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Abstract: Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expres-
sion of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB)
signaling pathway. In the present study, we found that cucurbitacin B decreased the expression
of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α.
We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced
ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA
and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively
down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins
(i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-
regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser
extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression
of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory
activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at
the initial step in the TNF-α-dependent NF-κB signaling pathway.

Keywords: cucurbitacin B; nuclear factor κB; TNF receptor 1

1. Introduction

Pro-inflammatory cytokines, such as those belonging to the tumor necrosis factor
(TNF) family and interleukin-1 (IL-1) family, are mainly produced by macrophages [1]. In
the intracellular signaling pathways, TNF-α and IL-1 primarily activate the transcription
factor nuclear factor κB (NF-κB) [2,3]. NF-κB induces the transcriptional activation of many
genes, some of which encode cell adhesion molecules, cytokines, and chemokines [4]. In
vascular endothelial cells, cell adhesion molecules are up-regulated during inflammation
and mediate the capture and migration of circulating leukocytes to local inflamed sites [5,6].
Intercellular adhesion molecule-1 (ICAM-1) is a cell adhesion molecule that regulates
inflammatory and immune responses [7]. Its expression is mainly up-regulated at the
transcriptional level by NF-κB subunits [8].

TNF-α binds to TNF receptor 1 (TNF-R1), which is widely expressed, and TNF receptor
2 (TNF-R2), the expression of which is more limited [9]. TNF-R1 possesses an extracellular
cysteine-rich domain (CRD) that is essential for ligand binding and an intracellular death
domain (DD) that mediates NF-κB and cell death signaling [10,11]. Upon binding with TNF-
α, TNF-R1 recruits TNF receptor-associated death domain (TRADD), receptor-interacting
protein kinase 1 (RIPK1), and TNF receptor-associated factor 2 (TRAF2) to its DD [3,9].
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The TNF-R1 complex activates the inhibitor of NF-κB (IκB) kinase, which induces IκBα
phosphorylation and its subsequent ubiquitination [12,13]. NF-κB heterodimers, such as
those comprising RelA/p65 and p50, are sequestered to the cytosol by the association
with IκBα, and proteasome-dependent degradation allows for the liberation of NF-κB
heterodimers and their nuclear translocation [12,13].

Cucurbitacins, including cucurbitacin B (Figure 1A), belong to a group of triterpenes
that are characterized by the cucurbitane skeleton (9β-methyl-19-norlanosta-5-ene) and
are present in Cucurbitaceae and other plant families [14,15]. Cucurbitacins exert various
biological effects, such as anti-inflammatory and anticancer activities [14–18]. The anti-
inflammatory and anticancer activities of cucurbitacins are attributed at least partly to their
inhibition of the constitutive and stimulation-induced NF-κB-dependent pathway [19–34].
Cucurbitacin B was shown to down-regulate the TNF-α-induced expression of NF-κB
target genes and inhibit the transactivation activity of RelA without suppressing its nuclear
translocation in human cervical carcinoma HeLa cells [21]. Cucurbitacins B and D reduced
the TNF-α-induced expression of NF-κB reporter in human embryonic kidney 293 cells [34].
Cucurbitacin E suppressed the TNF-α-induced phosphorylation and nuclear translocation
of RelA in human synoviocyte MH7A cells [26]. Collectively, these findings indicate
that cucurbitacins inhibit the TNF-α-dependent NF-κB signaling pathway; however, the
underlying mechanisms have not yet been elucidated.
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Figure 1. Cucurbitacin B down-regulated TNF-α-induced cell-surface ICAM-1 expression.
(A) Structure of cucurbitacin B. (B,C) A549 cells were pretreated with serial dilutions of cucurbitacin
B for 1 h and were then treated with (blue circles in (B) and red circles in (C)) or without (gray circles)
TNF-α (2.5 ng/mL) in the presence of cucurbitacin B at the indicated final concentrations for 6 h. Cell
viability (%) (B) and ICAM-1 protein (%) (C) are shown as the mean ± S.E. of three independent
experiments. (D,E) A549 cells were incubated with cucurbitacin B for 1 h and then treated with or
without TNF-α (2.5 ng/mL) in the presence or absence of cucurbitacin B (30 µM) for 6 h. Histograms
are representative of three independent experiments (D). Cell-surface ICAM-1 (%) is shown as the
mean ± S.E. of three independent experiments (E). * p < 0.05, ** p < 0.01, and *** p < 0.001.

