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Development and validation 
of an early warning tool for sepsis 
and decompensation in children 
during emergency department 
triage
Louis Ehwerhemuepha1*, Theodore Heyming1,2, Rachel Marano1, Mary Jane Piroutek1, 
Antonio C. Arrieta1, Kent Lee1, Jennifer Hayes1, James Cappon1, Kamila Hoenk1 & 
William Feaster1,2

This study was designed to develop and validate an early warning system for sepsis based on a 
predictive model of critical decompensation. Data from the electronic medical records for 537,837 
visits to a pediatric Emergency Department (ED) from March 2013 to December 2019 were collected. A 
multiclass stochastic gradient boosting model was built to identify early warning signs associated with 
death, severe sepsis, non-severe sepsis, and bacteremia. Model features included triage vital signs, 
previous diagnoses, medications, and healthcare utilizations within 6 months of the index ED visit. 
There were 483 patients who had severe sepsis and/or died, 1102 had non-severe sepsis, 1103 had 
positive bacteremia tests, and the remaining had none of the events. The most important predictors 
were age, heart rate, length of stay of previous hospitalizations, temperature, systolic blood pressure, 
and prior sepsis. The one-versus-all area under the receiver operator characteristic curve (AUROC) 
were 0.979 (0.967, 0.991), 0.990 (0.985, 0.995), 0.976 (0.972, 0.981), and 0.968 (0.962, 0.974) for 
death, severe sepsis, non-severe sepsis, and bacteremia without sepsis respectively. The multi-class 
macro average AUROC and area under the precision recall curve were 0.977 and 0.316 respectively. 
The study findings were used to develop an automated early warning decision tool for sepsis. 
Implementation of this model in pediatric EDs will allow sepsis-related critical decompensation to be 
predicted accurately after a few seconds of triage.

In the United States, hospitalizations for severe sepsis doubled between 2000 and 2008, with an overall annual 
healthcare cost of $146  billion1. In children, sepsis is associated with high morbidity and mortality, especially 
among vulnerable patients with chronic conditions, who often require intensive treatment to avoid prevent-
able  death2. Even the limited number of pediatric deaths caused by sepsis is understood as too heavy a loss to 
bear when one considers that early interventions could have prevented it. While preventable deaths are rare in 
pediatrics, the prevalence of severe sepsis in children is increasing across the globe because of the increasing 
prevalence of drug-resistant  infections3. The earliest opportunity for intervention prior to critical decompensa-
tion often arises in the emergency department (ED), the first point of contact between many patients and the 
healthcare system. Despite a recent increase in clinicians’ awareness of critical decompensation and severe sepsis, 
as well as associated changes in the corresponding diagnostic  criteria1–4, pediatric-specific tools remain poorly 
developed. Stratifying risk with the systemic inflammatory response syndrome (SIRS) criteria or quick sequen-
tial [sepsis-related] organ failure assessment (qSOFA) typically takes approximately 1  h5. Methods that facilitate 
early warning and decision making may lead to process improvements and associated reductions in morbidity 
and  mortality6,7. A predictive model for predicting patient death is ideal for capturing critical decompensation 
because even false-positive predictions help to identify patients in need of critical attention. In this study, we 
used stochastic gradient boosting to develop a predictive model for critical decompensation in pediatric ED 
patients. Stochastic gradient boosting is an approach of using multiple regression tree-based models to predict 
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an event of interest. In this case, the trees are built sequentially in such a way that each additional tree minimizes 
the error of the ensemble.

Methods
Triage data on all ED encounters from March 2013 to December 2019 at a tertiary pediatric institution were 
retrieved. To create an early warning tool with utility for non-emergency as well as emergency healthcare provid-
ers, outcome events were measured while the patients were in the ED or after admission to the hospital, when 
applicable. In evaluating the diagnosis codes entered into the electronic medical record (EMR), a multiclass 
outcome variable was created to capture: (1) patients who expired using all-cause mortality; (2) patients who had 
severe sepsis; (3) patients who had non-severe sepsis; (4) patients with positive bacteremia tests but no diagnosis 
of sepsis; (5) patients who experienced none of the four aforementioned events. Diagnostic codes (ICD-9-CM 
and ICD-10-CM) were used to identify patients with sepsis which facilitated the automated identification of 
sepsis—refer to the Supplemental Material for a list of codes.

