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Aims: Expression of inflammatory cytokines in the brain has been reported to be involved

in the pathogenesis of and susceptibility to depression. Jumonji domain-containing 3

(Jmjd3), which is a histone H3 lysine 27 (H3K27) demethylase and can regulate microglial

activation, has been regarded as a crucial element in the expression of inflammatory

cytokines. Furthermore, recent studies highlighted the fact that lipopolysaccharides

induce depressive-like behaviors and higher Jmjd3 expression and lower H3K27me3

expression in the brain. However, whether the process of Jmjd3 mediating inflammatory

cytokines was involved in the susceptibility to depression due to early-life stress remained

elusive.

Methods: Rats exposed to chronic unpredictable mild stress (CUMS) in adolescence

were used in order to detect dynamic alterations in depressive-like behaviors

and expression of cytokines, Jmjd3, and H3K27me3 in the prefrontal cortex and

hippocampus. Moreover, minocycline, an inhibitor of microglial activation, was employed

to observe the protective effects.

Results: Our results showed that CUMS during the adolescent period induced

depressive-like behaviors, over-expression of cytokines, and increased Jmjd3 and

decreased H3K27me3 expression in the prefrontal cortex and hippocampus of both

adolescent and adult rats. However, minocycline relieved all the alterations.

Conclusion: The study revealed that Jmjd3 might be involved in the susceptibility

to depressive-like behaviors by modulating H3K27me3 and pro-inflammatory cytokine

expression in the prefrontal cortex and hippocampus of rats that had been stressed

during early adolescence.
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INTRODUCTION

Depression, a major psychiatric disorder that affects
approximately 16% of the entire population, has the cardinal
symptoms of low mood, anhedonia, and cognitive impairment
(1). A large number of studies revealed that neuroinflammation is
closely related with the pathogenesis of depression (2, 3). Elevated
levels of pro-inflammatory cytokines such as interleukin-1β (IL-
1β) and IL-6 were observed in the periphery and cerebrum of
depressed patients (4–6), and this increase could be reversed after
antidepressant therapy (7). Also, some patients suffering from
chronic inflammatory diseases (e.g., cardiovascular diseases)
had a higher incidence rate of depression (8). In addition, 50%

of the hepatitis C patients receiving interferon-α (IFN-α, a
pro-inflammatory cytokine) treatment had depressive symptoms
(9, 10). Our previous studies also suggested that both chronic
mild stress in rats and the administration of lipopolysaccharides
(LPS) in mice induced an increase in pro-inflammatory

cytokines in the prefrontal cortex and hippocampus as well as
depressive-like behaviors (11, 12). Those studies suggested that
neuroinflammation, particularly overproduction of cytokines,
plays a critical role in the etiopathogenesis of depression.

Microglial activation is one vital factor that contributes to
neuroinflammation. Microglia, the primary immune cells of the
brain, are regarded as the main source of inflammatory cytokines
when they are activated by diverse stress (13–15). Studies have
confirmed that primed microglia generally have two functional
subtypes, the “classical activation” type and the “alternative
activation” type (16, 17). Classical activation of microglia is
closely associated with the neuroinflammatory response caused
by the upregulation of pro-inflammatory cytokines [e.g., IL-1β,
IL-6, tumor necrosis factor-α (TNF- α)] and free radicals such as
nitric oxide, further inducing dysfunction of neural networks in
the central nervous system (CNS) (18). In contrast, alternative
activation of microglia releases anti-inflammatory cytokines.
There exist three pathological conditions after microglial
activation: (1) tissue damage, (2) inflammatory responses, and
(3) hormonal disorder or stress (19). When the periphery was in
an inflammatory state, pro-inflammatory cytokines (e.g., IL-1β)
crossed the blood brain barrier by saturated transportation and
activated microglia and later further triggered the inflammatory
cascade (19). Among other factors, studies indicated that stress
was a crucial contributor in the activation of microglia (13).
It was reported that chronic stress induced an increase in
the microglial number and caused morphological changes (20).
More importantly, recent studies showed that microglia could
memorize early-life stress. The memory-primed microglia had a
stronger activation when reacting to stress, even to the slightest
stimuli, again in later life (21). However, in the case of classical
activation, the relationship between neuroinflammatory response
and susceptibility to depression was unclear in the case of
individuals who had been exposed to stress early in life.

Environmental stressors can modify the expression of
susceptible genes, thereby, leading to the susceptibility
mechanisms of depression in which histone methylation plays an
important role (22). The Jumonji domain-containing 3 (Jmjd3,
KDM6B), which is deemed as a histone H3 lysine 27 (H3K27)

demethylase that specifically demethylates trimethylated H3K27
(H3K27me3), is associated with transcription repression.
Previous studies reported that Jmjd3 could be induced by
nuclear factor-kappa B (NF-κB) in response to inflammatory
stimuli such as LPS (23, 24). Increased Jmjd3 could demethylate
repressive H3K27me3 epigenetic marks in promoters and gene
bodies. Therefore, the expression of pro-inflammatory genes
was potentiated, thereby, causing an inflammatory status in the
CNS (23–26). Meanwhile, GSK-J4, as a selective Jmjd3 inhibitor,
could limit the inflammation accompanied by a reduction in the
levels of pro-inflammatory cytokines (27, 28).

