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Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections
and responsible for a large proportion of mortality in children and the elderly. There are no
licensed vaccines available to date. Prophylaxis and therapeutic RSV-specific antibodies
are limited to populations at high risk owing to high cost and uncertain clinical value.
Receptors and host factors are two determinants important for virus entry and
establishment of infection in vivo. The identification and understanding of viral receptors
and host factors can help us to gain insight into the pathogenesis of RSV infection. Herein,
we reviewed receptors and host factors that have been reported thus far. RSV could bind
to CX3C chemokine receptor 1 and heparan sulfate proteoglycans via the G protein, and
to nucleolin, insulin-like growth factor-1 receptor, epidermal growth factor, and
intercellular adhesion molecule-1 via the F protein. Seven host restriction factors and 13
host factors essential for RSV infection were reviewed. We characterized the functions
and their roles in the life cycle of RSV, trying to provide an update on the information of
RSV-related receptors and host factors.
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INTRODUCTION

Respiratory syncytial virus (RSV) is one of the most common viral etiology of lower respiratory tract
infections and a major cause of mortality in children younger than 5 years old and the elderly
worldwide, imposing a huge disease burden on public healthcare system (Scheltema et al., 2017;
Geoghegan et al., 2017). To date, there are no available licensed RSV vaccines and specific antiviral
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therapies for RSV infection. Passive immunization using RSV-
specific monoclonal antibodies, such as palivizumab, is of high
cost, and the value for prophylaxis in populations at high risk of
severe infection remains unclear (Mac et al., 2019). Looking for
underlying RSV therapeutic targets and developing alternative
RSV-specific prophylaxis and therapies are needed.

RSV is a filamentous enveloped, non-segmented, negative-
sense, single-stranded RNA virus, belonging to the
Orthopeumovirus genus of the Pneumoviridae family in the
Mononegavirales order (Battles and McLellan, 2019). Externally
transmembrane glycoproteins (glycoprotein [G], fusion protein
[F], small hydrophobic protein [SH]) are crucial for RSV
attachment and fusion (Griffiths et al., 2017). Several receptors
have been described for RSV entry and pathogenesis (Table 1),
including CX3C chemokine receptor 1 (CX3CR1) (Tripp et al.,
2001), nucleolin (Tayyari et al., 2011), epidermal growth factor
(EGFR) (Currier et al., 2016), insulin-like growth factor-1 receptor
(IGF1R) (Griffiths et al., 2020), heparan sulfate proteoglycans
(HSPGs) (Feldman et al., 1999), and intercellular adhesion
molecule-1 (ICAM-1) (Behera et al., 2001). While RSV G protein
binds to CX3CR1 and HSPG, RSV F protein can interact with
nucleolin, EGFR, IGF1R, and ICAM-1. Among these receptors,
CX3CR1 is the most likely candidate because its expression pattern
matches RSV tropism and the interaction between CX3CR1 and
CX3C motif within RSV G protein contributes to suppression of
interferon type I (IFN-I) and lead to Th2-polarized response, which
are corelating to what have been observed in many studies (Isaacs,
1989; Pinto et al., 2006; Cormier et al., 2014; Caballero et al., 2015;
Hijano et al., 2019), although other viral proteins also participate in
the processes. HSPGs are the primary receptors for RSV entry into
immortal cell lines in vitro, but it may not be necessary receptors in
the human epithelium in vivo given their basal expression in these
cells. The receptors binding to the F protein mainly facilitate host
cell infection by mediating attachment, fusion, and
macropinocytosis. There is some overlap in terms of functions
between the G protein and F protein.

The establishment of virus infections in the host is greatly
affected by host–virus interactions. Host restriction factors
are cellular proteins constituting the first line of defense
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
against viruses. They exhibit enormous diversity in structures
and functions. Host restriction factors can restrict viral infection
by targeting and interfering with almost every step of the viral life
cycle. In addition, host restriction factors act as potent barriers
against cross-species transmission. Host restriction factors have
several characteristics: (1) most of them are germ-line encoded,
cell-intrinsic proteins expressed in almost all cell types; (2) in
addition to their generally IFN-inducible feature, many host
restriction factors are constitutively expressed in different cell
types, enabling their rapid responses against viruses; (3) they
frequently target conserved viral components; and (4) they have
biological functions outside of immunity, and some of the
restriction effects might be attributed to their cell-regulatory
functions (Kluge et al., 2015). To date, there are only a few host
restriction factors that have been identified to inhibit RSV
infection in humans (Table 2), including guanylate binding
protein 5 (GBP5) (Li et al., 2020), chemokine ligand 4
(CXCL4) (Han et al., 2020), extraribosomal L13a (Mazumder
et al., 2014), interferon-induced transmembrane proteins
(IFITM) (Zhang et al., 2015), apolipoprotein B mRNA-editing
enzyme-catalytic polypeptide 3G (APOBEC3G; A3G) (Fehrholz
et al., 2012), and interferon-induced protein 44 and interferon-
induced protein 44-like (IFI44 and IFI44L) (Busse et al., 2020).