Standard definitions for pediatric sepsis and severe sepsis have not been developed and validated. The Sep-
sis-1, Sepsis-2, and Sepsis-3 guidelines are for adult medicine with pediatric  modifications8–10. The International 
Pediatric Sepsis Consensus Criteria (IPSCC) modified Sepsis-2 framework for specific pediatric age groups but 
the framework is complex, labor intensive, has limited overlap with sepsis diagnosed at the bedside, and is yet to 
be  validated9–11. Also, less than 50% of children with septic shock were identified by the Sepsis-3 in a pediatric 
ICU  study12. In July 2018, The US Centers for Disease Control and Prevention (CDC) convened a working group 
to outline a pediatric sepsis event case definition including a road map for future work needed to refine, validate, 
and apply the proposed  algorithm11. The group, however, emphasized that recommendations for pediatrics were 
preliminary and subject to modification due to continued refinement and  testing11.

A recent study indicated that (in adult medicine) diagnosis codes had greater specificity in identifying sepsis 
than implicit  methods13, and that there is increasing consistency in the use of diagnosis  codes14. Specificity may 
be more important than sensitivity in the definition of outcome variables for predictive modeling to reduce noise 
and the true false positive rates from the resulting model. In this study, we used both the ICD-10-CM R-codes 
(together with the corresponding ICD-9-CM codes) and explicit microbiological codes for sepsis. To compensate 
for potentially missed cases of sepsis and severe sepsis, we included a category of the response variable on all 
laboratory confirmed bacteremia.

Additional ED triage data retrieved included vital signs, use of supplemental oxygen, and skin assessment 
(description and color). The decision on the use of these triage data was driven by emergency physician recom-
mendation, practical consideration of the data available, data likely to be available during triage, and the quality 
of data available from the triage form. After careful evaluation of the patient history as captured in the EMR, 
additional data such as previous diagnoses, medications administered (e.g., antibiotics), and past admission to 
the intensive care unit (ICU) were extracted. A complete list of variables included in the model can be seen in 
the summary statistics in Tables 1 and 2. 

The data collected were randomly split into a training set (50%), a validation set (15%), and a test set (35%). 
We chose a greater percentage of data for the test set than the validation set to ensure that we can estimate model 
performance with higher statistical confidence. Extreme gradient boosting (an implementation of stochastic 
gradient boosting) was selected for development of the machine-learning algorithm due to its ability to model 
complex nonlinear systems with the automated management of missing  data15. The seminar paper on stochastic 
gradient boosting by Friedman (2002) described the process succinctly as follows: “Gradient boosting constructs 
additive regression models by sequentially fitting a simple parameterized function (base learner) to current 
‘pseudo’-residuals by least squares at each iteration. The pseudo-residuals are the gradient of the loss functional 
being minimized, with respect to the model values at each training data point evaluated at the current step”16. 
Ten-fold cross-validation was performed to select the optimal hyper-parameters from the parameter grid space 
(Table 3). Parameter values that improve learning on imbalanced datasets were selected to account for the rarity 
of pediatric deaths and severe sepsis in the dataset, while preserving the ability of the classifier to generate true 
probability values. Parameter space was designed to explore multiple interaction depths that controlled model 
complexity. Learning rate values were selected to control the rate convergence of the algorithm, and values for the 
minimum reduction in loss required to make an additional partition on the leaf node of a tree were specified. 
The minimum sum of instance weight needed in a child node, a subsample ratio of the training instances, a sub-
sample ratio of columns/predictors when constructing a tree, and the maximum delta step allowed for each leaf 
output were also considered during hyper-parameter  tuning15. When fitting the final model, the validation set was 
used to determine the optimal number of trees (or boosting iterations). The test set was used in evaluating unbi-
ased model  performances17, alert thresholds, confusion  matrices17, and implementation strategies for the model.

