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A B S T R A C T

Background and purpose: This study aimed to compare the post-irradiation secondary cancer rates of boron 
neutron capture therapy (BNCT), proton beam therapy (PBT), and X-ray therapy (XT) in pediatric and Adolescent 
and Young Adult (AYA) patients with intracranial lesions.
Materials and methods: BNCT, PBT, and XT plans were optimized for nine pediatric and AYA patients with 
intracranial lesions. The BNCT dose calculation results were biologically effective dose converted. Lifetime 
attributable risk (LAR) was calculated using a calculation model proposed by Schneider et al. Statistical analysis 
was performed using log-linear model with mixed effects. Organs included in the radiation field were the brain, 
bones, and soft tissue. The difference in LAR between the three treatments for each organ and the number needed 
to treat (NNT), as an indicator of the number of cases required to achieve the effect of suppressing the occurrence 
of secondary cancers, was calculated and evaluated.
Results: Statistically significant differences between BNCT vs PBT and XT were confirmed for the brain, bone, soft 
tissue, and cumulative (P < 0.0001). Significant differences were also observed in PBT and XT, with P < 0.0001 
for brain and cumulative, P = 0.0002 for bone, and P = 0.0281 for soft tissue. The cumulative NNT for BNCT vs. 
PBT, BNCT vs. XT, and PBT vs. XT were 162, 78.6, and 153, respectively.
Conclusion: BNCT had a significantly lower LAR compared to PBT and XT. These findings suggest the usefulness 
of BNCT in pediatric and AYA patients with brain tumors from the perspective of post-irradiation secondary 
cancer.

Introduction

In cancer treatment, patients aged 0–14 are called pediatric patients, 
and those aged 15–39 are identified as the Adolescent and Young Adult 
(AYA) generation [1]. Long-term survivors of childhood cancer who 
receive radiation therapy have a significantly higher risk of developing 
secondary cancers than adults [2]. Therefore, it is important to consider 
secondary cancer when performing radiotherapy in young patients such 
as pediatric and AYA patients. Follow-up and cohort studies have been 
conducted on cancer incidence after radiation exposure in children 
[3,4]. However, it takes a long time, at least 30 years, to evaluate 

secondary cancer incidence from these studies. Therefore, as surrogate 
markers of secondary cancer incidence, the lifetime attributable risk 
(LAR) of each organ has been calculated using the method described by 
Schneider et al. [5]. LAR calculations using this method have been used 
to compare different irradiation methods [6–9]. Proton beam therapy 
(PBT) has been reported that it has a lower incidence of secondary 
cancers compared to intensity-modulated radiation therapy (IMRT) and 
three-dimensional conformal radiation therapy of X-ray therapy (XT) 
[6,7,10]. Additionally, PBT studies evaluating proton craniospinal 
irradiation with vertebral body sparing and a comparative evaluation of 
scattering and scanning proton beam therapy have been reported [8,9].
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Boron Neutron Capture Therapy (BNCT) is a type of radiation ther-
apy conducted by exposing tumors, which selectively absorb 10B, to 
thermal neutrons and treating them with 7Li and α particles produced in 
the neutron capture reaction (10B (n, α) 7Li). The generated 7Li and α 
particles have ranges of 9–10 μm and 4–5 μm, respectively, which are 
less than 10 μm, corresponding to the cell size. These particles have the 
high linear energy transfer and more cell-killing than X-ray and PBT. 
Therefore, it is possible to administer a high dose to the tumor while 
minimizing the dose to the surrounding normal tissue, and treatment 
can be completed in one session [11]. BNCT for brain tumors in pediatric 
patients has been performed previously, and their study have suggested 
the possibility of applying BNCT to pediatric patients [12–14]. 
Regarding to post-irradiation secondary cancer, Zhang et al. has re-
ported a study on the secondary cancer risk in pediatric patients treated 
with BNCT for brain tumors in China using a phantom [15].