In the long, continuous virus–host arm race, viruses have
evolved a series of adaptative mechanisms to not only avoid their
natural host immunity and restriction but also enable viruses to
utilize some cellular proteins to promote their replication (Doyle
et al., 2015). The definition of the host factors essential for virus
replication is ubiquitous. The mechanism of their facilitating
properties in virus replication is poorly characterized, and most
of their functions have been demonstrated by loss-of-function
screens. Only several host factors essential for RSV infection have
been reported (Table 2), including ATP1A1 (Lingemann et al.,
2019), actin-related protein 2 (ARP2) (Mehedi et al., 2016), toll-
like receptor 4 (TLR4) and CD14 (Kurt-Jones et al., 2000), ATP
binding cassette E1 (ABCE1) (Anderson et al., 2019), Rab5a (Mo
et al., 2021), c-Jun N-terminal kinases (JNKs) (Caly et al., 2017),
importin b1 (Ghildyal et al., 2005), actin-binding protein cofilin
1(Cof1), caveolae protein Caveolin 2 (Cav2), zinc finger protein
TABLE 1 | Receptors for RSV infection.

Receptors Binding
to

Functions References

CX3CR1 G protein mediating virus attachment; inhibiting IFN
type I production; promoting Th2-polarized
response.

(Imai et al., 1997; Tripp et al., 2001; Harcourt et al., 2006; Chirkova et al., 2013; Chirkova et al.,
2015; Jeong et al., 2015; Johnson et al., 2015; Zhivaki et al., 2017; Anderson et al., 2020;
Green et al., 2021)

Nucleolin F protein mediating virus internalization (Tayyari et al., 2011; Hegele, 2012; Griffiths et al., 2020; Mastrangelo et al., 2021)
EGFR F protein inducing macropinocytosis of RSV;

promoting virus fusion; increasing airway
mucus secretion.

(Currier et al., 2016; Lingemann et al., 2019)

IGF1R F protein facilitating the translocation of nucleolin to
cell membrane

(Griffiths et al., 2020)

HSPGs G protein virus attachment. (Krusat and Streckert, 1997; Bourgeois et al., 1998; Feldman et al., 1999; Hallak et al., 2000;
Feldman et al., 2000)

ICAM-1 F protein facilitating neutrophils and eosinophils
adhesion to airway

(Patel et al., 1995; Arnold and Konig, 1996; Chini et al., 1998; Wang et al., 2000; Behera et al.,
2001)
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ZNF502 (Kipper et al., 2015), Crm1 (Ghildyal et al., 2005), and
p32 (Hu et al., 2017).

In this review, we discussed recent advances in RSV receptors
and host factors and tried to elucidate their roles in the
pathogenesis of RSV infection. A better understanding of the
interaction between RSV and the host could help to identify new
therapeutic targets and guide future interventions.
RESPIRATORY SYNCYTIAL VIRUS
RECEPTORS

CX3C Chemokine Receptor 1
CX3CR1 is a seven-transmembrane G-coupled chemokine
receptor expressed in various cell types, including NK cells,
microglia, macrophages, monocytes, neurons, epithelium, and
endothelium (Imai et al., 1997; Kim et al., 2011). In the lung, it is
exclusively expressed on motile cilia of lung ciliated epithelial
cells (Jeong et al., 2015; Anderson et al., 2020). The fractalkine
(CX3CL1) and CX3C motif of the RSV G glycoprotein are only
two known ligands for CX3CR1 (Tripp et al., 2001; Kim et al.,
2011). The CX3C motifs (aa 169–191), a structure within the
cystine noose of G glycoprotein, shares 42% homology with
the chemokine domain of fractalkine (Tripp et al., 2001). The
interaction between CX3CR1 and fractalkine mediates leukocyte
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
adhesion, activation, and trafficking (Harcourt et al., 2006). The
CX3CR1–CX3CL1 axis has been shown to play an important
role in the pathogenesis of brain and neurodegenerative diseases,
such as Alzheimer’s disease (Lee et al., 2018), but its role in lung
diseases, especially in infectious respiratory diseases, is poorly
characterized. In RSV infection, the conserved CXC3 motif of its
G glycoprotein was able to bind to CX3CR1 in vitro and in vivo
to initiate infection (Jeong et al., 2015; Anderson et al., 2020;
Green et al., 2021). Given its expression pattern in the lung,
which matched the tropism of RSV infection, studies have shown
that CX3CR1 is a more attractive candidate than HSPGs in vivo,
since HSPGs are a primary receptor on immortalized cell lines
but are expressed at much lower levels in the human airway
epithelium, the primary site of RSV infection (Anderson et al.,
1988; Johnson et al., 2015; Anderson et al., 2020; Green
et al., 2021).