Based on all the above studies, the present study first
hypothesized that early-life stress induced susceptibility to
depressive-like behaviors and expression of pro-inflammatory
cytokines by the activation of microglia in the brain. Second, our
study hypothesized that Jmjd3 was involved in the susceptibility
to those alterations by modulating pro-inflammatory cytokines.
In this study, chronic unpredictable mild stress (CUMS)
was used to establish an animal model of depression in
adolescence. Depressive-like behaviors, pro-inflammatory
cytokine expression, microglial activation, as well as Jmjd3 and
H3K27me3 expression in the prefrontal cortex and hippocampus
were determined by a sucrose preference test (SPT), open
field test (OFT), elevated plus maze (EPM), and Morris water
maze (MWM), as well as by immunohistochemistry and
immunoblotting. The purpose of this study was to evaluate
the dynamic effects of CUMS in early-life on behavioral
changes, cytokine expression, and Jmjd3 and H3K27me3
expression. As a second generation semi-synthetic tetracycline
antibiotic, minocycline plays a neuroprotective role in many
neuroinflammatory diseases of the CNS (29). It has been
reported that minocycline is a microglial activation inhibitor and
can suppress the secretion of pro-inflammatory cytokines such as
IL-1β (30) and relieve stress-induced depressive- and anxiety-like
behaviors in adult rats (31). Our goal was to investigate the effects
of minocycline on relieving behavioral dysfunction, cytokine
expression, and Jmjd3 and H3K27me3 expression in stressed
adolescent and adult rats.

MATERIALS AND METHODS

Animals
Sixty male 21-day-old Wistar rats were obtained from the
Experimental Animal Center of Shandong University and were
housed in groups of five, with each cage maintained under
standard laboratory conditions (12 h light/dark cycle, 25◦C),
with food and water provided ad libitum during the study. All
procedures of this study were carried out with the approval of the
Animal Ethics Committee of Shandong University.

Experimental Design
After a 7-day acclimatization, the rats were randomly divided into
three groups (n = 20 in each group): control group (C), CUMS
group (S), CUMS and minocycline group (S+M). The C group
was the normal control, whereas the S group was exposed to
CUMS for 3 weeks. The S+M group received both the CUMS
procedure and the minocycline treatment. After 3 weeks of drug
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TABLE 1 | Schedule of unpredictable chronic mild stress.

Time Type of stress

Day 1 Heat stress (45◦C, 5min)

Day 2 Light/dark cycle reversal

Day 3 Radio noise in the room (8 h)

Day 4 Water deprivation (24 h)

Day 5 Pinching tail (1min)

Day 6 Food deprivation (24 h)

Day 7 Foot shock (30mV, 10 s duration for a total of 10min)

Day 8 Radio noise in the room (8 h)

Day 9 Heat stress (45◦C, 5min)

Day 10 Food deprivation (24 h)

Day 11 Pinching tail (1min)

Day 12 Water deprivation (24 h)

Day 13 Foot shock (30mV, 10 s duration for a total of 10min)

Day 14 Light/dark cycle reversal

Day 15 Food deprivation (24 h)

Day 16 Pinching tail (1min)

Day 17 Radio noise in the room (8 h)

Day 18 Light/dark cycle reversal

Day 19 Heat stress (45◦C, 5min)

Day 20 Foot shock (30mV, 10 s duration for a total of 10min)

Day 21 Water deprivation (24 h)

administration and animal modeling, 10 rats from each group
were randomly selected to undergo behavioral tests. The order
of the behavioral tests was as follows: the SPT, then the OFT,
the EPM test, and finally the MWM test. Later, at the age of
55 days, the 30 selected rats were sacrificed. The remaining 30
rats were raised to adulthood, and then they underwent the
behavioral tests. Afterwards, these rats were sacrificed at the
age of 90 days (see Supplementary Material). Therefore, our
study had six groups altogether: the adolescent control group
(AdoC); the adolescent CUMS group (AdoS); the adolescent
CUMS and minocycline group (AdoS+M); the adult control
group (AduC); the adult CUMS group (AduS); and the adult
CUMS and minocycline group (AduS+M).

CUMS Procedure and Drug Administration
The CUMS was applied to all groups except for the control
group, using a previously described method (32, 33). Rats were
exposed to one of the following seven stressors randomly every
day: food deprivation (24 h), water deprivation (24 h), radio noise
in the room (8 h), heat stress (45◦C, 5min), foot shock (30mV,
10 s duration for a total of 10min), light/dark cycle reversal,
and pinching tail (1min) (see Table 1). Rats in the S+M group
were treated with minocycline (intragastric, 40 mg/kg, diluted in
saline) 30min before CUMS for 3 weeks (17).

Behavioral Tests
Sucrose Preference Test (SPT)
The SPT was used to evaluate the level of anhedonia (34).
Rats were trained to adapt to the 1% sucrose solution

in a quiet environment before the test. In the first 24 h,
each cage was provided with two identical bottles of the
sucrose solution. Subsequently, in the second 24 h, each cage
was provided with one bottle containing water and another
bottle with the sucrose solution. After 48 h of adaptation,
the rats were housed alone and deprived of water and
food for 24 h. Later, two pre-weighed bottles with water and
sucrose solution, respectively, were simultaneously placed in
each cage. After 1 h, the two bottles were weighed again
and the consumption was calculated. The sucrose preference
was expressed as the sucrose preference (%), which was
calculated as [sucrose consumption/(sucrose consumption +

water consumption)].