The relative importances of various predictors were measured using the “Gain”, which is a measure of the 
improvement in predictive power brought by a feature/variable to a given tree  branch15,18. The Shapley Additive 
Explanation (SHAP)  values19,20, a concept from game theory, was used to provide simplified inferences on how 
the variables/features in the model contribute to the risk of severe sepsis. The higher the SHAP value, the higher 
the contribution to the risk of severe sepsis. It should be noted that the simplified inference from the SHAP value 
does not indicate how the value of a vital sign is modified by age, gender, or other pertinent variables even though 
the corresponding effects have been modeled. We provide the area under the receiver operator characteristic 
curve (AUROC), which highlights model performance in terms of the sensitivity and specificity of the model; 
and the area under the precision-recall curve (AUCPR), which highlights performance in terms of the sensitivity 
and positive predictive values of the model.

In multiclass prediction problems, the class with the highest probability is often selected as the actual model 
predicted class. This approach is likely to result in sub-optimal performance in a prediction problem involving 
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Levels

Death Severe sepsis

No Yes No Yes

Age (years) 6.17 (5.29) 8.02 (6.91) 6·16 (5.29) 10·60 (6.27)

Sex

Female 143,757 (53.48) 49 (53.85) 143,720 (53.47) 86 (58.11)

Male 124,935 (46.47) 42 (46.15) 124,915 (46.48) 62 (41.89)

Unknown 135 (0.05) 0 (0.0) 135 (0.05) 0 (0.0)

Ethnicity

Latino or Hispanic 100,823 (37.50) 45 (49.45) 100,802 (37.50) 66 (44.59)

Not Latino or Hispanic 167,869 (62.44) 46 (50.55) 167,833 (62.44) 82 (55.41)

Unknown 135 (0.05) 0 (0.0) 135 (0.05) 0 (0.0)

Temperature (Celsius) 37.11 (0.91) 36.69 (1.44) 37.11 (0.91) 37.60 (1.13)

Respiratory rate (breaths/min) 26.02 (8.55) 29.00 (16.42) 26.02 (8.55) 29.46 (12.41)

Heart rate (beats/min) 118.34 (31.97) 124.58 (52.50) 118.33 (31.98) 141.78 (32.37)

Diastolic blood pressure (mmHg) 69.49 (12.08) 63.90 (20.39) 69.49 (12.08) 62.01 (15.94)

Systolic blood pressure (mmHg) 111.17 (15.27) 100.79 (26.59) 111.17 (15.·28) 100.81 (18.62)

Oxygen saturation (%) 98.99 (2.42) 90.89 (16.82) 98.99 (2.44) 95.79 (7.53)

Supplemental oxygen device
No 65,971 (24.54) 47 (51.65) 65,982 (24.55) 36 (24.32)

Yes 202,856 (75.46) 44 (48.35) 202,788 (75.45) 112 (75.68)

Nursing assessment for skin
Failed 153,451 (57.08) 86 (94·51) 153,389 (57·07) 148 (100·00)

Passed 115,376 (42.92) 5 (5.49) 115,381 (42.93) 148 (100.00)

Normal skin color
No 7762 (2.89) 47 (51.65) 7763 (2.89) 46 (31.08)

Yes 261,065 (97.11) 44 (48.35) 261,007 (97.11) 102 (68.92)

6-month medication history

Antiviral medications
No 263,125 (97.88) 74 (81.32) 263,082 (97.88) 117 (79.05)

Yes 5702 (2.12) 17 (18.68) 5688 (2.12) 31 (20.95)

Antineoplastic medications
No 262,432 (97.62) 55 (60.44) 262,411 (97.63) 76 (51.35)

Yes 6395 (2.38) 36 (39.56) 6359 (2.37) 72 (48.65)

Non-topical antibiotics
No 251,771 (93.66) 45 (49.45) 251,778 (93.68) 38 (25.68)

Yes 17,056 (6.34) 46 (50.55) 16,992 (6.32) 110 (74.32)

Carbapenems
No 264,989 (98.57) 58 (63.74) 264,986 (98.59) 61 (41.22)

Yes 3838 (1.43) 33 (36.26) 3784 (1.41) 87 (58.78)

Immunological agents
No 261,834 (97.40) 61 (67.03) 261,803 (97.41) 92 (62.16)

Yes 6993 (2.60) 30 (32.97) 6967 (2·59) 56 (37.84)

Topical antibiotics
No 259,551 (96.55) 65 (71.43) 259,552 (96.57) 64 (43.24)

Yes 9276 (3.45) 26 (28.57) 9218 (3.43) 84 (56.76)