Reports have compared the doses of BNCT, PBT, and XT in patients 
with brain tumors, previously [16]. However, no comparative evalua-
tion of the three treatments (BNCT, PBT, and XT) has been reported 
regarding the post-irradiation secondary cancer rate, which should be 
considered in radiation therapy for pediatric and AYA patients. There-
fore, this study aimed to compare and evaluate the rates of post- 
irradiation secondary cancer among BNCT, PBT, and XT and clarify 
their differences.

Materials and methods

Patient selection

Nine patients diagnosed with brain tumors aged 7–38 years who 
underwent PBT or IMRT at the Shonan Kamakura General Hospital be-
tween 2011 and 2024 were enrolled in this study. The selected patients 
included those treated with re-irradiation. The institutional review 
board approved this study (no. TGE02071-024). Table 1 shows patient 
information.

Irradiation was performed in the supine position with the head fixed 
to a thermoplastic shell. Computed tomography (CT) was used to obtain 
images of the head with a slice thickness of 2 mm for treatment 
planning.

Treatment planning

Precision version 3.3.1.3 (Accuray, Sunnyvale, CA, USA) was used as 
the treatment planning system (TPS) for the XT plans. The dose calcu-
lations were performed using the VOLO-Ultra algorithm [17]. Tomo-
Helical was selected as the plan delivery mode, IMRT as the plan mode, 
and the dynamic mode as the jaw mode. The field width and pitch of the 
plans depend on the patient. At the end of each optimization round, a 
final dose with a high-resolution grid and a rescaled dose of 50 % of the 
planning target volume (PTV) was obtained. Treatment planning was 
performed such that 95 % of the PTV would meet more than 95 % of the 
prescribed dose (D95%) while reducing the dose to the organs at risk 
(OAR) as much as possible.

VQA version 6.1.5 (Hitachi, Tokyo, Japan) was used as the TPS for 

the PBT plans. Intensity-modulated proton therapy was used as the 
irradiation method. Using Clinical tumor volume (CTV)-based treatment 
planning, plans were optimized robustly with 3 mm setup uncertainty 
and 3.5 % range uncertainty. The dose was prescribed at D50% of the 
CTV, and the Pencil Beam Convolution method was used as the calcu-
lation algorithm.

For the BNCT plans, we used RayStation version 2023B (RaySearch 
Lab, Stockholm, Sweden) and nuBeam Dose Engine version 1.00 
(Neutron Therapeutics LLC., Danvers, MA, USA) as the calculation en-
gines for dose calculation. The current version of the nuBeam Dose 
Engine uses the GEANT4 version 11.1.1 [18] for particle transport. The 
BNCT dose was calculated using the simulated neutron and γ ray fluxes 
and the corresponding KERMA and dose conversion factors provided 
vendor. ENDF/B-VIII.0 and JEFF-3.3 were used for the nuclear data 
[19,20]. The relative biological effectiveness (RBE) and compound 
biological effectiveness (CBE) of each dose component for each organ 
were determined based on the previous literature [21–25] and vendor 
recommendations (Table 2). Dose calculations were performed to satisfy 
the dose constraints of 5 GyE to 5 % volume of the eye (D5%) and 9 GyE 
for D1% of the normal brain.

Two radiation oncologists assessed the appropriates of treatment 
plan.

When comparing BNCT doses with PBT and XT doses, a biological 
effective dose (BED) conversion is required. Therefore, using the MIM 
software (MIM Software Inc. 25,800 Science Park Drive – Suite 180 
Cleveland, OH 44122), BED conversion was performed to match the 
BNCT dose calculation results with PBT and XT [26]. α/β was set to 10 
for tumors and 3 for normal tissue.

LAR calculation

The LAR was calculated based on the concept proposed by Schneider 
et al. [5] using the formula and parameters from the previous study 
[6,8]. Three organs were analyzed: the brain, bone, and soft tissue. Dose 
data were transferred from each TPS to the MIM software, and the dose- 
volume histogram (DVH) data used for calculations were output from 
the MIM software.

Table 1 
Patient characteristics.