Open Field Test (OFT)
The OFT was used to determine the autonomous and
exploratory behaviors of rats in a novel environment (35).
The apparatus for the OFT was a white wooden box without
a top structure (100 cm diameter and 50 cm wall height).
The bottom of the apparatus was divided into 25 squares.
The rats were placed one at a time into the central square
and were allowed to freely explore the field for 5min. The
locomotion activity (the number of crossings), rearing, and
grooming behaviors of the rats were recorded by a SMART
video tracking system (SMART v3.0, Panlab, Spain). After each
test, we cleaned the device with alcohol before inserting the
next rat.

Elevated Plus Maze (EPM)
The EPM was used to test the anxiety level of the rats
(36). The apparatus was elevated 50 cm from the ground.
Two opposing open arms (30 cm long × 15 cm high) and
two closed arms formed a cross around the central platform
(5 cm × 5 cm). Each rat was individually placed onto the
central platform facing an open arm and was allowed to
freely explore the maze for 5min. The number of entries into
each arm was reported by the video tracking system (SMART
v3.0, Panlab, Spain). A lower ratio of open arm entries to
total entries signified a higher level of anxiety in the rat.
We cleaned the apparatus after each test before inserting the
next rat.

Morris Water Maze (MWM)
The MWM was used to determine the spatial memory and the
learning ability of rats (37). The apparatus was a circular black
tank (120 cm diameter and 50 cm height) and was filled with
warm water (22◦C). The software assigned four quadrants to
the surface of the water. The platform (13 cm diameter and
29 cm height) was placed at the center of the target quadrant
(quadrant II) and was 1–2 cm below the surface of the water.
The movement of each rat was tracked and recorded using the
SMART video tracking system (SMART v3.0, Panlab, Spain).
A training period was carried out for 5 consecutive days, four
times a day. The rats were gently placed into a random quadrant
facing the wall and were allowed to swim freely to find the
platform within 60 s, followed by a 20-s reprieve on the platform.
Rats that failed to find the platform were manually placed on
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the platform for a 20-s break. The sixth day was the testing
period; the rats were placed into quadrant IV and allowed to
swim freely for 60 s in the maze without the platform. The
number of across the target quadrant and the platform were
recorded.

Pro-inflammatory Cytokine Expression
Analysis
Sample Collection
Five rats from each group were randomly selected after
completing the behavioral tests and then were decapitated
immediately after being anesthetized. The whole brain was taken
out of the skull carefully after opening the skull along the sagittal
suture. Both sides of the prefrontal cortex and the hippocampus
were isolated, and the samples were stored at −80◦C. All the
processes were performed on ice.

Protein Extraction
Lysis buffer and 1% protease inhibitor (phenylmethanesulfonyl
fluoride) were added according to the weight of the sample. The
tissue homogenate was centrifuged at 12,000 rpm for 25min
at 4◦C, and then, the supernatant was extracted. The protein
concentrations were determined by a Micro Bicinchoninic
Acid Protein Assay Kit (Beyotime Institute of Biotechnology,
China).

Enzyme-Linked Immunosorbent Assay (ELISA)
According to the ELISA kit instruction book (Tianjin Anoric
Bio-technology Co., Ltd, China), different concentrations of
standards and samples were added in a particular order
to the 96-coated well plates. Subsequently, a biotin-antibody
diluent was added to the samples, followed by 100 µL of
an enzyme conjugation liquid. After incubation at 37◦C for
60min, the coated microwell plates were washed five times
with a prepared washing liquid. The solutions of TMB I,
TMB II, and stopping liquid were added to the plates in
turn. The iMark Microplate Absorbance Reader (Bio-Rad Labs,
Hercules, CA, USA) was used to detect the optical density at
450 nm. According to the standard curve drawn from the optical
density of the standard, the concentration of each sample was
calculated.

Histological Measurements
In order to observe the changes in microglial number and
morphology, ionized calcium-binding adapter molecule 1 (Iba-
1), a microglial marker, was detected by immunofluorescence as
in a previous study (31). Five rats in each group were randomly
chosen to receive a heart perfusion with 50mL saline and
100mL 4% paraformaldehyde (PFA) in phosphate buffer (0.1M,
pH 7.4) after being deeply anesthetized with pentobarbital.
After that, the brains were removed and fixed in 4% PFA
for 24 h at 4◦C. After paraffin embedding, the brain samples
were cut into 4µm sections. The sections were incubated in
citrate buffer (pH 6.0) to facilitate antigen retrieval at high
temperature. The tissues were uniformly covered with 3% bovine
serum albumin (BSA) and were blocked for 30min at room
temperature. Afterwards, the sections were incubated with rabbit

anti-Iba1 antibody (1:200, Abcam, USA) at 4◦C overnight. After
washing thrice with phosphate-buffered saline (PBS), the sections
were incubated with a secondary antibody (goat anti-rabbit,
Alexa 594 conjugated, 1:1000, Invitrogen, USA) for 50min in
the dark. After three washes in PBS, the nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI) for 10min in the
dark. Later, the sections were sealed with an anti-fluorescence
quenching sealant and observed under a Nikon Eclipse TI-SR
microscope. The images were captured with a color camera
(Nikon DS-U3).

The expression of inducible nitric oxide synthase (iNOS) was
determined using immunohistochemical analysis. The paraffin
sections were placed in citrate buffer (pH 6.0) in a microwave
oven for antigen retrieval. After natural cooling, the sections
were removed and washed with water and PBS. Subsequently,
the sections were incubated with 3% H2O2 for 10min and
were blocked with 3% BSA for 30min. Next, the sections were
incubated with rabbit anti-iNOS antibody (1:200, Abcam, USA)
at 4◦C overnight. After washing thrice with PBS, the sections
were incubated with a biotinylated secondary antibody at 37◦C
for 30min. After washing with PBS, the sections were incubated
with a streptavidin-biotin complex. Later, the sections were
dyed with diaminobenzene and observed microscopically. The
images were captured with the above mentioned microscope
camera.