Viral vaccines
No 209,630 (77.98) 75 (82.42) 209,634 (78.00) 71 (47.97)

Yes 59,197 (22.02) 16 (17.58) 59,136 (22.00) 77 (52.03)

Intravenous medications
No 169,591 (63.09) 7 (7.69) 169,598 (63.10) 148 (100.00)

Yes 99,236 (36.91) 84 (92.31) 99,172 (36.90) 148 (100.00)

Use of gastrointestinal tubes
No 262,410 (97.61) 57 (62.64) 262,383 (97.62) 84 (56.76)

Yes 6417 (2.39) 34 (37.36) 6387 (2.38) 64 (43.24)

6-month healthcare utilization and diagnoses history

New patients (no historical data) 77,640 (28.92) 13 (14.29) 77,634 (28.91) 19 (12.84)

Previous ICU admission
No 183,458 (68.24) 23 (25.27) 183,423 (68.25) 58 (39.19)

Yes 7638 (2.84) 55 (60.44) 7622 (2·84) 71 (47.97)

Max. previous length of stay - 6.46 (11.33) 20.33 (21.10) 6.45 (11.33) 18.48 (17.81)

Previous ED visits
No 32,356 (12.04) 44 (48.35) 32,324 (12.03) 76 (51.35)

Yes 158,740 (59.05) 34 (37.36) 158,721 (59.05) 53 (35.81)

Previous outpatient encounters
No 133,068 (49.50) 17 (18.68) 133,063 (49.51) 22 (14.86)

Yes 58,028 (21.59) 61 (67.03) 57,982 (21.57) 107 (72.30)

Previous diagnosis for sepsis
No 189,593 (70.53) 55 (60.44) 189,580 (70.54) 68 (45.·95)

Yes 1503 (0.56) 23 (25.27) 1465 (0.55) 61 (41.22)

Previous diagnosis for severe sepsis
No 190,716 (70.94) 66 (72.53) 190,706 (70.96) 76 (51.35)

Yes 380 (0.14) 12 (13.19) 339 (0.13) 53 (35·81)

Infectious and parasitic diseases (A00–B99)
No 162,470 (60.44) 35 (38.46) 162,459 (60.45) 46 (31.08)

Yes 28,626 (10·65) 43 (47·25) 28,586 (10·64) 83 (56·08)

Malignant neoplasms (C00–C96)
No 187,548 (69·77) 53 (58·24) 187,503 (69·76) 98 (66.22)

Yes 3548 (1·32) 25 (27·47) 3542 (1·32) 31 (20.95)

Continued
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class imbalance, as is encountered when predicting the most severe measures of decompensation: death or severe 
sepsis. As a result, a novel stepwise multiclass classification strategy was developed to determine how patients 
will be classified by the model based on the predicted probabilities for each class of the outcome variable. First, 
each class of the outcome variable was treated as a one-versus-all system such that the sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV), relative risk, and the number needed to evaluate 
(NNE) can be estimated from the corresponding binary classification sub-problem. This way, per-class predicted 
probability thresholds can be selected to minimize per-class as well as overall model misclassification rates while 
preserving sensitivity on the rarest outcomes. The study team (including emergency medicine and other provid-
ers) selected levels of specificity for each class to minimize the error produced during positive classification for the 
 class21,22, while maintaining acceptable levels of model sensitivity. A prioritization of the classes of the outcome 
variable was specified by the providers based on the perceived relative clinical significance of each class. The order 
of perceived clinical significance, in decreasing order, was established as severe sepsis, death, non-severe sepsis, 
and bacteremia. Severe sepsis was ranked as having higher clinical significance because of the expectation that 
patients who are indeed close to death are less likely to be missed by providers during triage than patients likely 
to have severe sepsis—and both are the most severe measures of decompensation in the model/study.

The study was carried out using the Cerner  HealtheDataLab23 platform as well as the R Statistical Program-
ming Language. Several R packages were used for the development of the machine learning model as well as 
estimating model performance and simplified  inference15,18,24.

This study was approved by the Institutional Review Board of Children’s Hospital of Orange County, Orange, 
CA 92868 with Institutional Review Board approval number 180857. The need for informed consent was waived 
by the Institutional Review Board of Children’s Hospital of Orange County, Orange, CA 92868 and all aspect of 
the work were carried out in accordance with relevant guidelines/regulations including the Helsinki Declaration.