Patient Primary pathology Lesion site Diameter of the PTV (cm) Sex Age Fractional dose (Gy) No. of fractions Prescribed dose (Gy)

A Glioma Left frontal lobe 6.5 M 11 1.8 33 59.4
B Glioblastoma Left temporal lobe 9.6 M 7 1.8 33 59.4
C Glioma Left frontal lobe 7.4 F 35 2.0 30 60
D Ependymoma Right temporal lobe 5.3 M 10 1.8 30 54
E Gliosarcoma Left frontal lobe 8.0 F 38 2.0 30 60
F Glioma Right frontal lobe 12.2 M 36 2.0 30 60
G Glioblastoma Left frontal lobe 7.1 M 30 2.0 30 60
H Astrocytoma Cerebellum 6.5 F 16 1.8 28 50.4
I Glioma Left frontal lobe 8.5 M 36 2.0 30 60

Table 2 
The CBE and RBE parameters used for the dose calculation of BNCT.

Tissue type CBE RBEN RBEH RBEγ Tissue to blood ratio

Tumor 3.8 3.2 3.2 1 3.5
Skin 2.5 3.3 3.2 1 1
Bone 1 3.2 3.2 1 1
Brain 1.35 3.2 3.2 1 1
Soft tissue 1.35 3.2 3.2 1 1
Water 1 0 3.2 1 1
Air 0 0 0 0 0

CBE: Compound Biological Effectiveness.
RBEN : Relative Biological Effectiveness of Nitrogen dose.
RBEH : Relative Biological Effectiveness of Hydrogen dose.
RBEγ : Relative Biological Effectiveness of Gamma-ray dose.
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Statistical analysis

The LAR for BNCT, PBT, and XT were transformed using common 
logarithms to homogenize the variance, and parallel box plots were used 
to visualize the distribution. Additionally, the analysis was conducted 
using the mixed-effects model, incorporating individual differences as 
random-effect factors. The statistical software ‘EZR’ was utilized for the 
statistical analysis [27] and two-tailed tests were performed.

The following model (a log-linear model with mixed effects) was set 
with the common logarithmic value of the LAR as the objective variable 
and individual differences as random variable factors, and an analysis of 
variance was performed. 

log
(
LARij

)
=

⎧
⎨

⎩

μ + δi + εi0(BNCT) : j = 0
μ + β1 + δi + εi1(PBT) : j = 1
μ + β2 + δi + εi2(XT) : j = 2

(1) 

Here, μ, β1, β2 are unknown parameters (regression coefficient with 
fixed effects), δi is a random effect variable that follows a normal dis-
tribution with mean zero and variance φ2 independently for patient i, (i 
= 1–9), and εij (j = 0, 1, 2, i = 1–9) is a random term that represents the 
residual variation σ2 with mean zero and variance (unknown) 
independently.

Furthermore, to directly compare the LAR values of PBT and XT, the 
following statistical model was set up and evaluated (i = 1–9): 

log
(
LARij

)
=

{
μ + δi + εi1(PBT) : j = 1
μ + β + δi + εi2(XT) : j = 2 (2) 

The number needed to treat (NNT) was then calculated. The NNT is 
the inverse of the LAR difference (%) divided by 100, indicating the 
number of patients required for treatment to prevent one additional 
incidence of post-irradiation cancer.

Results

Fig. 1 shows an example of the dose distribution for patient A in XT, 
PBT, and BNCT. The central issue of this paper is the evaluation of LAR 
calculated from irradiated normal tissue. Therefore, in BNCT, the dose 

distribution of normal tissue is shown. XT uses TomoHelical and irra-
diates from a 360◦ direction, so the dose spreads to the normal brain. On 
the other hand, PBT irradiates with two fields at 0◦ and 50◦, and it can be 
seen that the spread of the dose to the normal brain is suppressed 
compared to XT. Furthermore, BNCT sets the D5% of the left eyeball at 5 
GyE or less, which further suppresses the dose to the normal brain.