The interaction between RSV and CX3CR1 has a crucial role
in RSV pathogenesis. It can induce the secretion of multiple
cytokines and chemokines secretion, including IL-8, MIG, and
fractalkine (Chirkova et al., 2015). In fatal RSV bronchiolitis, the
lung tissue was prominent for B-cell infiltration (Reed et al.,
2009). Zhivaki et al. showed that RSV could activate neonatal B
regulatory (nBreg) cells via the interaction between the F protein
and BCR, which could subsequently upregulate CX3CR1
expression on nBreg cells. G protein induced RSV attachment
and entry by binding to CX3CR1 and mediated IL-10 secretion,
TABLE 2 | Host factors for RSV infection.

Host factors Functions References

Host restriction factors
GBP5 promoting SH protein secretion from cells (Li et al., 2020)
CXCL4 blocking RSV binding to HSPGs (Han et al., 2020)
L13a promoting formation of VAIT complex and silencing M proteins

translation
(Mazumder et al., 2014)

IFITM interfering with viral entry and replication; reducing cellular infiltration
in lung

(Everitt et al., 2013; Zhang et al., 2015; Smith et al., 2019)

IFI44 and IFI44L restricting viral replication and transcription (Busse et al., 2020)
A3G impaired viral transcription; inhibited replication; enhanced mutation

rate
(Fehrholz et al., 2012)

Host factors essential
for RSV infection
TLR4 increasing neutrophils infiltration in lung (Kurt-Jones et al., 2000; Monick et al., 2003; Puthothu et al., 2006;

Goutaki et al., 2014; Zhou et al., 2016)
CD14 having synergistic effect with TLR4 on the pathogenesis (Kurt-Jones et al., 2000; Puthothu et al., 2006; Goutaki et al., 2014)
ATP1A1 inducing macropinocytosis of RSV by activating EGFR (Lingemann et al., 2019)
ARP2 mediating budding and virus production; involving in the processes

of F protein induced filopodia formation
(Mehedi et al., 2016)

ABCE1 promoting virus replication and progeny virus assembly (Anderson et al., 2019)
Rab5a facilitating the formation of macropinosomes; inhibiting IFN-g

production
(Mo et al., 2021)

JNKs suppressing the expression of TNF-a; associating with RSV
assembly and progeny virion release

(Caly et al., 2017)

Importin b1 importing M protein into nucleus (Ghildyal et al., 2005)
Cof1 increasing F actin filaments; promoting RSV proteins trafficking and

virus transcription in inclusion bodies
(Kipper et al., 2015)

Cav2 maintaining lipid raft integrity essential for stability of viral filaments;
facilitating the progeny viruses release

(Kipper et al., 2015)

ZNF502 unclear (Kipper et al., 2015)
Crm1 inducing M protein shuttling from nucleus to cytoplasm (Ghildyal et al., 2009)
p32 Unclear (Hu et al., 2017)
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inhibiting Th1 cell polarization and resulting in heavy viral load
and severe bronchiolitis (Zhivaki et al., 2017). Harcourt et al.
indicated that the G protein CX3C motif could reduce the
antiviral T-cell response by inhibiting IFN-g-secreting
CX3CR1+ T-cell migration to the lung. However, their study
suggested that CX3CR1+ cytotoxic cells were preferentially
recruited to the lung during RSV infection and constituted a
major cytotoxic population in the lung tissue (Harcourt et al.,
2006). Chirkova et al. suggested that the CX3C motif could
impair innate and adaptive immune responses and suppress
antiviral activity. The CX3C chemokine motif suppressed IFN-
type I/III production and decreased maturation and percentage
of IFN-a and tumor necrosis factor alpha (TNF-a)-producing
plasmacytoid dendritic cells and TNF-a-producing monocytes
(Chirkova et al., 2013). CX3CR1 is highly expressed on Th1 cells,
and the fractalkine–CX3CR1 interaction can mediate an
amplification circuit of Th1-polarized immune responses
(Fraticelli et al., 2001). Mutation of CX3CR1, which decreased
the affinity of CX3CR1 to fractalkine, resulted in poor clinical
outcomes (Amanatidou et al., 2006). Thus, the CX3C motif
might compete with fractalkine for CX3CR1 binding (Chirkova
et al., 2013) and subsequently disrupt the fractalkine-induced
Th1-polarized response, which is beneficial for the body to rule
out viral infection. In addition, binding of the CX3C motif to
CX3CR1 led to a significant decrease in the expression of cilium-
related genes, such as CC2D2A and CFAP221. The counts of
ciliated cells, on average, were reduced significantly in epithelial
cell cultures compared to non-infected cultures (Anderson et al.,
2021). The binding of RSV G protein to CX3CR1 could also
trigger the expression of nucleolin and increase the
internalization of RSV, although the specifics in the signaling
cascade remained poorly delineated.