Table 1.  Summary statistics: death and severe sepsis.

Levels

Death Severe sepsis

No Yes No Yes

In situ, benign, and other neoplasms (D00–D49)
No 187,474 (69.74) 66 (72·53) 187,427 (69.74) 113 (76.35)

Yes 3622 (1.35) 12 (13.19) 3618 (1·35) 16 (10.81)

Diseases of the blood and immune system (D50–D89)
No 180,312 (67.07) 31 (34.07) 180,294 (67.08) 49 (33.11)

Yes 10,784 (4.01) 47 (51.65) 10,751 (4.00) 80 (54.05)

Endocrine, nutritional, and metabolic diseases (E00–E89)
No 170,707 (63·50) 20 (21.98) 170,682 (63.50) 45 (30.41)

Yes 20,389 (7.58) 58 (63.74) 20,363 (7.58) 84 (56.76)

Mental, behavioral, and neurodevelopmental disorders (F01–F99)
No 169,866 (63.19) 36 (39.56) 169,842 (63.19) 60 (40.54)

Yes 21,230 (7.90) 42 (46.15) 21,203 (7.89) 69 (46.62)

Nervous system diseases (G00–G99)
No 175,830 (65.41) 29 (31.87) 175,803 (65.41) 56 (37.84)

Yes 15,266 (5.68) 49 (53.85) 15,242 (5.67) 73 (49.32)

Diseases of the eye and adnexa (H00–H59)
No 175,655 (65.34) 58 (63.74) 175,601 (65.34) 112 (75·68)

Yes 15,441 (5.74) 20 (21.98) 15,444 (5.75) 17 (11.49)

Diseases of the ear and mastoid process (H60–H95)
No 168,266 (62.59) 67 (73.63) 168,221 (62.59) 112 (75.68)

Yes 22,830 (8.49) 11 (12.09) 22,824 (8.49) 17 (11.49)

Circulatory system diseases (I00–I99)
No 182,478 (67.88) 26 (28.57) 182,440 (67.88) 64 (43.24)

Yes 8618 (3.21) 52 (57.14) 8605 (3.20) 65 (43.92)

Respiratory diseases (J00–J99)
No 121,248 (45.10) 21 (23.08) 121,227 (45.10) 42 (28.38)

Yes 69,848 (25.98) 57 (62.64) 69,818 (25.98) 87 (58.78)

Digestive diseases (K00–K95)
No 155,984 (58.02) 30 (32.97) 155,969 (58.03) 45 (30.41)

Yes 35,112 (13.06) 48 (52.75) 35,076 (13.05) 84 (56.76)

Skin and subcutaneous diseases (L00–L99)
No 171,984 (63.98) 48 (52.75) 171,959 (63.98) 73 (49.32)

Yes 19,112 (7.11) 30 (32.97) 19,086 (7.10) 56 (37.84)

Musculoskeletal and connective tissue diseases (M00–M99)
No 168,987 (62.86) 44 (48.35) 168,963 (62.87) 68 (45.95)

Yes 22,109 (8.22) 34 (37.36) 22,082 (8.22) 61 (41.22)

Genitourinary diseases (N00–N99)
No 172,781 (64.27) 44 (48.35) 172,752 (64.28) 73 (49.32)

Yes 18,315 (6.81) 34 (37.36) 18,293 (6.81) 56 (37.84)

Pregnancy and related conditions (O00–O9A)
No 190,565 (70.89) 78 (85.71) 190,515 (70.88) 128 (86.49)

Yes 531 (0.20) 13 (14.29) 530 (0.20) 1 (0.68)

Conditions from perinatal period (P00–P96)
No 180,965 (67.32) 62 (68.13) 180,913 (67.31) 114 (77·03)

Yes 10,131 (3.77) 16 (17.58) 10,132 (3.77) 15 (10.14)

Congenital malformations, deformations, and chromosomal abnormalities (Q00–
Q99)

No 176,173 (65.53) 55 (60.44) 176,150 (65·54) 78 (52.70)

Yes 14,923 (5.55) 23 (25.27) 14,895 (5.54) 51 (34.46)

Injury and poisoning (S00–T88)
No 139,709 (51.97) 35 (38.46) 139,684 (51.97) 60 (40.54)

