of much research, ranging from 
the use of Euclidean distances, to more sophisticated 
travel time models as proxies of utilisation [6]. Improve-
ments to these models include the use of individual level 
attendance patterns, in conjunction with the accessibil-
ity surfaces to define utilisation at high spatial resolu-
tions [1, 2, 7, 8]. Traditionally, spatial models account for 
the influence of physical distances alone, ignoring other 
demographic characteristics that affect decisions to use a 
health facility [9]. As health information systems improve 
in low-income countries [10], and the use of routine data 
for the estimation of burden of diseases and quantifica-
tion of health resources increase, the need for accurate 
models of utilisation also increase [3, 4]. Therefore, devel-
oping a greater understanding of the role of non-spatial 
factors that influence the treatment seeking behaviours 
of febrile individuals [11] become crucial in spatial mod-
eling of utilisation.

Fever is one of the most common reasons for seeking 
care at health facilities in Africa, especially for children 
under 5 years [12]. Thus, treatment seeking for fever has 
been used to map the variation in utilisation, using uni-
variate models [1]. However, other factors such as mater-
nal education [13], wealth [14, 15], and severity of illness 
[16, 17], also affect utilisation of health services for fever. 
Conceptually, therefore, the exclusion of these additional 
covariates into the classical spatial only health facility 
utilisation models is likely to provide an incomplete pic-
ture. Bypassing these variables can be attributed to lack 
of data, but with availability of interpolation techniques 
such as kriging, mapping these variables at fine spatial 
resolutions becomes possible. In addition, as geocoded 
data on childhood treatment seeking in sub-Saharan 
Africa become increasingly available, it is now possible 
to explore the added benefits of multivariate utilisation 
models over the standard univariate spatial-only models.

In this study, we compare two utilisation models: one 
developed using a probability of attendance computed 
from the results of a univariate logistic regression model 
with travel time as the dependent variable, and the other 
from a multivariate model with travel time and selected 
socio-demographic covariates as dependent variables. 
In both models, analysis is restricted to the use of pub-
lic health facilities, which can be easily mapped [18], and 
whose spatial dimension of access commonly matters 
in resource constrained settings. We then compare the 
parsimony, goodness of fit, discriminatory characteris-
tics and goodness of fit of the two models using Bayesian 

information criterion (BIC), likelihood ratio test (LRT), 
receiver operating area under the curve (AUC) and a per-
cent correct prediction test (PCP) respectively.

Methods
Study area
The study area encompasses Kilifi, Kwale and Mombasa 
counties on the coast of Kenya covering approximately 
21,000 km2. This area is generally flat, with elevation ris-
ing from sea level along the coastline to a maximum of 
approximately 850 m above mean sea level. Over 60% of 
the population lives in rural areas, while majority of the 
urban population reside in the three major urban centres 
of Mombasa, Kilifi and Malindi towns, which are all on 
the shores of Indian Ocean. The three counties are con-
sidered to be malaria endemic [19], with variable socio-
demographic characteristics, providing an ideal setting 
for conducting this study. Treatment seeking rates for 
fever among children under the age of 5  years ranged 
between 63 and 75% in the three counties [20].

Data and sources
Different sources were used to develop a health facility 
database including: the ministry of health master facil-
ity list; Development Partners for Health in Kenya [21]; 
the district health information system [22]; and pub-
lished sources [18]. These databases were merged using 
names and master facility codes. While majority had 
latitudes and longitudes, online sources such as Google 
earth [23] and OpenStreetMaps [24] were used for geolo-
cating facilities without coordinates. Finally, the coordi-
nates were checked by mapping onto Google earth, and 
those falling in unlikely places such as water bodies, for-
ests and roads were shifted to structures where they were 
likely to be. The final list had names of facilities, codes, 
levels of care, spatial information and facility type as the 
attributes.