The CX3C motif on the G protein is a promising target for
prophylactic and therapeutic treatment development. Mutation
of the CX3C motif to CX4C could restore the Th1 polarization
response (Chirkova et al., 2013). The anti-G mAbs, 131–2G,
3G12, and 3D3, whose binding sites are adjacent to the CX3C
motif, could reduce lung viral titers and inflammation in
established RSV infection (Caidi et al., 2018).

Nucleolin and Insulin-Like Growth
Factor-1 Receptor
Nucleolin is a protein expressed abundantly in the nucleolus and
is also found in different eukaryotic cell compartments, including
nucleoplasm, cytoplasm, and cell membrane (Ginisty et al., 1999;
Jia et al., 2017). Studies have shown that nucleolin (NCL) is
expressed on the apical surface of the human respiratory
epithelium (Tayyari et al., 2011; Griffiths et al., 2020). NCL is
composed of three domains: the N-terminal domain, which is
rich in glutamic acid and aspartic acid and functions in division
control; the central domain, also called RNA-binding domains
(RBDs) which interact with RNA; and the C- terminal domain,
which interacts with nucleic acids and facilities RBD binding
(Ginisty et al., 1999; Jia et al., 2017). The shuttling property of
NCL could mediate internalization of its binding partners
(Koutsioumpa and Papadimitriou, 2014) and thus play a role
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
in virus entry. Studies have been shown that cell surface
nucleolin plays a vital role in viral infection, including herpes
simplex virus type 1 (Calle et al., 2008), rabies virus (Oksayan
et al., 2015), influenza virus (Kumar et al., 2016), respiratory
syncytial virus (Tayyari et al., 2011), and some other viruses.
During RSV infection, the RBD 1,2 of NCL serves as a receptor
for the F protein of RSV (Mastrangelo et al., 2021) and mediates
RSV internalization. Although nucleolin is expressed at low
levels on the cell surface (Griffiths et al., 2020), it has fairly
efficient kinetics of turnover with a half-life <1 h (Hegele, 2012),
and the constant turnover of cell surface nucleolin can provide
enough NCL for F protein binding.

The IGF1R is a dimeric transmembrane glycoprotein in
which the extracellular region is involved in ligand binding
and the intracellular region contains a tyrosine kinase domain.
The interaction between IGF1R and its natural ligand IGF
mainly activates two signaling cascades, the PI3K-AKT/mTOR
and mitogen-activated protein kinase (MAPK) pathways (Forbes
et al., 2020). The interaction between IGF1R and prefusion RSV
F protein could mediate the activation of protein kinase C zeta,
facilitating the translocation of nucleolin to the cell membrane
(Griffiths et al., 2020) and enhancing RSV internalization.

Epidermal Growth Factor
EGFR is composed of an extracellular cysteine-rich ligand
receptor, a single a-helix transmembrane domain, and an
intracellular kinase domain (Ullrich et al., 1984). EGFR
signaling has been demonstrated to stimulate macropinocytosis
by activating PAK1, leading to changes in membrane and
cytoskeletal dynamics (Weerasekara et al., 2019; Lee et al.,
2019). EGFR activation and upregulation of its downstream
effectors, such as Cdc42 and PAK1, were observed during RSV
infection and followed by an increase in extracellular fluid
uptake, which indicated RSV-induced micropinocytosis
(Krzyzaniak et al., 2013). In addition, the interaction between
EGFR and F protein contributes to RSV pathogenesis by
promoting fusion and airway mucus secretion (Currier
et al., 2016).

Heparan Sulfate Proteoglycans
HSPGs are found on the basement membranes of most
mammalian cell types and in the extracellular matrix. They are
responsible for a wide range of functions, such as providing a
matrix for cell migration, packing granular contents, protecting
cytokines and chemokines from proteolysis, and facilitating cell-
extracellular matrix attachment and cell to cell interactions
(Sarrazin et al., 2011). HSPGs are utilized by many viruses for
attachment and initiation of infection, such as herpesviruses
(Flynn and Ryan, 1995), HIV (Mondor et al., 1998), and
picornaviruses (Jackson et al., 1996).

RSV G protein contains an HBD adjacent to a conserved
cysteine noose, and studies have identified HSPGs as crucial
receptors for RSV infection on immortalized cell lines in vitro
(Krusat and Streckert, 1997; Bourgeois et al., 1998; Feldman
et al., 1999; Hallak et al., 2000). The RSV F protein could also
interact with HSPGs to facilitate viral attachment and infection
February 2022 | Volume 12 | Article 858629
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(Feldman et al., 2000). Adding heparin-subserted cell lines or
reducing the heparan sulfate expression on the cellular surface
could significantly reduce RSV infection. However, a lack of
HSPGs expression on the apical surface of human bronchial
epithelium or basal only expression indicated that HSPG might
not be a candidate receptor for RSV to initiate infection in vivo
(Anderson et al., 2020; Green et al., 2021).