We identified a number of natural and synthetic compounds that exhibited anti-
inflammatory activity in evaluations of the down-regulation of ICAM-1 expression by
pro-inflammatory cytokines [35]. In the present study, we found that cucurbitacin B
reduced the level of ICAM-1 expression induced by TNF-α and IL-1α in human lung
adenocarcinoma A549 cells. We further investigated the mechanisms by which cucurbitacin
B down-regulates TNF-α-induced ICAM-1 expression. The results obtained revealed that
cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-
induced NF-κB signaling pathway.
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2. Results
2.1. Cucurbitacin B Down-Regulated TNF-α-Induced ICAM-1 Expression

A549 cells were treated with serial dilutions of cucurbitacin B for 1 h and were then
incubated with or without TNF-α or IL-1α for 6 h. Cell viability was assessed using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cucurbitacin B
at concentrations up to 30 µM did not markedly affect cell viability; however, a reduction in
cell viability was observed at 100 µM (Figure 1B; Figure S1). TNF-α-induced expression of
ICAM-1 protein was reduced by cucurbitacin B in a dose-dependent manner (Figure 1C). IL-
1α-induced expression of the ICAM-1 protein was also decreased by cucurbitacin B (Figure
S2). Flow cytometry confirmed that cucurbitacin B at 30 µM decreased the expression of cell-
surface ICAM-1 induced by TNF-α and IL-1α (Figure 1D,E; Figure S3). Based on cell-ELISA,
cucurbitacin B appeared to preferentially reduce the TNF-α-induced expression of ICAM-1
protein over that induced by IL-1α (Figure 1C; Figure S2). Therefore, we examined the
mechanisms by which cucurbitacin B down-regulated TNF-α-induced ICAM-1 expression
as well as the upstream intracellular process.

ICAM-1 expression was up-regulated by TNF-α mainly at the transcriptional level [8].
In A549 cells, TNF-α increased the expression of ICAM-1 mRNA by more than 300-fold 3 h
after the stimulation (Figure 2A). Cucurbitacin B reduced the TNF-α-induced expression
of ICAM-1 mRNA (Figure 2A). Under these conditions, cucurbitacin B did not affect cell
viability (Figure 2B). The luciferase reporter assay showed that cucurbitacin B inhibited
TNF-α-induced ICAM-1 promoter-driven luciferase activity (Figure 2C). These results
indicate that cucurbitacin B suppressed TNF-α-induced ICAM-1 transcription.
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Figure 2. Cucurbitacin B inhibited TNF-α-induced ICAM-1 transcription. (A,B) A549 cells were
pretreated with or without cucurbitacin B for 1 h and were then treated with (+) or (−) TNF-α
(2.5 ng/mL) for 3 h. ICAM-1 mRNA (fold) is shown as the mean ± S.E. of three independent
experiments (A). Cell viability (%) is shown as the mean ± S.E. of four independent experiments (B).
(C) A549 cells were transfected with plasmid vectors encoding the ICAM-1 promoter-driven firefly
luciferase reporter and cytomegalovirus (CMV) promoter-driven Renilla luciferase reporter for 17 h.
Transfected A549 cells were pretreated with or without cucurbitacin B for 1 h and were then treated
with (+) or without (−) TNF-α (2.5 ng/mL) for 3 h. ICAM-1 promoter-driven luciferase activity was
normalized to CMV promoter-driven luciferase activity. Luciferase activity (fold) is shown as the
mean ± S.E. of three independent experiments. *** p < 0.001.
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2.2. Cucurbitacin B Inhibited the TNF-α-Dependent NF-κB Signaling Pathway

Upon TNF-α stimulation, the NF-κB subunit RelA translocated from the cytosol to the
nucleus and bound to the ICAM-1 promoter in A549 cells [36]. A549 cells were pretreated
with cucurbitacin B for 1 h and were then stimulated with TNF-α for 30 min. Cell lysates
were separated into nuclear and cytoplasmic fractions. The amount of RelA in the nuclear
fraction was markedly increased by TNF-α stimulation but decreased by cucurbitacin B
(Figure 3). The amount of RelA in the cytoplasmic fraction was not markedly affected by
cucurbitacin B (Figure 3).
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Figure 3. Cucurbitacin B inhibited the TNF-α-induced nuclear translocation of RelA. A549 cells
were pretreated with or without cucurbitacin B for 1 h and were then treated with (+) or without
(−) TNF-α (2.5 ng/mL) for 30 min in the presence or absence of cucurbitacin B at the indicated final
concentrations, followed by the preparation of nuclear and cytoplasmic fractions. Western blots are
representative of two independent experiments.