Table 3 shows LAR differences (%) between each treatment and the 
NNT for each organ. In all comparisons, the difference was larger for the 
brain than for bone and soft tissue, resulting in a smaller NNT. The NNT 
of cumulative for BNCT vs. PBT, BNCT vs. XT, and PBT vs. XT were 162, 
78.6, and 153, respectively. Therefore, the NNT for BNCT vs. XT was the 
smallest and LAR difference was the largest.

Fig. 2 shows boxplots of the log-transformed LAR for each organ in 
the BNCT, PBT, and XT. The cumulative risk of post-irradiation sec-
ondary cancer was calculated as the sum of the LAR of all organs in the 
same patient. When comparing BNCT with PBT and XT, LAR was 
significantly lower in the brain, bone, soft tissue, and cumulative (P <
0.001). In addition, when comparing the LAR of the PBT and XT, the P- 
values for the brain, soft tissue, and cumulative were less than 0.001, 
and the P-value for the bone was less than 0.05, confirming statistical 
significance.

Fig. 1. Dose distribution of transversal (upper) and sagittal (lower) views for patient A. Doses above 5 GyE are shown with dose color wash (scale as right). GTV is 
shown in red diagonal lines. Dose distributions for XT (left), PBT (middle), and BNCT (right) are shown, respectively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Table 3 
LAR differences between each treatment and the NNT for each organ at risk.

Organ at 
risk

BNCT vs. PBT BNCT vs. XT PBT vs. XT

LAR 
diff 
(%)

NNT LAR 
diff 
(%)

NNT LAR 
diff 
(%)

NNT

Brain 0.54 ±
0.26

185 1.15 ±
0.35

87.1 0.61 ±
0.16

165

Bone 0.05 ±
0.04

2.04 
× 103

0.08 ±
0.05

1.22 × 103 0.03 ±
0.02

3.05 
× 103

Soft tissue 0.03 ±
0.02

3.61 
× 103

0.04 ±
0.03

2.40 × 103 0.01 ±
0.02

7.18 
× 103

Cumulative 0.62 ±
0.30

162 1.27 ±
0.41

78.6 0.65 ±
0.17

153

LAR diff (%): Lifetime Attributable Risk difference, expressed in percentage.
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Discussion

We evaluated and compared the risks of secondary cancers after 
BNCT, PBT, and XT in pediatric and AYA patients with brain tumors. We 
found that BNCT can reduce the risk of post-irradiation secondary 
cancer incidence compared to PBT and XT.

A LAR comparison of XT and PBT for pediatric brain tumors has been 
previously reported [6], and the results of this study, in accordance with 
those of the past, showed that the LAR of PBT was significantly lower. 
This is thought to be because PBT has a Bragg peak and is more focused 
than XT in terms of both lateral penumbra and depth distribution, 
thereby reducing the dose to nearby normal organs. In BNCT, boron 
uptake varies between tumors and surrounding healthy organs, such as 
the brain, and is considered in dose calculations as CBE for each tissue. 
Therefore, the difference in CBE and boron uptake between the tumor 
and adjacent brain tissue enhances the dose gradient. Consequently, the 
dose administered to healthy tissues in BNCT is reduced compared to 
PBT and XT, and the LAR is believed to be smaller.

The subjects of this study were patients with brain tumors, whose 
tumors were located relatively close to the skin. It is thought that the 
difference in post-irradiation cancer rates between each treatment will 
also vary depending on whether the tumor is central or peripheral, and 
whether it is infratentorial or supratentorial. Additionally, it has been 
reported that irradiation of the chest and abdomen yields greater dif-
ferences in LAR when compared to brain tumors for PBT and XT [6]. 

Therefore, if BNCT is applied to the chest or abdomen, it is estimated 
that the LAR disparity will be more pronounced, and the NNT will be 
smaller than observed in this study. However, many parameters remain 
uncertain, such as the RBE and CBE of the abdominal organs. Therefore, 
addressing these issues could facilitate comparisons of LAR for tumors in 
these regions.