Epigenetic Markers and iNOS in the
Western Blot Analysis
Sample collection and protein extraction were performed in
a manner similar to ELISA. Protein concentrations were
mixed with a 5× Laemmli loading buffer and then were
heated at 100◦C for 5min. Subsequently, 20 µg of the
protein sample was loaded in a prepared sodium dodecyl
sulfate-polyacrylamide gel (5% stacking gel and 8 or 10%
resolving gel, according to the molecular weight of the
protein) and was separated by electrophoresis. The protein
was electro-transferred to polyvinylidene difluoride (PVDF)
membranes (Bio-Rad, CA, USA). The PVDF membranes were
blocked with 5% defatted milk in a Tris buffered saline
with 0.1% Tween-20 (TBST) for 90min at room temperature
and were incubated with primary antibodies against iNOS
(1:500, Abcam, USA), Jmjd3 (1:800, Abcam, USA), H3K27me3
(1:1000, Biogot Technology, Co., Ltd), and β-actin (1:5000,
Biogot Technology, Co., Ltd) at 4◦C overnight. The secondary
antibodies (1:10000, ZSGB-BIO, China) were incubated for
60min at room temperature. After washing thrice with TBST,
the PVDF membranes were incubated with a prepared enhanced
chemiluminescence mixture (Millipore Corp, Billerica, MA,
USA) for 1min and were visualized on film in the dark. The
gray value of the bands was quantified with the Image J 14.0
software.

Statistical Analysis
All experimental data were presented as the mean ± SEM.
The SPSS 17.0 software was utilized to analyze the data. The
adolescent groups and adult groups were analyzed separately.
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Data were analyzed using a one-way analysis of variance followed
by Tukey’s post hoc test. Significance levels were set at p < 0.05.

RESULTS

Behavioral Test
Comparison of Depressive-Like Behavior and

Anxiety-Like Behavior Alterations Between Groups
Figure 1A illustrates the results of the SPT. In the adolescent
groups, the percentage of sucrose consumption [F(2, 27) = 16.08,
p < 0.001] in the AdoS group was lower than the AdoC group
(p< 0.001) and the AdoS+Mgroup (p< 0.001). The same results
could be seen in the adult groups; the percentage of sucrose
consumption in the AduS group [F(2, 27) = 8.21, p = 0.002] was
lesser than the AduC group (p = 0.041) and the AduS+M group

(p = 0.001). The results indicated that stress in early adolescence
decreased sucrose preference in both adolescent and adult rats,
but treatment with minocycline could reverse the decrease in

sucrose consumption.
Figures 1B–D illustrate the results of the OFT. Figure 1B

shows the number of crossings in the OFT for the adolescent

groups [F(2, 27) = 9.47, p = 0.001] and adult groups
[F(2, 27) = 7.40, p= 0.003], respectively. The number of crossing
in the AdoS group was lesser than the AdoC group (p = 0.001)
and the AdoS+M group (p = 0.017). Similarly, the AduS group
had a lesser number of crossing than the AduC group (p= 0.003).
Treatment with minocycline resulted in an increased number of
crossing in the AduS+M group (p= 0.027) when compared with
the AduS group. Figure 1C shows the number of rearings in the
OFT for the adolescent groups [F(2, 27) = 7.05, p = 0.003] and

FIGURE 1 | CUMS induced depressive-like behaviors, while minocycline treatment reversed the alteration in both adolescent and adult rats. (A) Sucrose preference

percentage in the SPT; (B) Number of crossing in the OFT; (C) Number of rearing in the OFT; (D) Number of grooming in the OFT; (E) Open arm entries ratio in the

EPM test; Results were expressed as the mean ± SEM (n = 9 or 10 in each group). #, ##, and ### indicate p < 0.05, p < 0.01, and p < 0.001 vs. C group,

respectively; *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 vs. S group, respectively. AdoC, adolescent control group; AdoS, adolescent CUMS group;

AdoS+M, adolescent CUMS and minocycline group; AduC, adult control group; AduS, adult CUMS group; AduS+M, adult CUMS and minocycline group.
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adult groups [F(2, 27) = 6.91, p= 0.004]. In the adolescent groups,
the AdoS group showed lower numbers of rearing than the
AdoC group (p = 0.003). Moreover, treatment with minocycline
normalized the behavioral deficit when compared with the AdoS
group (p = 0.044). In the adult groups, the number of rearing in
the AduS group was lower than the AduC group (p= 0.038) and
the AduS+M group (p= 0.004). Figure 1D shows the amount of
grooming in the adolescent groups [F(2, 27) = 8.72, p= 0.001] and
adult groups [F(2, 27) = 7.65, p= 0.002]. Both the AdoS group and
the AduS group had lesser number of grooming than the AdoC
group (p= 0.002) and the AduC group (p= 0.002), respectively.
However, minocycline treatment had no effect on the amount
of grooming either in adolescent or in adult rats. These results
indicate that stress reduced automatic and exploratory behaviors
in both adolescent and adult rats. Moreover, as an inhibitor
of microglial activation, minocycline normalized most of the
behavioral changes in both adolescent and adult rats.