The Kenya Demographic Health Survey (KDHS 2014) 
was the largest national household survey in Kenya, con-
ducted as part of a series of surveys for monitoring popu-
lation health status, with the aim of having most of them 
statistically powered to provide estimates at county level 
[20]. The survey was based on a stratified two-stage sam-
pling technique, where in the first stage, clusters in either 
rural or urban areas were selected. In the second stage, 
approximately 25 households were randomly selected 
from each cluster, and visited for the interviews. The GPS 
coordinates of the clusters were also recorded. Treatment 
seeking for fever among children under 5 years was one 
of the indicators collected in the DHS.

Attendance at public facilities for the two week history 
of febrile illnesses for children under 5 years, was used as 
the outcome variable. Public health facilities in Kenya are 
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those managed by the government, faith-based institu-
tions and other non-profit organizations [25]. A literature 
search on other socio-demographic factors likely to affect 
health facility utilisation was conducted as shown in the 
Additional file 1. Those available in the DHS were deter-
mined and extracted in the DHS.

Land cover data was obtained from the GlobeLand30 
project, developed from Landsat imagery of 2010 at 30 m 
spatial resolution [26]. Regional surfaces of Kenya Digital 
Elevation Models were downloaded from the USGS land 
processes distributed active archive centre (LP DAAC) 
website, at 30  m spatial resolution [27]. Freely available 
road network datasets from OpenStreetMaps [24] were 
downloaded, and updated using georeferenced Kenya 
roads board maps at 1:25,000 scale [28]. Population sur-
faces were obtained from the WorldPop database [29].

Analysis
Spatial access to health facilities
Travel speeds on various travel surfaces, in kilometre per 
hour, were assembled from various sources [1, 30]. These 
were assigned to the various types of roads and land 
cover surfaces. Impedance values, defined as the degree 
to which a surface is a barrier to travel, were assigned 
to major water features, changing elevation, and dense 
forests. A cost friction surface, which is a measure of the 
speeds and impedance across various features, was gen-
erated. A combination of the health facilities and the 
cost friction surface was used to model travel time to 
the nearest public health facility, using the path distance 
tool in ArcGIS 10.1 (ESRI, Inc., Redland, CA, USA). The 
travel times were extracted to each cluster location and 
assigned to every child who had fever in the last 2 weeks. 
This was used to estimate the time required for each child 
to get to the nearest public health facility.

Models of health facility utilisation
Previously, a three parameter logistic regression (3PL), 
with travel time as the predictor, has been used to model 
health facility utilisation [1]. The 3PL model uses item 
response theory, which includes a probability param-
eter of a positive response given binary input variables 
as a logistic distribution [31]. Here, we propose the use 
of a generalised linear mixed effects model (GLMM) 
that combines the properties of both generalised linear 
models (GLMs including logistic regressions) and lin-
ear mixed models (which include random effects). This 
model was chosen because data from household surveys 
often have a clustered structure. Thus, the model treats 
clustered data adequately, assuming inter- and intra-
cluster variation with the model specified in hierarchi-
cal fashion [31]. The model, also includes the random 
effects, which account for unobserved variables that may 

affect the outcome. Classical logistic regressions on the 
other hand, assume that observations are identically dis-
tributed and independent, an assumption which may be 
unrealistic.

The GLMM models the probability that a child i living 
in cluster j, will attend a public health facility, given by;

where x1, x2, x3, . . . , xn were the variables of interest. c0 
was the overall intercept of the model while c1 to cn the 
specific variable coefficients. Y was the attendance ver-
sus non-attendance for fever pattern. σcj was the random 
effect assigned at the cluster level. The random effects 
were assigned to account for community level informa-
tion such as cultural practices that may not have been 
captured in the DHS but affect decision or ability to 
attend a health facility.

Before model selection, 10% of the data was randomly 
selected for use in the validation exercise. The initial model 
had travel time, household wealth index, maternal educa-
tion, residence and number of children in household as the 
predictor variables. Bi-variable correlations were analysed 
using a threshold of 75% to remove problems of multicol-
linearity in the model. Residence highly correlated (90%) 
with wealth quintiles, but the residence variable dropped 
because of a lower BIC value in univariate models.