Intercellular Adhesion Molecule-1
ICAM-1, also known as CD54, is a member of the
immunoglobulin superfamily, composed of five consecutively
linked extracellular immunoglobulin-like domains (Staunton
et al., 1988; Staunton et al., 1990). ICAM-1 is mainly expressed
on the surface of immune, endothelial, and epithelial cells and is
fairly low, and its expression can be upregulated by cytokines
such as IL-1, IFN-g, and TNF-a (Hubbard and Rothlein, 2000;
Yu et al., 2020), in response to inflammatory stimulation. ICAM-
1 mediates diverse cellular processes by binding to LFA-1,
including leukocyte adhesion, transendothelial migration,
signal transduction, and immune response (Bella et al., 1998;
Wee et al., 2009; Teijeira et al., 2017). ICAM-1 is a primary
receptor for the major groups of rhinoviruses, including all RV-B
and most RV-A (Basnet et al., 2019). RSV could also utilize
ICAM-1 as a receptor via the F protein (Behera et al., 2001).
Antibodies targeting ICAM-1 could significantly reduce RSV
infection. Studies have demonstrated that RSV infection can
significantly upregulate the expression levels of ICAM-1 in vitro
(Arnold and Konig, 1996; Wang et al., 2000), which are mediated
by nuclear factor kappa B (NF-kB), CCAAT/enhancer-binding
protein (C/EBP) and interleukin-1a [Patel et al., 1995; Chini
et al., 1998]. The interaction between the F protein and ICAM-1
plays a role in RSV pathogenesis. Upregulation of ICAM-1 in
RSV-infected respiratory epithelial cells facilitated neutrophil
and eosinophil adhesion, which might contribute to airway
inflammation, injury, and obstruction (Stark et al., 1996).
HOST RESTRICTION FACTORS
IN RSV INFECTION

Guanylate Binding Protein 5
Guanylate binding protein 5 (GBP5) belongs to the GBP family,
a family of IFN-inducible guanosine triphosphatases (GTPases),
which are important for activating innate immunity against a
wide variety of intracellular pathogens (Cui et al., 2021). GBP5 is
involved in diverse cellular processes, such as inflammasome
activation, signal transduction, translation, and exocytosis (Feng
et al., 2017). Previous studies have demonstrated that GBP5 can
restrict the replication of HIV-1 (Krapp et al., 2016) and
influenza A virus (Feng et al., 2017).

GBP5 was identified as a host restriction factor of RSV. It
functioned by targeting the SH protein (Li et al., 2020). RSV
small hydrophobic (SH) protein is a transmembrane surface
glycoprotein located at the Golgi complex and cell surface that
functions as cation-selective ion channels in planar lipid bilayers
(Gan et al., 2008). GBP5 could interact with SH protein and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
interfere with SH function by mediating SH oversecretion from
cells. The inhibitory property of GBP5 in RSV infection required
the localization of GBP5 in the Golgi but not its GTPase activity.
In addition, GBP5 could boost the IFN-g response, which has
strong antivirus effect on RSV infection (Li et al., 2020).

Chemokine Ligand 4
Human CXCL4 is a 70-amino acid protein that is mainly
expressed in platelet a-granules and is involved in diverse
physiological and pathological processes, such as hematopoiesis,
angiogenesis, inflammation, and atherosclerosis (Vandercappellen
et al., 2011). CXCL4 has been reported to be a regulator in viral
replication and propagation. Studies have indicated that CXCL4
can both inhibit and facilitate HIV infection (Schwartzkopff et al.,
2009; Auerbach et al., 2012). CXCL4 was able to inhibit the IFN
pathway and enhance DENV replication in vitro and in vivo (Ojha
et al., 2019). CXCL4 had an important role in viral clearance in
H1N1-infected mouse models, and CXCL4 knockout mice were
complicated with severe lung pathology (Guo et al., 2017).

CXCL4 has a protective effect against RSV infection, and its
expression levels are strongly related to disease severity. CXCL4
restricted RSV replication by blocking the binding to HSPGs.
CXCL4 could be induced by RSV and attenuate lung
inflammation in mouse models. CXCL4 concentration could
be an indicator of disease severity. Its concentration in plasma
is negatively associated with RSV replication and disease severity
due to its inhibitory property in RSV entry and replication, while
its concentration in nasopharyngeal aspirates is associated with
high viral load and severe infection (Han et al., 2020).