Yes 51,387 (19.12) 43 (47.25) 51,361 (19.11) 69 (46.62)
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Variable Levels

Non-severe Sepsis Bacteremia

No Yes No Yes

Age (years) 6.16 (5.29) 7.73 (6.70) 6.16 (5.29) 6.79 (6.21)

Sex

Female 143,515 (53.48) 291 (51.23) 143,479 (53.47) 327 (55.90)

Male 124,700 (46.47) 277 (48.77) 124,719 (46.48) 258 (44.10)

Unknown 135 (0.05) 0 (0.0) 135 (0.05) 0 (0.0)

Ethnicity

Latino or Hispanic 100,632 (37.50) 236 (41.55) 100,620 (37.50) 248 (42.39)

Not Latino or Hispanic 167,583 (62.45) 332 (58.45) 167,578 (62.45) 337 (57.61)

Unknown 135 (0.05) 0 (0.0) 135 (0.05) 0 (0.0)

Temperature (Celsius) 37.11 (0.91) 37.51 (1.08) 37.11 (0.91) 37.50 (1.90)

Respiratory rate (breaths/min) 26.01 (8.54) 32.43 (13.19) 26.02 (8.55) 30.11 (11.69)

Heart rate (beats/min) 118.28 (31.95) 147.89 (31.53) 118.28 (31.96) 145.46 (31.93)

Diastolic blood pressure (mmHg) 69.49 (12.07) 65.03 (17.91) 69.49 (12.08) 65.96 (13.24)

Systolic blood pressure (mmHg) 111.19 (15.27) 102.97 (17.34) 111.18 (15.28) 105.83 (16.00)

Oxygen saturation (%) 98.99 (2.42) 96.37 (7.32) 98.99 (2·44) 97.95 (4.36)

Supplemental oxygen device
No 65,914 (24.56) 104 (18.31) 65,964 (24.58) 54 (9.23)

Yes 202,436 (75.44) 464 (81.69) 202,369 (75.42) 531 (90.77)

Nursing assessment for skin
Failed 153,008 (57.02) 529 (93.13) 153,020 (57.03) 517 (88.38)

Passed 115,342 (42.98) 39 (6.87) 115,313 (42.97) 68 (11.62)

Normal skin color
No 7669 (2.86) 140 (24.65) 7702 (2.87) 107 (18.29)

Yes 260,681 (97.14) 428 (75.35) 260,631 (97.13) 478 (81.71)

6-month medication history

Antiviral medications
No 262,760 (97.92) 439 (77.29) 262,765 (97.92) 434 (74.19)

Yes 5590 (2.08) 129 (22.71) 5568 (2.08) 151 (25.81)

Antineoplastic medications
No 262,118 (97.68) 369 (64.96) 262,112 (97.68) 375 (64.10)

Yes 6232 (2.32) 199 (35.04) 6221 (2.32) 210 (35.90)

Non-topical antibiotics
No 251,599 (93.76) 217 (38.20) 251,629 (93.77) 187 (31.97)

Yes 16,751 (6.24) 351 (61.80) 16,704 (6.23) 398 (68.03)

Carbapenems
No 264,703 (98.64) 344 (60.56) 264,710 (98.65) 337 (57.61)

Yes 3647 (1.36) 224 (39.44) 3623 (1.35) 248 (42.39)

Immunological agents
No 261,471 (97.44) 424 (74.65) 261,527 (97.46) 368 (62.91)

Yes 6879 (2.56) 144 (25.35) 6806 (2.54) 217 (37.09)

Topical antibiotics
No 259,290 (96.62) 326 (57.39) 259,281 (96.63) 335 (57.26)

Yes 9060 (3.38) 242 (42.61) 9052 (3.37) 250 (42.74)

Viral vaccines
No 209,400 (78.03) 305 (53.70) 209,462 (78.06) 243 (41.54)

Yes 58,950 (21.97) 263 (46.30) 58,871 (21.94) 342 (58.46)

Intravenous medications
No 169,597 (63.20) 1 (0.18) 169,597 (63.20) 1 (0.17)

Yes 98,753 (36.80) 567 (99.82) 98,736 (36.80) 584 (99.83)