In the TNF-α-induced NF-κB signaling pathway, a prerequisite to the nuclear translo-
cation of RelA, we previously showed that IκBα was phosphorylated in A549 cells within
5 min and then degraded to undetectable levels after 15 min [37]. Cucurbitacin B inhibited
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the phosphorylation of IκBα in a dose-dependent manner (Figure 4A,B), and this was ac-
companied by a slight increase in the IκBα protein (Figure 4C,D). The degradation of IκBα
15 min after the TNF-α stimulation was inhibited by cucurbitacin B (Figure 4E,F). These re-
sults indicate that cucurbitacin B inhibited the TNF-α-dependent NF-κB signaling pathway.
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Figure 4. Cucurbitacin B inhibited TNF-α-induced IκBα phosphorylation and its subsequent degra-
dation. (A–F) A549 cells were pretreated with or without cucurbitacin B for 1 h and were then
treated with (+) or without (−) TNF-α (2.5 ng/mL) for 5 min (A–D) and 15 min (E,F) in the presence
or absence of cucurbitacin B at the indicated final concentrations, followed by the preparation of
cytoplasmic fractions. Western blots are representative of three independent experiments (A,C,F).
The amounts of phospho-IκBα and IκBα were normalized to that of GAPDH. Phospho-IκBα protein
(%) and IκBα protein (%) are shown as the mean ± S.E. of three independent experiments (B,D,F).
* p < 0.05, ** p < 0.01 and *** p < 0.001.
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2.3. Cucurbitacin B Down-Regulated the Expression of TNF-R1

We previously showed that A549 cells express TNF-R1 but not TNF-R2 [38]. Upon a
stimulation with TNF-α, TNF-R1 recruits TRADD, RIPK1, and TRAF2 as major adaptor pro-
teins, which is essential for the activation of IκB kinase [3,9]. To clarify the mechanisms by
which cucurbitacin B inhibited the TNF-α-induced NF-κB signaling pathway, we measured
the expression levels of TNF-R1 and adaptor proteins. Western blotting using an antibody
recognizing TNF-R1 CRD showed that cucurbitacin B down-regulated the expression of
TNF-R1 (Figure S4). Western blotting using another antibody recognizing an intracellular
domain in TNF-R1 confirmed that cucurbitacin B down-regulated the expression of TNF-R1
(Figure 5A,B). In contrast, cucurbitacin B at concentrations up to 30 µM did not markedly
down-regulate the expression of TRADD, RIPK1, or TRAF2 (Figure 5C). Cucurbitacin
B did not reduce the expression of TNF-R1 mRNA; it actually increased its expression,
particularly at 10 µM (Figure 5D).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 5. Cucurbitacin B down-regulated the expression of TNF-R1 without affecting the expression 

of TRADD, RIPK1, or TRAF2. (A–C) A549 cells were treated with or without cucurbitacin B at the 

indicated concentrations for 1 h, followed by the preparation of cytoplasmic fractions. TNF-R1 was 

detected by the anti-TNF-R1 antibody C25C1, which recognized an epitope in the intracellular do-

main. Blots are representative of three (A) and two (C) independent experiments. The amount of 

TNF-R1 was normalized to that of GAPDH. TNF-R1 protein (%) is shown as the mean ± S.E. of three 

independent experiments (B). (D) A549 cells were pretreated with or without cucurbitacin B at the 

indicated concentrations for 1 h. TNF-R1 mRNA (fold) is shown as the mean ± S.E. of three inde-

pendent experiments. * p < 0.05 and *** p < 0.001. 

To clarify whether cucurbitacin B affected exogenous human TNF-R1, A549 cells 

were transiently transfected with an expression vector encoding C-terminal FLAG-tagged 

TNF-R1, driven by the constitutive CMV promoter, and were then treated with cucurbita-

cin B for 1 h. Western blotting using the anti-FLAG-antibody showed that cucurbitacin B 

decreased the amount of FLAG-tagged TNF-R1 (Figure 6A,B). These results indicate that 

cucurbitacin B selectively down-regulated the expression of TNF-R1 without affecting 

that of TRADD, RIPK1, or TRAF2. 

 

Figure 6. Cucurbitacin B down-regulated the expression of transfected TNF-R1. (A,B) A549 cells 

were transfected with a plasmid vector encoding FLAG-tagged human TNF-R1 for 18 h. Transfected 

A549 cells were treated with or without cucurbitacin B at the indicated concentrations for 1 h, fol-

lowed by the preparation of cytoplasmic fractions. Blots are representative of three independent 

experiments (A). The amount of TNF-R1-FLAG was normalized to that of GAPDH. TNF-R1-FLAG 

Figure 5. Cucurbitacin B down-regulated the expression of TNF-R1 without affecting the expression
of TRADD, RIPK1, or TRAF2. (A–C) A549 cells were treated with or without cucurbitacin B at
the indicated concentrations for 1 h, followed by the preparation of cytoplasmic fractions. TNF-R1
was detected by the anti-TNF-R1 antibody C25C1, which recognized an epitope in the intracellular
domain. Blots are representative of three (A) and two (C) independent experiments. The amount
of TNF-R1 was normalized to that of GAPDH. TNF-R1 protein (%) is shown as the mean ± S.E. of
three independent experiments (B). (D) A549 cells were pretreated with or without cucurbitacin B
at the indicated concentrations for 1 h. TNF-R1 mRNA (fold) is shown as the mean ± S.E. of three
independent experiments. * p < 0.05 and *** p < 0.001.