Figure 1E shows the ratio of entry into the open arm in
the EPM test in the adolescent and adult groups. The AdoS
group [F(2, 26) = 4.63, p = 0.019] had a significantly lower ratio
of entry than the AdoC group (p = 0.027) and the AdoS+M
group (p = 0.045). Similarly, there was a significant reduction
of open arm entries ratio in the AduS group [F(2, 27) = 5.87,
p = 0.008] when compared with the AduC group (p = 0.02)
and the AduS+M group (p = 0.014). These results indicate that
stress in early adolescence induces anxiety-like behaviors in both
adolescent rats and adult rats and that minocycline treatment
improves abnormal behaviors.

Comparison of Cognitive Impairment in the MWM

Test Between Groups
Figure 2 presents the results of the MWM test. Figure 2A

presents the number of times through the platform during the
probe test in the adolescent groups [F(2, 27) = 6.66, p = 0.004]
and adult groups [F(2, 27) = 8.25, p = 0.002]. Compared with the
AdoC group (p = 0.019) and the AdoS+M group (p = 0.006),
the number of times through the platform decreased significantly
in the AdoS group. The AduS group also had lower number of

times through the platform than the AduC group (p = 0.008)
and the AduS+M group (p = 0.003). Figure 2B shows the
percentage of entries into the target quadrant in the adolescent
groups [F(2, 27) =5.47, p = 0.01] and adult groups [F(2, 27)
=3.11, p = 0.061]. The AdoS group had reduced percentage
of entries when compared with the AdoC group (p = 0.024)
and the AdoS+M group (p = 0.018). However, there were no
significant differences in the three adult groups. These results
suggest that stress in early adolescence induced learning and
memory impairment, and the inhibitor of microglial activation
could reverse the damages.

Comparison of Pro-inflammatory Cytokine
Expression in the Prefrontal Cortex and
Hippocampus Between Groups
Figures 3A,B show cytokine expression in the prefrontal cortex.
As Figure 3A shows, the levels of IL-1β increased in both the
AdoS group [F(2, 12) = 60.57, p< 0.001] (p< 0.001) and the AduS
group [F(2, 12) = 5.63, p = 0.019] (p = 0.04), when compared
with the AdoC group and the AduC group, respectively.
However, these increases were attenuated by minocycline
treatment in both adolescent and adult rats (p < 0.001;
p = 0.027). Figure 3B shows the levels of IL-6 in the prefrontal
cortex. The AdoS group had increased levels of IL-6 when
compared with the AdoC group [F(2, 12) = 5.60, p = 0.019]
(p = 0.045) and the AdoS+M group (p = 0.026). The same
change tendency was observed in the adult groups. There was an
increased level of IL-6 in the AduS group when compared with
the AduC group [F(2, 12) = 5.58, p = 0.019] (p = 0.032) and the

AduS+M group (p= 0.035).
Figures 3C,D show cytokine expression in the hippocampus.

Figure 3C shows the levels of IL-1β in both the adolescent groups
[F(2, 12) = 6.64, p = 0.011] and the adult groups [F(2, 12) = 7.74,
p = 0.007]. The same change tendency that was observed in the
prefrontal cortex was seen in the hippocampus; the AdoS group
and the AduS group had higher levels of IL-1β than the AdoC
group (p = 0.013) and the AduC group (p = 0.02), respectively.

FIGURE 2 | CUMS induced spatial learning and memory impairment, while minocycline treatment reversed the alteration in both adolescent and adult rats.

(A) Number of crossings of the platform in the MWM test; (B) Target quadrant entries percentage in the MWM test. Results are expressed as the mean ± SEM

(n = 10 in each group). # and ## indicate p < 0.05 and p < 0.01 vs. C group, respectively; * and ** indicate p < 0.05 and p < 0.01 vs. S group, respectively. AdoC,

adolescent control group; AdoS, adolescent CUMS group; AdoS+M, adolescent CUMS and minocycline group; AduC, adult control group; AduS, adult CUMS

group; AduS+M, adult CUMS and minocycline group.
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FIGURE 3 | The levels of cytokines in the prefrontal cortex and hippocampus of both the adolescent and adult groups. (A) IL-1β expression in the prefrontal cortex;

(B) IL-6 expression in the prefrontal cortex; (C) IL-1β expression in the hippocampus; (D) IL-6 expression in the hippocampus. Results are expressed as the mean ±

SEM (n = 5 in each group). #, ##, and ### indicate p < 0.05, p < 0.01, and p < 0.001 vs. C group, respectively; *, **, and *** indicate p < 0.05, p < 0.01, and

p < 0.001 vs. S group, respectively. AdoC, adolescent control group; AdoS, adolescent CUMS group; AdoS+M, adolescent CUMS and minocycline group; AduC,

adult control group; AduS, adult CUMS group; AduS+M, adult CUMS and minocycline group.

Minocycline decreased the levels of IL-1β in both adolescent
(p = 0.042) and adult (p = 0.009) rats. Figure 3D shows that the
levels of IL-6 increased in both the AdoS group [F(2, 12) = 9.91,
p = 0.003] (p = 0.005) and the AduS group [F(2, 12) = 11.03,
p = 0.002] (p = 0.004), when compared with the AdoC group
and the AduC group, respectively. Minocycline decreased the
levels of IL-6 in both adolescent (p= 0.007) and adult (p= 0.004)
rats.