Extraribosomal L13a
L13a is a ribosomal protein released from the 60S ribosomal
subunit (Mazumder et al., 2003). Released L13a could bind the
gamma-activated inhibitor of translation (GAIT) elements, a
specific RNA hairpin in the 3′ untranslated regions (3′UTR) of
the target proinflammatory mRNAs and subsequently cause
translational silencing (Sampath et al., 2004; Vyas et al., 2009).
Studies had shown its antiviral activity in RSV and severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) through the
VAIT pathway, a pathway similar to GAIT, which silences viral
translation by forming an RNA-binding complex targeting the 3′
UTR of viral mRNA (Mazumder et al., 2014; Basu et al., 2021).
RSV triggered the release of L13a from the ribosome and released
L13a-mediated VAIT complex formation, which could bind to
the RSVM gene mRNA 3′UTR and silence M protein translation
(Mazumder et al., 2014). Since the mRNA silencing property of
L13a was observed in RSV-infected non-immune cells, this
indicated that the activation of L13a release and formation of
the VAIT complex were independent of IFN-g, which was
essential for initiating GAIT. However, the signaling cascade in
RSV-infected non-immune cells triggering L13a dissociation
remains unclear.

Interferon-Induced Transmembrane
Proteins
IFITM proteins belong to a family of small transmembrane
proteins that have been ascribed a role in antiviral activity
February 2022 | Volume 12 | Article 858629
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(Brass et al., 2009; Diamond and Farzan, 2013). They are
activated strongly by type I and type II IFNs in the early phase
of viral infection and have been demonstrated as a host
restriction factor in influenza A virus, HIV, dengue virus,
SARS-CoV-2, etc. (Huang et al., 2011; John et al., 2013;
Compton et al., 2014; Prelli Bozzo et al., 2021). IFITM has
been shown to inhibit RSV infection. IFITM1 located on the cell
surface could prevent infection by RSV, and the antiviral
activities were related to the cytoplasmic intracellular loop
(CIL) domain because mutation of the CIL domain changed its
cellular locations significantly, reducing its inhibition of RSV
infection. The mice lacking IFITM1 experienced more severe
disease after RSV infection, presented by significant weight loss,
higher lung viral load, and prominent inflammatory cell
infiltration in lungs compared to control groups (Smith et al.,
2019). IFITM3 knockout mice showed significant weight loss
and cellular infiltration, which indicated that IFITM3 could also
restrict RSV infection in vivo (Everitt et al., 2013). Zhang et al.
showed that IFITM inhibited RSV infection by interfering with
viral entry and replication (Zhang et al., 2015). However, the
specific mechanism of host–pathogen interactions between
IFITM and RSV is less characterized.

Interferon-Induced Protein 44 and
Interferon-Induced Protein 44-Like
IFI44 and IFI44L are both IFN-stimulated genes (ISGs) located on
the same chromosome and share 45% amino acid identity. Studies
have reported their antiviral activities against HIV, HCV, and
influenza A virus (Takahashi et al., 1990; Power et al., 2015; Zhou
et al., 2021). In addition, IFI44 and IFI44L had antiproliferative
activity (Huang et al., 2018). A bioinformatic screen revealed that
IFI44 and IFI44L were upregulated during RSV infection
(McDonald et al., 2016; Li et al., 2021). Busse et al. showed that
the expression of both genes was upregulated soon after RSV
infection in vitro and in vivo and that they could restrict viral
replication and transcription but had no effect on virus attachment
(Busse et al., 2020). In addition, the expression levels of IFI44 and
IFI44L in infants were negatively related to disease severity.

Apolipoprotein B mRNA-Editing Enzyme-
Catalytic Polypeptide 3G
The APOBEC family is a diverse group containing 11 enzymes
involved in humoral immunity, with the functions of RNA and
ssDNA editing (Chelico et al., 2009). The deaminase activity of
A3G could inhibit the replication of HIV by incorporating into
budding virions and inducing hypermutation by deaminating
cytidines to uridines (Malim, 2009; Krupp et al., 2013). In
addition to its deaminase activity, the property of RNA-binding
probably renders its antiviral activity in some virus replication,
such as measles, mumps, and respiratory syncytial viruses
(Fehrholz et al., 2012; Tiwarekar et al., 2018). The interaction
between A3G and RNA impaired viral transcription and inhibited
viral replication. Interestingly, A3G enhanced the mutation rate of
RSV in a deaminase-independent manner and induced A to G and
U to Cmutation instead of A3G-specific C to U/T hypermutations
(Fehrholz et al., 2012). Overall, A3G could inhibit RSV replication
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and decrease viral infectivity in vitro, but the specific mechanism
of inhibition remains unclear.
HOST FACTORS ESSENTIAL FOR
RSV INFECTION