To clarify whether cucurbitacin B affected exogenous human TNF-R1, A549 cells were
transiently transfected with an expression vector encoding C-terminal FLAG-tagged TNF-
R1, driven by the constitutive CMV promoter, and were then treated with cucurbitacin B for
1 h. Western blotting using the anti-FLAG-antibody showed that cucurbitacin B decreased
the amount of FLAG-tagged TNF-R1 (Figure 6A,B). These results indicate that cucurbitacin
B selectively down-regulated the expression of TNF-R1 without affecting that of TRADD,
RIPK1, or TRAF2.
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Figure 6. Cucurbitacin B down-regulated the expression of transfected TNF-R1. (A,B) A549 cells were
transfected with a plasmid vector encoding FLAG-tagged human TNF-R1 for 18 h. Transfected A549
cells were treated with or without cucurbitacin B at the indicated concentrations for 1 h, followed by
the preparation of cytoplasmic fractions. Blots are representative of three independent experiments
(A). The amount of TNF-R1-FLAG was normalized to that of GAPDH. TNF-R1-FLAG protein (%) is
shown as mean ± S.E. of three independent experiments (B). * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.4. Cucurbitacin B Promoted the TNF-α-Converting Enzyme (TACE)-Dependent
Down-Regulation of TNF-R1

To investigate whether cucurbitacin B promoted TNF-R1 protein degradation, A549
cells were pretreated with the TACE inhibitor TAPI-2, the proteasome inhibitor MG-132,
and the vacuolar type H+-ATPase inhibitor bafilomycin A1, which prevents lysosomal
degradation, prior to the treatment with cucurbitacin B. TAPI-2 suppressed reductions
in TNF-R1 protein levels in cucurbitacin B-treated A549 cells (Figure 7A,B). In contrast,
cucurbitacin B still decreased TNF-R1 protein levels in the presence of bafilomycin A1
(Figure 7A,B). Unexpectedly, MG-132 alone decreased TNF-R1 protein levels, and this was
accompanied by the appearance of smaller TNF-R1 fragments (Figure 7A,B). We previously
demonstrated that MG-132 (20 µM) did not markedly affect the amount of RelA and IκBα
in A549 cells during a 75- or 90-min incubation [36,39–41]. Although further studies are
needed to clarify the mode of action of MG-132 on the degradation of TNF-R1, these results
showed that cucurbitacin B promoted the TACE-dependent down-regulation of TNF-R1.
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Figure 7. The TACE inhibitor TAPI-2 suppressed reductions in TNF-R1 protein levels by cucurbitacin
B. (A,B) A549 cells were pretreated with (+) or without (−) bafilomycin A1, TAPI-2, or MG-132 for
1 h and then with (+) or without (−) cucurbitacin B (10 µM) for 1 h in the presence of bafilomycin A1

(100 nM), TAPI-2 (25 µM), or MG-132 (20 µM), followed by the preparation of whole cell lysates. TNF-
R1 was detected by the anti-TNF-R1 antibody C25C1. Blots are representative of four independent
experiments. The amount of TNF-R1 was normalized to that of GAPDH. TNF-R1 protein (%) is
shown as the mean ± S.E. of four independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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2.5. An α,β-Unsaturated Carbonyl Moiety Was Necessary for the Inhibitory Effect of
Cucurbitacin B

Cucurbitacin B possesses an α,β-unsaturated carbonyl moiety (Figure 1A), which
binds to thiol groups by the Michael reaction. To establish whether the α,β-unsaturated
carbonyl moiety is essential for the inhibitory effects of cucurbitacin B, A549 cells were
pretreated with thiol compounds and then with cucurbitacin B, followed by a TNF-α
stimulation to induce ICAM-1 expression. Glutathione and N-acetyl-L-cysteine efficiently
attenuated the inhibitory effects of cucurbitacin B on TNF-α-induced ICAM-1 expression
(Figure 8A,B). The inhibitory effects of cucurbitacin B were also reversed, but to a lesser
extent, by L-cysteine (Figure 8C).
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Figure 8. The inhibitory effect of cucurbitacin B was attenuated by glutathione, N-acetyl-L-cysteine,
and, to a lesser extent, L-cysteine. (A–C) A549 cells were pretreated with serial dilutions of glutathione
(A), N-acetyl-L-cysteine (B), and L-cysteine (C) for 1 h and were then treated with (+) or without (−)
cucurbitacin B (10 µM) for 1 h and with (+) or without (−) TNF-α (2.5 ng/mL) for 6 h in the presence
or absence of compounds at the indicated final concentrations. Cell-surface ICAM-1 (%) is shown as
the mean ± S.E. of three independent experiments. ** p < 0.01 and *** p < 0.001.
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Glutathione and N-acetyl-L-cysteine are often used as thiol-type antioxidants, while
ascorbic acid and Trolox are antioxidants that lack thiol groups. Ascorbic acid and Trolox
at concentrations up to 10 mM did not attenuate the inhibitory effects of cucurbitacin B
on TNF-α-induced ICAM-1 expression (Figure S5). These results suggest that the α,β-
unsaturated carbonyl moiety was necessary for the inhibitory effects of cucurbitacin B.