Comparison of Microglial Activation in the
Prefrontal Cortex and Hippocampus
Between Groups
Figure 4A shows the Iba-1 (as the microglia marker) expression
in the prefrontal cortex in adolescent groups. Figure 4C shows
the Iba-1 expression in the prefrontal cortex in adult groups.
Fewer branches and larger cell bodies of the microglia in the
prefrontal cortex were observed in the stressed group when
compared with the C group and the S+M group in both
adolescence and adulthood. Figure 4E shows the count of
cells that positively express Iba-1 in the prefrontal cortex. We
observed that the Iba-1-labeled microglial cells had a larger soma
size and were more abundant in the AdoS group [F(2, 12) = 31.58,
p < 0.001] (p < 0.001) and the AduS group [F(2, 12) = 9.64,
p = 0.003] (p = 0.037), when compared with the AdoC
group and the AduC group, respectively. Meanwhile minocycline

treatment reversed the changes in the rats of the AdoS+M group
(p < 0.001) and the AduS+M group (p= 0.003).

Figure 4B shows the Iba-1 expression in the hippocampus
in the adolescent groups. Figure 4D shows the Iba-1 expression
in the hippocampus in the adult groups. Fewer branches and
larger cell bodies of the microglia in the hippocampus were
observed in the stressed group when compared with the C
group and the S+M group in both adolescence and adulthood.
Figure 4F shows the count of cells that positively express
Iba-1 in the hippocampus. In adolescence, the AdoS group
[F(2, 12) = 61.32, p < 0.001] had a significantly increased
number of microglia when compared with the AdoC group
(p < 0.001) and the AdoS+M (p < 0.001) group. The adult
groups had the same change tendencies in that stress increased
the number of microglia in the AduS group [F(2, 12) = 10.02,
p = 0.003] when compared with the AduC group (p = 0.035),
andminocycline suppressed the activation in the AduS+Mgroup
(p= 0.002).

Comparison of iNOS Expression in the
Prefrontal Cortex and Hippocampus
Between Groups
Figure 5A shows the iNOS (M1 activation marker)
expression in the prefrontal cortex and hippocampus in
immunohistochemistry. Figure 5B shows the count of cells that
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FIGURE 4 | CUMS induced microglial activation in the prefrontal cortex and hippocampus of both the adolescent and adult rats, while minocycline reduced the

alteration. (A) Iba-1/DAPI (red/blue) staining (×200) in the prefrontal cortex of adolescent rats; (B) Iba-1/DAPI (red/blue) staining (×200) in the hippocampus of

adolescent rats; (C) Iba-1/DAPI (red/blue) staining (×200) in the prefrontal cortex of adult rats; (D) Iba-1/DAPI (red/blue) staining (×200) in the hippocampus of adult

rats; (E) Iba-1+ cell counts in the prefrontal cortex; (F) Iba-1+ cell counts in the hippocampus. The results are expressed as the mean ± SEM (n = 5 each group). #

and ### indicate p < 0.05 and p < 0.001 vs. C group, respectively; ** and *** indicate p < 0.01 and p < 0.001 vs. S group, respectively. AdoC, adolescent control

group; AdoS, adolescent CUMS group; AdoS+M, adolescent CUMS and minocycline group; AduC, adult control group; AduS, adult CUMS group; AduS+M, adult

CUMS and minocycline group.

positively expressed iNOS in the prefrontal cortex. In adolescent
rats, CUMS could induce iNOS expression [F(2, 9) = 15.76,
p = 0.001] (p = 0.001), while minocycline treatment reversed
the alteration (p = 0.049). In adult rats, the stress-exposed
rats also had higher iNOS expression than the AduC group
[F(2, 9) =13.12, p = 0.002] (p = 0.003). Minocycline treatment
also reversed the alteration (p = 0.005). Figure 5C shows the
count of cells that positively express iNOS in the hippocampus.
In the adolescent groups, the AdoS group had higher iNOS
expression than the AdoC group [F(2, 9) = 10.03, p = 0.005]
(p = 0.025) and the AdoS+M group (p = 0.005). In the
adult groups, the expression of iNOS also increased in the
AduS group [F(2, 9) = 27.07, p < 0.001] (p < 0.001) when

compared with the AduC group and the AduS+M group
(p= 0.001).

Figure 5D shows the expression of iNOS in the prefrontal
cortex inWestern blot. In the adolescent groups, the AdoS group
[F(2, 12) =24.15, p < 0.001] had higher levels of iNOS expression
than the AdoC group (p < 0.001) and the AdoS+M group
(p< 0.001). In the adult groups, the expression of iNOS increased
in the AduS group [F(2, 12) = 8.84, p = 0.004)] when compared
with that in the AduC group (p = 0.01) and the AduS+M group
(p= 0.008).

Figure 5E shows the iNOS expression in the hippocampus in
Western blot. Increased iNOS expression was seen in the AdoS
group [F(2, 12) = 14.42, p= 0.001] when compared with the AdoC
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FIGURE 5 | CUMS induced M1 marker iNOS expression in the prefrontal cortex and hippocampus of both adolescent and adult rats, while minocycline treatment

reduced the expression. (A) iNOS expression in the prefrontal cortex and hippocampus in immunohistochemistry (×400); (B) iNOS-positive cell counts in the

prefrontal cortex; (C) iNOS-positive cell counts in the hippocampus; (D) Western blot analysis of iNOS in the prefrontal cortex; (E) Western blot analysis of iNOS in the

hippocampus. Results are expressed as the mean ± SEM (n = 4 each group; n = 5 each group). #, ##, and ### indicate p < 0.05, p < 0.01, and p < 0.001 vs.