In this study, the BNCT dose was converted to the BED, and the LAR 
was compared with PBT and XT. The RBE dose is determined by taking 
into account the physical dose based on X-rays and the RBE value. PBT 
has been defined as the biological dose obtained by multiplying an RBE 
of 1.1 with the physical dose. However, the dose calculation for BNCT is 
more intricate than that for other radiotherapies. BNCT accounts for the 
RBE in four components: boron dose, nitrogen dose, gamma-ray dose, 
and hydrogen dose, and incorporates the value of CBE to account for the 
accumulation of boron compounds. Various studies have been con-
ducted on RBE models for BNCT [28,29]. BNCT is a radiation therapy 
that is prescribed at the cellular level. Therefore, it is essential to eval-
uate at the cellular level and to consider the boron concentration in the 
tumor during treatment to predict the biological effects.

XT and PBT using low-LET radiation are usually treated with low- 
dose fractionated irradiation, while BNCT is basically performed with 
a single high-dose irradiation. Fractionated irradiation takes advantage 
of recovery of sublethal damage (SLD) in normal tissue. However, SLD 
recovery is not expected with high-LET radiation used in BNCT 
compared to low-LET radiation. Because of the high cell-killing effect of 

Fig. 2. Boxplots of log-transformed LAR for each organ in BNCT, PBT, and XT, (a) Brain, (b) Bone, (c) Soft tissue, (d) Cumulative. ***P-value < 0.001, **P-value <
0.01, and *P-value < 0.05.
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high-LET radiation, an antitumor effect can be expected for tumors that 
are resistant to low-LET radiation. However, high LET radiation also has 
a significant effect on normal cells, so careful consideration must be 
given in treatment planning. Linear-Quadratic model is difficult to use 
when the single prescription dose is very high, and it is difficult to 
compare doses using EQD2 with other radiotherapy modalities because 
of the complex biological response in the case of high LET radiation. 
Therefore, it is crucial to establish the method which can easily and 
accurately evaluate dose comparisons and sums relative to the dose of 
conventional radiation therapy.

A limitation of this study is that the RBE of the fast neutron doses was 
not accurately assessed. In this research, the values employed in nuclear 
reactors to date were selected based on the literature. However, the 
neutron energy spectra of the accelerator-based BNCT (AB-BNCT) sys-
tems vary from system and the RBE of fast neutrons differs across sys-
tems. Therefore, RBE is determined experimentally through cell 
irradiation [30,31]. The RBE for the fast neutron component is esti-
mated to be below 3.2, based on the evaluations for the instrument 
employing the same lithium target as the BNCT system [30] used in this 
study. Thus, the actual LAR of BNCT might be lower than our findings, 
necessitating cell irradiation with our BNCT system for a more precise 
assessment.

Another limitation was that the dose outside the irradiation area was 
not considered. Neutrons emitted from the beam aperture of the AB- 
BNCT system spread out. The dose outside the irradiation area in the 
AB-BNCT system, employing a beryllium target, has been assessed 
through measurements and simulations [32]. Although this contribution 
is believed to be minor compared to the dose inside the irradiation field, 
it should still be evaluated in a comprehensive assessment of the sec-
ondary cancer risk.

In this study, nine cases were analyzed. From Fig. 2, it can be seen 
that the brain and the total, especially in BNCT, show more variability 
compared to PBT and XT. Tumor location in this study varied from case 
to case. With respect to tumor location, depth from the surface and 
location in relation to normal tissue may affect DVH and LAR, and we 
intend to continue our research while increasing the number of cases 
analyzed in the future.

Additionally, since tumor control and long-term survival are 
important in clinical radiation therapy, these factors must be kept in 
mind when selecting a treatment modality. Since there is still no clinical 
data supporting the secondary cancer incidence after BNCT, further 
evidence needs to be established in the future.

Conclusion

We compared the post-irradiation secondary cancer rates among 
BNCT, PBT, and XT. The results revealed that BNCT had a significantly 
lower LAR compared to either PBT or XT. These findings suggest the 
usefulness of BNCT in pediatric and AYA patients with brain tumors 
from the perspective of post-irradiation-induced secondary cancer.
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