2.6. Cytochalasin D and Jasplakinolide Only Partially Down-Regulated TNF-α-Induced
ICAM-1 Expression

Cucurbitacins have been reported to induce the aggregation of actin, which decreases
the globular actin (G-actin) pool, in Triton X-100-soluble fractions [42,43]. To clarify whether
cucurbitacin B affected the actin cytoskeleton in A549 cells, the amount of γ1-actin in cy-
toplasmic fractions, which were collected as Triton X-100-soluble fractions, was analyzed
by Western blotting. GAPDH, but not lamin A/C, was present in the cytoplasmic frac-
tion, while lamin A/C was only detected in the nuclear fraction (Figure 9). Cucurbitacin
B decreased γ1-actin in the cytoplasmic fraction (Figure 9). These results suggest that
cucurbitacin B affected the actin cytoskeleton and decreased the G-actin pool in A549 cells.
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Figure 9. Cucurbitacin B decreased γ1-actin in cytoplasmic fractions. A549 cells were treated with
the indicated concentrations of cucurbitacin B for 1 h, followed by the preparation of cytoplasmic (C)
and nuclear fractions (N). Blots are representative of two independent experiments.

We also investigated the effects of small-molecule actin-modulating agents on
TNF-α-induced ICAM-1 expression. Cytochalasin D has been shown to inhibit actin
polymerization, while jasplakinolide stabilizes the actin cytoskeleton [44]. In the present
study, cytochalasin D at concentrations higher than 3 µM only slightly decreased the
viability of A549 cells (Figure 10A), whereas cytochalasin D at a narrow range of 0.3
or 1 µM down-regulated TNF-α-induced ICAM-1 expression by ~40% (Figure 10C).
Jasplakinolide at 1 µM decreased cell viability by ~20% (Figure 10B), and down-regulated
TNF-α-induced ICAM-1 expression by approximately 30% (Figure 10D). These results
indicate that cytochalasin D and jasplakinolide only partially down-regulated TNF-α-
induced ICAM-1 expression.
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Figure 10. Cytochalasin D and jasplakinolide only partially inhibited TNF-α-induced cell-surface
ICAM-1 expression. (A–D) A549 cells were pretreated with serial dilutions of cytochalasin D (A,C) or
jasplakinolide (B,D) for 1 h and were then treated with (blue circles in A,B and red circles in C,D) or
without (gray circles) TNF-α (2.5 ng/mL) in the presence of cytochalasin D or jasplakinolide at the
indicated final concentrations for 6 h. Cell viability (%) (A,B) and cell-surface ICAM-1 (%) (C,D) are
shown as the mean ± S.E. of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Discussion

The present results demonstrated that cucurbitacin B down-regulated TNF-α-induced
ICAM-1 expression and the NF-κB signaling pathway in human lung adenocarcinoma
A549 cells. We also showed that cucurbitacin B inhibited IL-1α-induced ICAM-1 expression
in A549 cells. Previous studies reported that cucurbitacins suppressed the NF-κB pathway
activated either constitutively or by various stimuli, including TNF-α, lipopolysaccharide,
and phorbol ester plus ionomycin [19–34]. Different sets of receptors and adaptor proteins
are involved in NF-κB signaling pathways, which converge to induce the activation of IκB
kinase [3,9]. To the best of our knowledge, the target proteins of cucurbitacins in the NF-κB
signaling pathway have not yet been clearly identified.