While holding travel time constant, the additional 
variables were added sequentially without replacement 
to the model. In each iteration, the variable giving the 
lowest Bayesian information criterion (BIC) was cho-
sen. To highlight the influence of additional variables 
on goodness of fit, a likelihood ratio test was carried 
out between the GLMM model with time as predic-
tor and the final multivariate model. The analysis was 
carried out in R statistical software version 3.0, using 
the lme4 package [32]. As wealth can affect attendance 
across different travel times and households with differ-
ent number of children, interaction effects were included, 
between wealth:children and wealth:travel time. To esti-
mate catchment areas, a distance decay curve was plotted 
using travel time as the predictor. To highlight the influ-
ence of the selected covariates on distance decay curve, 
the model was fitted to households with one or no child 
(≤1) and those with more than one child (>1). In the 
second case, the model was fitted to different groups of 
wealth quintiles (1, 2) and (3, 4, 5).

Spatial interpolation of the variables
To predict poverty and household number of children, 
we used ordinary kriging. Kriging is a generic term 

log it{P(Y = 1|(x1, x2, . . . , xn), σc}

= c0 + c1 ∗ x1ij + c2ij ∗ x2ij + · · ·

+ cn ∗ xnij + σcjσc ∼ N (0, τ 2)
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for probabilistic models that use the weighted sum of 
observed values, to provide best linear unbiased predic-
tions [33]. Proportions of the two classes; ≤1 child and 
wealth quintiles (1, 2) were then calculated and spatial 
autocorrelation explored by plotting a semivariogram 
for each of the two datasets. The interpolation process 
exploited this spatial dependency, to generate estimates 
of the variables at all locations in the study area Addi-
tional file  1. This was implemented in R v3.0 statistical, 
using the geoR package with predictions at 100 m spatial 
resolution.

The coefficients of the time model were applied to the 
travel time alone (univariate model) and then to travel 
time and modelled surfaces of poverty and number of 
children in households (multivariate model) to generate 
two spatial models of utilisation.

Comparing the utilisation models
The probabilities of health facility utilisation from the 
two models were extracted to each child location in the 
validation dataset for comparison. First, the relationship 
of the two values was assessed using the adjusted R2 sta-
tistic. Secondly, the receiver operating area under the 
curve (AUC) was fitted to the two model outputs. The 
area defined by this curve shows the probability that a 
randomly selected attendance outcome is correctly pre-
dicted than a randomly chosen non-attendance value 
[34]. To check for robustness of both models, the pro-
cess was repeated two more times with different selected 
validation datasets. Thirdly, comparison was done using 
the ‘percent correct prediction’ (PCP) test. This method is 
commonly used in analysis of the accuracy of predicted 
landslide suitability maps generated from logistic regres-
sions [35]. In this exercise, the validation dataset was 
used to test both models. A correct prediction of prob-
ability of attendance was assumed if the probability value 
was greater than 0.5 and the child attended or less than 
0.5 and the child did not attend. The opposite result was 
recorded as an incorrect prediction and 0.5 indicative of 
model failure. This was done for the two predicted sur-
faces and the final percent correct predictions for the 
two models determined and compared. A sensitivity 
analysis was carried out where the accuracy assessment 
was undertaken with probability cut off values of 0.40, 
0.45, 0.55 or 0.60 Additional file 1. To highlight the influ-
ence of using either of the models in estimating the fever 
burden, model outputs were multiplied with population 
surfaces at catchment areas to define the catchment pop-
ulation. These populations were then multiplied by fever 
prevalence surfaces to estimate febrile children likely to 
attend facilities. The results were extracted at catchment 
areas and multiplied by 26 to estimate all fever cases in 
2014.