C group, respectively; *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 vs. S group, respectively. AdoC, adolescent control group; AdoS, adolescent CUMS

group; AdoS+M, adolescent CUMS and minocycline group; AduC, adult control group; AduS, adult CUMS group; AduS+M, adult CUMS and minocycline group.

group (p = 0.001), but minocycline treatment normalized the
alteration in the AdoS+M group (p = 0.002). The AduS group
[F(2, 12) = 13.99, p= 0.001] had higher levels of iNOS expression
than the AduC group (p= 0.001). Similarly, minocycline reduced
the expression of iNOS in the AduS+M group (p = 0.003) when
compared with the AduS group.

Comparison of Expression of Jmjd3 and
H3K27me3 Between Groups
Figure 6A shows Jmjd3 expression in the prefrontal cortex
in every group in adolescence and adulthood using Western

blot. In the adolescent group, Jmjd3 levels showed significant
group effects [F(2, 12) = 21.23, p < 0.001]. Stress induced the
expression of Jmjd3 in rats of the AdoS group (p = 0.001)
more strongly than in the AdoC group. Nevertheless,
minocycline decreased the level of Jmjd3 expression in
the AdoS+M group when compared with the AdoS group
(p < 0.001). In adult groups, increased Jmjd3 expression
was seen in the AduS group [F(2, 12) =54.72, p < 0.001]

(p < 0.001) when compared with the AduC group. Minocycline

reversed the alteration (p = 0.037 AduS group vs. AduS+M
group).
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FIGURE 6 | The expression of Jmjd3 and H3K27me3 in the prefrontal cortex and hippocampus detected by Western blotting. (A) Western blot analysis of Jmjd3 in

the prefrontal cortex; (B) Western blot analysis of H3K27me3 in the prefrontal cortex; (C) Western blot analysis of Jmjd3 in the hippocampus; (D) Western blot analysis

of H3K27me3 in the hippocampus. Results are expressed as the mean ± SEM (n = 5 each group). #, ##, and ### indicate p < 0.05, p < 0.01, and p < 0.001

vs. C group, respectively; *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 vs. S group, respectively. AdoC, adolescent control group; AdoS, adolescent CUMS

group; AdoS+M, adolescent CUMS and minocycline group; AduC, adult control group; AduS, adult CUMS group; AduS+M, adult CUMS and minocycline group.

Figure 6B shows H3K27me3 expression in the prefrontal

cortex in both adolescent and adult groups. The AdoS group
had a markedly decreased H3K27me3 level when compared with
the AdoC group [F(2, 12) = 8.56, p = 0.005] (p = 0.006).
Whereas, animals in the AdoS+M group showed a significantly
higher H3K27me3 level when compared with the AdoS group
(p = 0.017). In adult groups, stress induced the reduced
expression of H3K27me3 in the AduS group [F(2, 12) =16.38,
p < 0.001] (p < 0.001) when compared with the AduC
group, while minocycline treatment could reverse the decreased
expression in the AduS+M group (p= 0.005).

Figure 6C shows Jmjd3 expression in the hippocampus of
adolescent and adult groups using Western blot. The same
change tendencies in Jmjd3 expression in the hippocampus were
observed as in the prefrontal cortex. Stress induced the over-
expression of Jmjd3 in rats from the AdoS group [F(2, 12) = 8.24,
p = 0.006] (p = 0.033) when compared with the AdoC group.
However, minocycline treatment decreased the level of Jmjd3
expression in the AdoS+Mgroup when compared with the AdoS
group (p = 0.005). In the adult groups, the AduS group [F(2, 12)
=12.24, p= 0.001] (p= 0.001) had an increased Jmjd3 expression

when compared with the AduC group; however, minocycline
reversed the alteration (p= 0.009).

Figure 6D shows H3K27me3 expression in the hippocampus
in both adolescent and adult groups, which had the same
change tendency as the prefrontal cortex. The AdoS group had
a markedly decreased H3K27me3 level when compared with
the AdoC group [F(2, 12) = 12.70, p = 0.001] (p = 0.001).
Nevertheless, animals in the AdoS+Mgroup showed a significant
increase in H3K27me3 levels when compared with the AdoS
group (p = 0.044). Similarly, the AduS group had lower
H3K27me3 levels than the AduC group [F(2, 12) = 10.35,
p = 0.002] (p = 0.003). Meanwhile, minocycline treatment
reversed the decrease in the AduS+M group when compared
with the AduS group (p= 0.01).

DISCUSSION

The present study revealed that CUMS in the adolescent period
induced short-term and persistent depressive-like behaviors, high
levels of pro-inflammatory cytokines, microglial activation, and
increased Jmjd3 and decreased H3K27me3 expression in the
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prefrontal cortex and hippocampus. The results indicate that the
alteration of Jmjd3 and H3K27me3 expression plays a critical
role in susceptibility to depressive-like behaviors in rats that had
early-life stress experiences.

Previous studies suggested that social-psychological stress
exposure in early-life increases the risk of mood disorders
(38). Our previous study revealed that CUMS and acute stress
in early life induce long-term dysfunctional behaviors, which
supports the conclusion that early-life stress has long-lasting
effects on individual behaviors (33, 39). Consistent with the
above study, CUMS in the adolescent period induced depressive-
like behaviors and memory damage in both adolescent and
adult animals in our present study. Moreover, minocycline, the
microglial activation inhibitor, attenuated the abnormalities of
behaviors in adolescent and adult groups, which indicates that
inhibition of microglial activation could relieve the depressive-
like behaviors. These results suggest that early-life stress gives
rise to long-lasting behavioral disorders (40, 41) and also that
microglial activation is involved in behavioral abnormalities (42).