A previous study demonstrated that cucurbitacins B, E and I suppressed LPS-induced
nuclear RelA translocation in mouse microglia [27]. Cucurbitacin E inhibited TNF-α-
induced nuclear RelA translocation in human synoviocyte MH7A cells [26] and suppressed
LPS-induced nuclear RelA translocation in mouse RAW264.7 cells without affecting the
phosphorylation of IκBα [23]. In contrast to these findings, another study demonstrated
that cucurbitacin B did not affect TNF-α-induced nuclear RelA translocation but inhibited
its transcriptional activity in human cervical carcinoma HeLa cells [21]. Based on these
findings, cucurbitacins appear to inhibit multiple steps in the NF-κB signaling pathway in
a cell context-dependent manner. The present results showed that cucurbitacin B inhibited
TNF-α-induced IκBα phosphorylation and selectively down-regulated the expression of
TNF-R1 without affecting three adaptor proteins. Therefore, the inhibition of the TNF-α-
induced NF-κB signaling pathway by cucurbitacin B appears to be at least partly attributed
to the down-regulation of TNF-R1 in the initial step.

Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the in-
hibitory effects of cucurbitacin B. These results confirmed that the α,β-unsaturated carbonyl
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moiety of cucurbitacin B is critical, which is consistent with previous findings showing
that N-acetyl-L-cysteine canceled the biological effects of cucurbitacin B in A549 cells [45].
Compounds possessing α,β-unsaturated carbonyl moieties have been reported to inhibit
the NF-κB signaling pathway by targeting the Cys179 of IκB kinase β and Cys38 of the
NF-κB subunit RelA [35,46]. We previously showed that eudesmane-type sesquiterpene
lactones containing α,β-unsaturated carbonyl moieties, such as an α-methylene-γ-lactone
or α-bromo ketone group, targeted multiple steps in the NF-κB signaling pathway induced
by TNF-α and IL-1α [41]. In addition to the down-regulated expression of TNF-R1, IκB
kinase β and the NF-κB subunit RelA are potential candidate targets for cucurbitacin B in
the common NF-κB signaling pathway activated by TNF-α and IL-1α.

We previously reported that allantopyrone A, possessing two α,β-unsaturated car-
bonyl moieties, binds and crosslinks multiple proteins, including TNF-R1, which blocks
the TNF-α-induced NF-κB pathway [47]. Allantopyrone A directly bound to TNF-R1
because it reduced the reactivity of the anti-TNF-R1 antibody to an epitope containing a
cysteine residue in the extracellular CRD [47]. Western blotting using different antibodies
recognizing TNF-R1 excluded the possibility that cucurbitacin B bound to TNF-R1 in a
similar manner to allantopyrone A. We recently reported that isopanduratin A, a flavonoid
possessing an α,β-unsaturated carbonyl moiety, down-regulated the expression of TNF-R1
by ectodomain shedding via the extracellular signal-regulated kinase (ERK)-dependent
activation of TACE and the inhibition of de novo translation via eIF2α phosphorylation [48].
Translation inhibitors regulate the expression of TNF-R1 by reducing its de novo syn-
thesis and by inducing its ectodomain shedding via the activation of ERK and/or p38
MAP kinase [49]. The TACE inhibitor TAPI-2 did not reverse the amount of TNF-R1 in
isopanduratin A-treated A549 cells, which was the combined effect of enhanced ecodomain
shedding and inhibited translation [48]. In contrast to isopanduration A, TAPI-2 suppressed
reductions in TNF-R1 in cucurbitacin B-treated A549 cells. Based on the present results,
we speculate that cucurbitacin B induces the TACE-dependent cleavage of TNF-R1 and
then promotes the prompt degradation of intracellular TNF-R1 fragments. Further anal-
yses are required to clarify the regulation of intracellular TNF-R1 levels by translation,
ectodomain shedding, lysosomal degradation, and/or proteasomal degradation as well as
the molecular mechanisms by which cucurbitacin B down-regulates TNF-R1.

Cucurbitacins have been reported to induce the aggregation of actin, which reduces the
G-actin pool [42,43]. They have also been shown to covalently bind to cofilin1 via Cys39 and
F-actin via Cys257 [50,51]. Cofilins cleave actin filaments and promote depolymerization,
which is inactivated by phosphorylation [52]. Cucurbitacins were previously found to
inhibit cofilin phosphorylation and promote actin aggregation, which was accompanied by
a reduction in the G-actin pool [53,54]. Cucurbitacin B affected the actin cytoskeleton in
A549 cells, as evidenced by a reduction in the G-actin pool. In contrast to cucurbitacin B, the
actin-modulating agents cytochalasin D and jasplakinolide exerted only partial inhibitory
effects on TNF-α-induced ICAM-1 expression in A549 cells. These results suggest that the
effects of cucurbitacin B on the actin cytoskeleton are not the main mechanism by which
it down-regulates TNF-α-induced ICAM-1 expression and inhibits the NF-κB signaling
pathway.