Toll-Like Receptor 4 and CD14
TLR and CD14 are two essential receptors that contribute to
recognizing microbial molecules or products such as
lipopolysaccharide (LPS) (Ciesielska et al., 2021), RSV F protein
(Kurt-Jones et al., 2000), and chlamydial heat shock protein 60
(Sasu et al., 2001) and boost the innate immune system in the early
phase of infection (Takeuchi and Akira, 2010; Wu et al., 2019;
Fitzgerald and Kagan, 2020; Ciesielska et al., 2021). RSV F protein
interacted with TLR4 and CD14 to stimulate innate response.
TLR4 were important to limited viral replication in vivo, and RSV
infection persists longer in TLR-deficient mice (Kurt-Jones et al.,
2000). However, TLR4might play a role in the pathogenesis of RSV
infection. RSV infection could upregulate TLR4 expression on
airway epithelial cells and alter the sensitivity of responding to
inhaled environmental agents such as LPS, while this response to
the LPS exposure was suppressed under normal conditions
(Monick et al., 2003). The overexpression of TLR4 and the
interaction between TLR4 and LPS induced high secretion of IL-
6, which might promote neutrophils survival and infiltration in the
lung, increase oxidation activity, and inhibit the Treg suppression
function (Detournay et al., 2005; Xie et al., 2009). In addition,
studies have demonstrated that polymorphisms of TLR4 and CD14
are related to disease severity (Puthothu et al., 2006; Goutaki et al.,
2014; Zhou et al., 2016). TLR4 and CD14 amino acid variants
might influence the interaction between RSV F protein and them,
which results in differences in the innate immune response.

ATP1A1
ATP1A1 is the a-subunit of the NA+, K+-ATPase complex, a
protein forming the ion channel responsible for Na+ and K+ across
the plasma membrane. It contains 10 transmembrane helices
embedding the ATPase complex in the plasma membrane
(Morth et al., 2011; Lingemann et al., 2019). The cytoplasmic
tail of ATP1A1 activates the cellular kinase c-Src (Tian et al., 2006)
and triggers the phosphorylation of EGFR to induce
micropinocytosis (Donepudi and Resh, 2008). Studies have
shown that ATP1A1 has a role as a pro-viral factor in various
viral infections, such as SARS-CoV-2 (Schmidt et al., 2021), Ebola
virus (Garcia-Dorival et al., 2014), hepatitis C virus (Lussignol
et al., 2016), and mammarenaviruses (Iwasaki et al., 2018).

ATP1A1 has a positive effect on RSV-induced EGFR-
mediated macropinocytosis. ATP1A1 formed clusters during
early RSV infection, and the localization of these clusters were
adjacent to the F protein. This phenomenon could be reproduced
with a UV-inactivated RSV, which indicated that the formation
of the ATP1A1 cluster was independent of viral replication and
transcription of the complete viral gene. Activated ATP1A1
triggered the EGFR tyrosine 845 phosphorylation via the
c-Src-kinase pathway and ultimately induced macropinocytosis
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of RSV. Within the macropinosomes, the RSV F protein
underwent a second, highly efficient cleavage to become fusion
competent and infectious (Krzyzaniak et al., 2013; Lingemann
et al., 2019). However, Lingemann et al. could not identify any
binding of RSV protein to ATP1A1. The possible reason might
be either the unstable interaction between RSV protein and
ATP1A1 or there were as-yet unknown upstream effectors
(Lingemann et al., 2019).

Actin-Related Protein 2
ARP2 is a large subunit of the actin-related protein 2/3 (Arp2/3)
complex, which is an important regulator of actin
polymerization (Hurst et al., 2004). Actin polymerization
mediates morphological changes responsible for diverse
cellular processes, including division, phagocytosis, and
migration (Swaney and Li, 2016). Actin plays a pivotal role in
the RSV life cycle and is involved in the processes of virus
transcription, viral morphogenesis, assembly, and budding
(Burke et al., 1998; Kallewaard et al., 2005; Jeffree et al., 2007).

ARP2 was identified as a host factor facilitating RSV infection
by a genome-wide siRNA screen. Its expression was independent
of RSV infection. The ARP2 knockout A549 cell line showed
reduced release of progeny RSV particles, indicating that ARP2
might be important for budding and virus production. ARP2 is
also involved in the processes of RSV F protein-induced filopodia
formation, which facilitates cellular motility and promotes virus
spreading to neighboring uninfected cells (Mehedi et al., 2016).

ATP Binding Cassette E1
ABCE1 is a member of the superfamily of ATP binding cassette
proteins. It was originally described as a ribonuclease L inhibitor
(Bisbal et al., 1995). ABCE1 is involved in diverse physiological and
pathological processes including regulation of mitochondrial
mRNA stability, suppression of IFN-induced antiviral activity,
promotion of tumor cell proliferation, and antiapoptosis
(Lingappa et al., 2006; Tian et al., 2012). Studies have
demonstrated its positive role in HIV-1 replication (Zimmerman
et al., 2002; Lingappa et al., 2006). ABCE1 was identified as a host
factor essential for measles, mumps, and RSV by a genome-scale
RNAi screen. It is essential for viral protein synthesis and facilitates
the accumulation of viral proteins, which are important for virus
replication and progeny virus assembly (Anderson et al., 2019).