An increasing number of studies suggest that some pro-
inflammatory cytokines are closely linked to the pathogenesis
of depression under stress by a mechanism in which cytokines
decrease the levels of serotonin, noradrenaline, and dopamine
in the limbic system and stimulate the hypothalamic-pituitary-
adrenal (HPA) axis to release glucocorticoids (2). In addition,
pro-inflammatory cytokines could induce sickness-like behaviors
independently; for example, IL-1β decreased locomotor activity
(35). Cytokines also initiate the cycle of pro-inflammatory
responses by giving rise to a cascade of inflammatory cytokine
responses when the patient is suffering from psychological stress
(43). The present study showed that CUMS induced significantly
increased levels of IL-6 and IL-1β in both the hippocampus and
prefrontal cortex. However, minocycline treatment attenuated
these alterations. More importantly, adult rats in the CUMS
group showed higher levels of IL-6 and IL-1β in both the
hippocampus and prefrontal cortex along with depressive-like
behaviors. Hence, our results demonstrate that higher levels
of pro-inflammatory cytokines in the brain induced by CUMS
during the adolescent period are associated with vulnerability to
depression in adulthood.

Previous studies pointed out that classical microglial
activation facilitates the occurrence of depression by pro-
inflammatory cytokines during which stress plays an important
role. First, stress induces HPA axis activation, and massive
amounts of glucocorticoids are released into the prefrontal
cortex and hippocampus, where they are susceptive to the
corticosterone surge. Microglia express a large number of
glucocorticoid receptors, whereupon stress induces microglial
activation. Secondly, stress induces pro-inflammatory cytokine
(IL-1β) over-expression in the CNS leading to the activation
of microglia (44, 45). In order to clarify the role of microglial
activation in neuroinflammation from adolescence to adulthood
caused by CUMS in adolescence, the present study examined
the Iba-1 and iNOS expression in the prefrontal cortex and
hippocampus in both adolescent and adult rats. The results show
that Iba-1 and iNOS are over-expressed in the prefrontal cortex
and hippocampus of stressed rats when compared with their

expression in unstressed rats. Furthermore, the morphology
of microglia underwent a noticeable change from a ramified
morphology to an amoeboid shape in stressed rats. These results
are consistent with previous studies that showed that microglia
increased in number, and hyper-ramified properties arose in
response to chronic stress (46). Moreover, similar results were
detected in adult rats, which support the argument that early-life
stress could lead to long-term pro-inflammatory effects and
classical microglial activation (47). Our results support the
“two-hit” theory of the involvement of neuroinflammation in the
etiology of mental disorders, which proposes that early-life stress
primes or sensitizes microglia. Stress in later life can provoke
the sensitized microglia, which can generate an exaggerated
response and increase the risk of development of a mental
disorder (44). Therefore, our results expanded the conclusion
that stress-induced microglial activation in early-life is closely
linked to the susceptibility to depression. Moreover, the present
study illustrates the role of minocycline in microglial activation
in early-life stress-induced depression. Consistent with previous
studies (31, 48), minocycline administration reduced depressive-
like behaviors and inhibited the expression of pro-inflammatory
cytokines. These results imply that minocycline has the potential
to be used as a treatment for depression by targeting microglial
activation.

Recent research has demonstrated that Jmjd3 can remove the
tri-methylation and di-methylation marks of H3K27 and then
lead to gene expression. Most importantly, Jmjd3 was induced
both by inflammation and by stress (23, 49). Jmjd3 decreased the
level of repressive H3K27me3 marks at the promoters of NF-κB-
driven inflammatory genes such as IL-1β (50). Thus, the higher
expression of Jmjd3 participated in inflammation by enhancing
the transcription of inflammatory genes via the NF-κB signaling
pathway (49). In addition, NF-κB transcription factors were the
driving forces for microglial activation (50). Hence, Jmjd3 was a
key factor in a cascade of inflammatory cytokine response (23,
28, 49, 50). In this study, we investigated the alterations of Jmjd3
and H3K27me3 expression under stress and found that CUMS
induced increased Jmjd3 expression and decreased H3K27me3
expression in the prefrontal cortex and hippocampus. These
results imply that the downregulation of H3K27me3 by Jmjd3
mediated the expression of cytokines. It is important to note
that minocycline, as an inhibitor to microglial activation, could
reverse all the alterations in both adolescent and adult animals.
Our results, for the first time, highlighted that Jmjd3 plays a key
role in the inflammatory response to CUMS and mediates the
susceptibility to depression by regulating microglial activation
and pro-inflammatory cytokine expression in the prefrontal
cortex and hippocampus.

CONCLUSIONS

Exposure to CUMS in the adolescent period induced long-term
depressive-like behaviors, increased pro-inflammatory cytokine
expression andmicroglial activation, increased Jmjd3 expression,
and decreased H3K27me3 expression in the prefrontal cortex
and hippocampus of adolescent and adult rats. Meanwhile,
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minocycline, a microglial activation inhibitor, mitigated all the
alterations. Our study suggests that Jmjd3 might be involved
in the susceptibility to depression by modulating the microglial
activation and pro-inflammatory cytokine expression.

LIMITATION

This study has limitations. First, primed microglia have
two functional subtypes, “classical activation” and “alternative
activation.” The present study only discussed the “classical
activation,” and no indicators of the “alternative activation” were
included. Second, Jmjd3 is an important epigenetic element
in microglial activation. Lack of a Jmjd3 inhibitor limits the
understanding about the role of Jmjd3 in susceptibility to
depression induced by early-life stress.
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