In the present study, we demonstrated that cucurbitacin B down-regulated the expres-
sion of TNF-R1 and inhibited the common NF-κB signaling pathway induced by TNF-α and
IL-1α. In addition, we showed that cucurbitacin B decreased γ1-actin in the cytoplasmic
fraction. These results revealed that cucurbitacin B has multiple cellular targets. Consistent
with this notion, cucurbitacin B has been shown to have many molecular targets in cancer
signaling pathways [18]. The combined effects of cucurbitacin B targeting multiple steps in
the NF-κB pathway may contribute to stronger anti-inflammatory activity. However, higher
selectivity is preferred to reduce side effects and develop therapeutic drugs. Further studies
are needed to identify the multiple cellular targets of cucurbitacin B in A549 cells and clarify
their modes of action in the NF-κB signaling pathway induced by TNF-α and IL-1α.
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4. Materials and Methods
4.1. Cells

Human lung adenocarcinoma A549 cells (JCRB0076, National Institutes of Biomedical
Innovation, Health and Nutrition JCRB Cell Bank, Osaka, Japan) were cultured in RPMI
1640 medium (Thermo Fisher Scientific, Gland Island, NY, USA) supplemented with
heat-inactivated fetal calf serum (Sigma-Aldrich, St. Louis, MO, USA) and a penicillin-
streptomycin antibiotic mixture (Nacalai Tesque, Kyoto, Japan).

4.2. Reagents

Cucurbitacin B (Tokyo Chemical Industries Co., Ltd., Tokyo, Japan), bafilomycin A1
(Cayman Chemical Company, Ann Arbor, MI, USA), MG-132 (Peptide Institute, Osaka,
Japan), TAPI-2 (Peptide Institute), N-acetyl-L-cysteine (Nacalai Tesque), glutathione (FU-
JIFILM Wako Pure Chemical Corporation, Osaka, Japan), L-cysteine (Nacalai Tesque),
ascorbic acid (Nacalai Tesque), Trolox (FUJIFILM Wako Pure Chemical Corporation), cy-
tochalasin D (Cayman Chemical Company), and jasplakinolide (Nacalai Tesque) were
purchased for the present study. Human recombinant TNF-α was provided by Dainippon
Pharmaceutical Co., Ltd. (Osaka, Japan).

4.3. Plasmids

A pCR3 expression vector encoding C-terminal FLAG-tagged human TNF-R1 was
previously described [47]. A pGL4.22[luc2CP/Puro] vector containing the ICAM-1 pro-
moter (−1604 to +40) was previously described [55]. A pCR3 expression vector encoding
CMV promoter-driven Renilla luciferase was previously described [56].

4.4. Antibodies

Primary antibodies for γ1-actin (2F3; FUJIFILM Wako Pure Chemical Corporation),
FLAG (1E6; FUJIFILM Wako Pure Chemical Corporation), ICAM-1 (15.2; Leinco Technolo-
gies, Inc., St. Louis, MO, USA), RelA (F-6; Santa Cruz Biotechnology, Dallas, TX, USA),
lamin A/C (E-1; Santa Cruz Biotechnology), GAPDH (6C5; Santa Cruz Biotechnology),
IκBα (25/IkBa/MAD-3; BD Biosciences, San Jose, CA, USA), phospho-IκBα (Ser32/36)
(5A5; Cell Signaling Technology, Danvers, MA, USA), TNF-R1 (H-5; Santa Cruz Biotech-
nology), TNF-R1 (C25C1; Cell Signaling Technology), RIPK1 (38/RIP; BD Biosciences),
TRADD (37/TRADD; BD Biosciences), and TRAF2 (F-2; Santa Cruz Biotechnology) were
used. A peroxidase-conjugated anti-mouse IgG(H + L) antibody (Jackson ImmunoResearch
Laboratories, West Grove, PA, USA) and peroxidase-conjugated anti-rabbit IgG(H + L)
antibody (Jackson ImmunoResearch Laboratories) were used as secondary antibodies.

4.5. Cell Viability Assay

Cell viability was evaluated by the MTT assay, which measured mitochondrial MTT-
reducing activity. A549 cells were incubated with MTT at a concentration of 500 µg/mL
for the last 2 h. Formazan was extracted in the presence of 5% SDS overnight. Absorbance
at 570 nm was measured by the iMark microplate reader (Bio-Rad Laboratories, Hercules,
CA, USA). Cell viability (%) was calculated as (experimental absorbance—background ab-
sorbance without cells)/(control absorbance—background absorbance without cells) × 100.

4.6. Cell-ELISA

Cell-ELISA was performed as previously described [57]. A549 cells were washed with
PBS and fixed with 1% paraformaldehyde–phosphate-buffered saline (PBS), followed by
blocking with 1% bovine serum albumin–PBS overnight. Fixed cells were serially incu-
bated with the mouse anti-ICAM-1 antibody (15.2) and peroxidase-conjugated anti-mouse
IgG(H + L) antibody. After the colorimetric reaction with o-phenylenediamine dihydrochlo-
ride and hydrogen peroxide, absorbance at 450 nm was measured by the iMark microplate
reader. ICAM-1 protein (%) was calculated as (experimental absorbance—background ab-
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sorbance without cells)/(control absorbance with TNF-α or IL-1α stimulation—background
absorbance without cells) × 100.