Results
The study area had 311 public health facilities that were 
all geo-located. A sample of 345 children, representing a 
26.0% [95% CI 22.5–30.0] prevalence of fever was used. 
Of these children, 79.8% [95% CI 74.5–84.2] sought treat-
ment from an appropriate provider, while 57% [95% CI 
49.8–63.9] sought treatment from public health facili-
ties. Estimated travel time to public health facilities var-
ied across the study area with the highest estimates being 
approximately 836 min as shown in Fig. 1.

The distance decay curve generated from the univari-
ate model, showed rapid decay of facility attendance after 
about 51  min, as shown in Fig.  2a, b. The black curves 
show the overall curves fitted without classification. 
However, when the distance decay curves were plotted 
for different classes of household wealth and number of 
children, they significantly varied as shown in Fig. 2a, b. 
Children in the higher wealth quintiles (orange curve) 
had higher probabilities of attendance at close proximity 
to public health facilities. These probabilities, however, 
decayed more rapidly compared to those in the lower 
wealth quintiles. Distance decay also varied with number 
of children in a household, and although they were gen-
erally similar at close proximity to public facilities, varia-
tion was visibly significant as travel time increased.

The multivariate model had travel time, wealth quin-
tile and number of children in a household as the sig-
nificant predictors of health facility utilisation. Generally, 

Fig. 1  Travel time to the nearest health facility, ranging from zero 
(green) to 836 min (red). The protected areas are shown in grey
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households with lower socio economic status were found 
to have higher chances of attending public health facili-
ties (OR 2.549). In addition, having a higher number of 
children in a household reduced the probability of public 
health facility attendance (OR 0.664). All the model coef-
ficients including interaction terms were statistically sig-
nificant, and are summarised in Table 1.

Two scenarios of public health facility attendance were 
produced, one based on the univariate model and the 
other on the multivariate comparator. In the univariate 
model, the highest probabilities were recorded in areas 
close to health facilities where probability was approxi-
mately 52%. The cell with the lowest probability was in 
remote areas where travel times to health facilities were 
highest. In the multivariate model, the highest probabili-
ties were recorded in rural areas close to health facilities 

where probability was approximately 65%. The areas with 
lowest probabilities were in remote areas where travel 
times tended to be high, as shown in Fig. 3. An intuitive 
outcome was that probability of attending public health 
facilities in highly accessible and urbanized areas such 
as Mombasa, was much lower in the multivariate model 
compared to those observed in the univariate model as 
shown Fig. 3.

The two models were highly correlated, with an 
adjusted R2 value of 88%. The BIC values consistently 
reduced with addition of more covariates into the model, 
indicating that accuracy of the model was increasing. The 
best fitting model was determined as the one with time, 
wealth and number of children in a household. The model 
had a BIC of 4008 a value which reduced to 2959 with the 
introduction of interaction terms. The LRT test showed 

Fig. 2  Modelled decay curves for different classes of a wealth quintiles where the blue curve represents lower wealth quintiles and the orange 
curve the higher wealth quintiles. b Shows number of children in a household, where red represents those in households with at most one child 
and the green curve those coming from households with at least two children. The black curves show the overall model fit without classification

Table 1  Mixed model coefficients showing the relationship between attendance and the predictor variables, with a vari-
ance of random effects of 9.6

Variables Coefficient Odds ratio SE p value

Overall intercept −0.166 0.846 0.001 <0.001

Fixed effects Travel time −0.017 0.983 0.001 <0.001

Wealth (poorer and poorest) 1

Wealth (middle, richer and richest) 0.936 2.549 0.001 <0.001

Number of children (≤1) 1

Number of children (>1) −0.410 0.664 0.001 <0.001

Interaction terms Travel time and wealth −0.005 0.995 0.001 <0.001

Wealth and number of children 1.326 3.766 0.001 <0.001
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that goodness of fit of the multivariate model was better 
than that of the time model. In comparing the predictive 
capabilities of the two models, the univariate model had 
an AUC value of 0.73, while the multivariate model had 
an AUC value of 0.82. When the accuracy was checked 
again  using two randomly selected validation data, the 
AUC values were 0.69 versus 0.73 and 0.68 versus 0.80 for 
the univariate and multivariate models respectively. The 
final predictions of health facility attendance were com-
pared to the subset data initially created with the 10% 
hold-out set. With respect to PCP test, model 1 gave a 
value of 0.45 while model 2 gave a value of 0.61. Accord-
ing to univariate model, an estimated 1.76 million fever 
cases for children under 5 years were expected to be pre-
sented at public health facilities. On the other hand, the 
multivariate model, estimated 1.34 million fever cases, a 
21% reduction.