Use of gastrointestinal tubes
No 262,110 (97.67) 357 (62.85) 262,053 (97.66) 414 (70.77)

Yes 6240 (2.33) 211 (37.15) 6280 (2.34) 171 (29.23)

6-month healthcare utilization and diagnoses history

New patients (no historical data) 77,549 (28.93) 104 (18.31) 77,076 (28.94) 83 (14.18)

Previous ICU admission
No 183,225 (68.28) 256 (45.07) 183,166 (68.26) 315 (53.85)

Yes 7485 (2.79) 208 (36.62) 7506 (2.80) 187 (31.97)

Max. previous length of stay 6.37 (11.24) 15.33 (16.86) 6.30 (11.11) 19.35 (19.11)

Previous ED visits
No 32,144 (11.98) 256 (45.07) 32,150 (11.98) 250 (42.74)

Yes 158,566 (59.09) 208 (36.62) 158,522 (59.08) 252 (43.08)

Previous outpatient encounters
No 132,968 (49.55) 117 (20.60) 132,943 (49.54) 142 (24.27)

Yes 57,742 (21.52) 347 (61.09) 57,729 (21.51) 360 (61.54)

Previous diagnosis for sepsis
No 189,420 (70.59) 228 (40.14) 189,281 (70.54) 367 (62.74)

Yes 1290 (0.48) 236 (41.55) 1391 (0.52) 135 (23.08)

Previous diagnosis for severe sepsis
No 190,399 (70.95) 383 (67.43) 190,327 (70.93) 455 (77.78)

Yes 311 (0.12) 81 (14.26) 345 (0.13) 47 (8.03)

Infectious and parasitic diseases (A00–B99)
No 162,339 (60.50) 166 (29.23) 162,268 (60.47) 237 (40.51)

Yes 28,371 (10.57) 298 (52.46) 28,404 (10.59) 265 (45.30)

Malignant neoplasms (C00–C96)
No 187,210 (69.76) 391 (68.84) 187,249 (69.78) 352 (60.17)

Yes 3500 (1.30) 73 (12.85) 3423 (1.28) 150 (25.64)

Continued
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Results
There were 537,837 qualifying encounters: 213 patients died; 295 had severe sepsis; 1102 had non-severe sepsis; 
1103 had bacteremia without sepsis. The mortality rate, incidence of severe sepsis, incidence of non-severe 
sepsis, and bacteremia were 0.04%, 0.05%, 0.20%, and 0.21% respectively. Among patients with severe sepsis, 20 
(6.8%) died. A total of 2048 encounters were associated with at least one of these undesirable events and markers 
for potential decompensation. The median and interquartile range of the ages of the patients in the study were 
4 and 8 years, respectively. There were 46·4% female patients and 62.4% Hispanic patients. Summary statistics 
of all 46 variables considered by mortality, severe sepsis, non-severe sepsis, and bacteremia without sepsis are 
shown in Tables 1 and 2. T-tests and Chi-squared tests were carried out to assess univariable (unadjusted) tests 
of association at an alpha level of 0.05. Firstly, all variables were associated with mortality except viral vaccines, 
body temperature, history of conditions affecting the ear and mastoid process, history of pregnancy or related 

Table 2.  Summary statistics: non-severe sepsis and bacteremia.

Variable Levels

Non-severe Sepsis Bacteremia

No Yes No Yes

In situ, benign, and other neoplasms (D00–D49)
No 187,125 (69.73) 415 (73.06) 187,119 (69.73) 421 (71.97)

Yes 3585 (1.34) 49 (8.63) 3553 (1.32) 81 (13.85)

Diseases of the blood and immune system (D50–D89)
No 180,103 (67.11) 240 (42.25) 180,129 (67.13) 214 (36.58)

Yes 10,607 (3.95) 224 (39.44) 10,543 (3.93) 288 (49.23)

Endocrine, nutritional, and metabolic diseases (E00–E89)
No 170,527 (63·55) 200 (35·21) 170,484 (63·53) 243 (41.54)

Yes 20,183 (7.52) 264 (46.48) 20,188 (7.52) 259 (44·27)

Mental, behavioral, and neurodevelopmental disorders (F01–F99)
No 169,629 (63.21) 273 (48.06) 169,576 (63.20) 326 (55.73)