4.7. Flow Cytometry

Flow cytometry was performed as previously described [58]. A549 cells were stained
either with the anti-ICAM-1 antibody (15.2) or an isotype control antibody (MOPC-21;
BioLegend, San Diego, CA, USA) at a concentration of 1 µg/mL, followed by staining
with a phycoerythrin-labeled anti-mouse IgG antibody (Jackson ImmunoResearch) at
a concentration of 5 µg/mL. Fluorescent intensity was assessed by FACSCalibur (BD
Biosciences). Histograms were analyzed using FlowJo software version 8.5.1 (Tomy Digital
Biology, Tokyo, Japan).

4.8. Quantitative PCR

Total RNA was extracted with Sepasol®-RNA I Super G (Nacalai Tesque) and con-
verted to cDNA by ReverTra Ace® (TOYOBO, Osaka, Japan) and oligo (dT)20 primers.
cDNA was used as a template to evaluate the expression of ICAM-1 mRNA, β-actin mRNA,
TNF-R1 mRNA, and GAPDH mRNA by quantitative PCR using TB Green® Premix Ex
TaqTM II (Tli RNase H Plus) (Takara Bio, Kusatsu, Japan) and Thermal Cycler Dice® Real
Time System Lite (Takara Bio). The primer pairs used were previously described: human
ICAM-1 (148 bp) [59],human β-actin (143 bp) [60], human TNF-R1 (243 bp) [61], and human
GAPDH (113 bp) [62].

4.9. Luciferase Reporter Assay

A549 cells were transfected with a pGL4.22[luc2CP/Puro] vector encoding an ICAM-1
promoter-driven firefly luciferase reporter and a pCR3 expression vector encoding a CMV
promoter-driven Renilla luciferase reporter by HilyMax Transfection Reagent (Dojindo
Laboratories, Kumamoto, Japan). Cell lysates were prepared and used for the luciferase
assay as previously described [56]. Relative light units were measured by Lumitester C-110
(Kikkoman Biochemifa, Tokyo, Japan).

4.10. Preparation of Cell Lysates

A549 cells were treated with Triton X-100 lysis buffer (1% Triton X-100, 50 mM Tris-HCl
(pH 7.4), 2 mM DTT, and 2 mM sodium vanadate) supplemented with cOmpleteTM Protease
Inhibitor Cocktail (Sigma-Aldrich) on ice for 15 min. After centrifugation (15,300× g, 5 min),
supernatants were collected as cytoplasmic fractions. Precipitates were further treated with
sonication, and centrifuged (15,300× g, 5 min) to remove insoluble materials. Supernatants
were collected as nuclear fractions.

4.11. Western Blotting

Western blotting was performed as previously described [63]. Proteins were sep-
arated by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were
then serially incubated with primary antibodies and peroxidase-conjugated secondary
antibodies. Protein bands were acquired by Amersham Imager 680 (GE Healthcare
Japan, Tokyo, Japan) and analyzed by ImageQuant TL software toolbox version 7.0 (GE
Healthcare Japan).

4.12. Statistical Analysis

Statistical analyses were performed using a one-way ANOVA and Tukey’s test by
KaleidaGraph software version 4.5.1 (Hulinks, Tokyo, Japan).

5. Conclusions

The present results demonstrated that cucurbitacin B down-regulated the expression
of TNF-R1 and inhibited the TNF-α-dependent NF-κB signaling pathway in A549 cells.
TNF-α is produced by activated macrophages and other types of cells, while TNF-R1 is
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ubiquitously expressed in various cells. TNF-α-induced NF-κB-dependent gene expression
plays an essential role in inflammatory and immune responses. The acute and chronic
activation of the NF-κB signaling pathway has been implicated in the pathogenesis of
inflammatory diseases. Natural products, such as cucurbitacins, that target the TNF-α-
induced NF-κB pathway have potential as anti-inflammatory agents. Further studies are
needed to elucidate the mechanisms of action of cucurbitacins on the NF-κB signaling
pathway and develop more selective anti-inflammatory agents. While the present study
focused on the cellular response of non-immune cells stimulated with inflammatory cy-
tokines, macrophages are involved in detrimental inflammatory diseases by producing
excess inflammatory cytokines, such as TNF-α. Future research is warranted to investigate
the effects of cucurbitacin B on primary macrophages and a TNF-α-induced inflammation
in vivo model.
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