Rab5a
Rab5a belongs to the Rab subfamily of small GTPases that are
involved in various cellular processes, such as cell growth,
differentiation, intracellular transportation, and signal
transduction (Sheng et al., 2014). A previous study showed
that Rab5 was required in the formation of macropinosomes
and mediated macropinocytosis of RSV (Krzyzaniak et al., 2013).
Rab5a might be able to hijack the innate immune response by
reducing IFN regulatory factor (IRF) production and
subsequently inhibiting the IFN-g production in RSV infection.
The expression of Rab5a was increased in the RSV-infected
airway epithelium and Rab5a-deletion-reduced RSV replication
and airway inflammation. Moreover, the level of Rab5a was
correlated with disease severity in RSV-infected infants (Mo
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
et al., 2021). Altogether, Rab5a might be a host factor essential
for RSV infection.

c-Jun N-Terminal Kinases
JNKs are known as stress-activated proteins that belong to the
MAPKs and regulate diverse cellular functions, such as
proliferation, apoptosis, and autophagy. Cellular stress induced
by viral infection, bacterial toxins, and proinflammatory
cytokines strongly activates JNKs (Lee et al., 2016). JNKs were
demonstrated to facilitate some viral infections, such as VZV
(Zapata et al., 2007), influenza A virus (Zhang et al., 2016), and
HCV (Takaki et al., 2017). JNKs were implicated as a pivotal host
factor essential for RSV infection (Caly et al., 2017). RSV was
able to increase JNK phospho-activation, and activated JNKs
could suppress the expression of TNF-a (Stewart et al., 2006), a
critical antiviral cytokine against RSV. JNKs were associated with
RSV assembly and progeny virion release. Inhibition of JNK1/2
signaling could reduce RSV virion release by trapping virions in
the host cell cytoplasm (Caly et al., 2017).

Host Factors Utilized by RSV M Protein
Matrix (M) protein plays as a key role in RSV life cycles. In early
infection, the M protein is imported into the nucleus by importin
b1 (Ghildyal et al., 2005) and inhibits host cell transcription
(Ghildyal et al., 2002). In late infection, the M protein
translocates to the cytoplasm, mainly within inclusion bodies,
and promotes RSV replication and release (Ghildyal et al., 2009).
Several reported host factors essential for efficient RSV infection
have been demonstrated to function by interacting with the RSVM
protein. The actin-binding protein cofilin 1 (Cof1), caveolae
protein Caveolin 2 (Cav2), and the zinc finger protein ZNF502
were identified as host factors essential for RSV replication by novel
microfluidics screening (Kipper et al., 2015). Cof1 was probably
trapped within the inclusion body by the M protein and led to an
increase in F-actin filaments, which promoted RSV protein
trafficking and virus transcription in inclusion bodies. Cav2
enhanced RSV infection by maintaining lipid raft integrity,
which is essential for the stability of viral filaments and the
release of progeny viruses. Crm1 could mediate M protein
shuttling to the cytoplasm. The M protein within cytoplasm
inclusion bodies was important for virus assembly (Ghildyal
et al., 2009). The mitochondrial protein p32/HAPB1/gC1qR/
C1qbp is an important protein in maintaining mitochondrial
structures (Hu et al., 2013). RSV could change the distribution of
mitochondria in the cytoplasm. p32 and mitochondria adjacent to
viral inclusion bodies were required for efficient RSV replication. In
addition, knockdown of p32 can significantly reduce RSV
production (Hu et al., 2017).
CONCLUSION

RSV remains a major cause of lower respiratory tract infections
and mortality in children and the elderly. Mainstream therapies
remain limited to supportive care. We still do not have a licensed
vaccine available to date. The use of prophylaxis and the
therapeutic RSV-specific antibody palivizumab is restricted to a
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minor fraction of the population at high risk due to its
uncertainty of clinical values and high costs. The development
of vaccines and RSV-specific therapies has been hampered by
poor characterization of RSV pathogenesis both in virus entry
and immune responses to viruses. Several receptors of RSV have
been identified, and antibodies targeting them could significantly
reduce RSV replication. Among these receptors, CX3CR1 is the
most promising candidate either for delineating the tropism of
RSV or taking as a potential therapeutic target because of its
expression pattern in the human airway epithelium. In addition
to receptors, host factors play an important role in the virus–host
interaction. Host restriction factors can inhibit virus replication
by interfering with almost every step of the viral life cycle, while
there is another group of host factors that are essential for virus
infection. The identification of RSV receptors and host factors
helps us to identify potential prophylaxis and therapeutic targets
and offers opportunities for vaccine and medicine development
against RSV infection.
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