Discussion
Accurate estimation of the use of health services is criti-
cal to the precise quantification of several health metrics, 
including disease burden and commodity needs [3–5]. 

In this study, we compared the accuracy of the com-
monly used univariate spatial model of utilisation which 
has spatial access (travel time) as the sole predictor, to 
a multivariate model which also includes other social, 
demographic and economic factors that are important 
to treatment seeking [10, 14, 15]. To our knowledge, this 
was the first attempt towards creating a multivariate spa-
tial model of utilisation at fine spatial resolution. The 
additional factors generally improved the parsimony and 
goodness of fit of the time model. This study highlights 
the importance of using additional covariates in model-
ling facility use. This approach is likely to provide a better 
understanding of variation in health facility utilisation, 
estimation of disease burden and quantifying resources.

Parsimony is an important characteristic of statistical 
models, and in our case, the additional covariates had a 
superior explanatory power, compared to the time alone 
model. The likelihood ratio test (LRT) also showed that 
the multivariate model had a superior goodness of fit. 
Thus, the null hypothesis that the time model was a bet-
ter predictor of public facility utilisation was rejected. 
Testing the model performance using a separate dataset, 

Fig. 3  Public health facility utilisation maps. a From travel time alone and b from multivariate model which includes the wealth and number of 
children in household as predictors
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the predictive capability of the univariate model was 
lower (AUCs =  0.73, 0.69 and 0.68), compared to that 
of the multivariate model (AUC =  0.83, 0.73 and 0.80). 
This indicates that the multivariate model was better at 
discriminating between attendance and non-attendance, 
compared to the univariate model [36]. The percent 
correct prediction test also displayed improved model 
prediction capabilities from the univariate to the multi-
variate model, even by using different cut off values for 
the assessment.

Two examples highlight the importance of the addi-
tional covariates in our study. First, in the univariate 
model where travel time was the sole predictor, prob-
ability of use was high in Mombasa where public health 
facilities are close. However, the multivariate model had 
much reduced probabilities when wealth index, maternal 
education and household size were added. This result is 
consistent with those of the Kenya health expenditure 
and utilisation survey, which analysed treatment seek-
ing patterns at household levels, and showed that urban 
populations are less likely than rural populations to visit 
public health facilities [37]. Second, the estimation of the 
fever cases expected to attend public health facilities in 
2014, at catchment areas also varied, with the multivari-
ate model showing a 21% reduction in the burden of fever 
presented at health facilities.

In addition to spatial, social, demographic and economic 
factors, utilisation can be affected by seasonality as well as 
quality of services provided, both of which are unaccounted 
for in our model due to lack of data. Furthermore, the prob-
ability of health service utilisation in our analysis is inferred 
to mean use of the nearest health facility given the house-
hold survey data did not have information of the actual 
facility that was used. Finally, treatment seeking could be 
variable by the type of disease and the expected services at 
point of care. Depending on the severity of other symptoms 
accompanying an episode of fever, guardians of a child may 
seek care from different levels of the health facility at differ-
ent times as well. Such decision pathways and resultant het-
erogeneity require a more detailed population level study 
and are outside the scope of our analysis.

Conclusion
Our study demonstrates that commonly used univari-
ate spatial models of health service utilisation perform 
poorly relative to multivariate models that include 
selected social, demographic and economic factors that 
determine treatment seeking. Additional covariates 
improved the overall model parsimony and goodness of 
it. The analysis also highlights potential implications in 
differences in urban and rural treatment seeking and esti-
mation of burden of fever.
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