Yes 21,081 (7.86) 191 (33.63) 21,096 (7.86) 176 (30.09)

Nervous system diseases (G00–G99)
No 175,594 (65.43) 265 (46.65) 175,497 (65.40) 362 (61.88)

Yes 15,116 (5.63) 199 (35.04) 15,175 (5.66) 140 (23.93)

Diseases of the eye and adnexa (H00–H59)
No 175,313 (65.33) 400 (70.42) 175,275 (65.32) 438 (74.87)

Yes 15,397 (5.74) 64 (11.27) 15,397 (5.74) 64 (10.94)

Diseases of the ear and mastoid process (H60–H95)
No 167,916 (62.57) 417 (73.42) 167,885 (62.57) 448 (76.58)

Yes 22,794 (8.49) 47 (8.27) 22,787 (8.49) 54 (9.23)

Circulatory system diseases (I00–I99)
No 182,213 (67.90) 291 (51.23) 182,181 (67.89) 323 (55.21)

Yes 8497 (3.17) 173 (30.46) 8491 (3.16) 179 (30.60)

Respiratory diseases (J00–J99)
No 121,095 (45.13) 174 (30.63) 121,026 (45.10) 243 (41.54)

Yes 69,615 (25.94) 290 (51.06) 69,646 (25.96) 259 (44.27)

Digestive diseases (K00–K95)
No 155,825 (58.07) 189 (33.27) 155,819 (58.07) 195 (33.33)

Yes 34,885 (13.00) 275 (48.42) 34,853 (12.99) 307 (52.48)

Skin and subcutaneous diseases (L00–L99)
No 171,697 (63.98) 335 (58.98) 171,705 (63.99) 327 (55.90)

Yes 19,013 (7.09) 129 (22.71) 18,967 (7.07) 175 (29.91)

Musculoskeletal and connective tissue diseases (M00–M99)
No 168,726 (62.88) 305 (53.70) 168,687 (62.86) 344 (58.80)

Yes 21,984 (8.19) 159 (27.99) 21,985 (8.19) 158 (27.01)

Genitourinary diseases (N00–N99)
No 172,532 (64.29) 293 (51.58) 172,498 (64.29) 327 (55.90)

Yes 18,178 (6.77) 171 (30.11) 18,174 (6.77) 175 (29.91)

Pregnancy and related conditions (O00–O9A)
No 190,182 (70.87) 461 (81.16) 190,145 (70.86) 498 (85.13)

Yes 528 (0.20) 3 (0.53) 527 (0.20) 4 (0.68)

Conditions from perinatal period (P00–P96)
No 180,648 (67.32) 379 (66.73) 180,599 (67.30) 428 (73.16)

Yes 10,062 (3.75) 85 (14.96) 10,073 (3.75) 74 (12.65)

Congenital malformations, deformations, and chromosomal abnormalities (Q00–
Q99)

No 175,930 (65.56) 298 (52.46) 175,891 (65.55) 337 (57.61)

Yes 14,780 (5.51) 166 (29.23) 14,781 (5.51) 165 (28.21)

Injury and poisoning (S00–T88)
No 139,493 (51.98) 251 (44.19) 139,529 (52.00) 215 (36.75)

Yes 51,217 (19.09) 213 (37.50) 51,143 (19.06) 287 (49.06)

Table 3.  Alert thresholds and model performance.

Event Probability threshold Sensitivity (%) Specificity (%) PPV (%) NPV (%) Relative risk NNE

Death 0.0056 66.67 99.5 6.9 99.98 371 15

Severe sepsis 0.0028 84.5 99.00 6.31 99.99 506 16

Sepsis 0.1089 44.14 99.9 47.73 99.88 415 2

Bacteremia 0.0875 57.08 99.9 62.3 99.88 503 2
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conditions, and patient sex. Secondly, all variables were associated with severe sepsis except the use of supplemen-
tal oxygen device, history of conditions affecting the ear and mastoid process, and patient ethnicity. Thirdly, only 
history of conditions affecting the ear and mastoid process, history of pregnancy or related conditions, ethnicity, 
and patient sex did not achieve univariable significance with non-severe sepsis. Lastly, only history of conditions 
affecting the ear and mastoid process were not significant in relation to bacteremia. The large number of vari-
ables with univariable significance in the data may have been partly driven by the large sample size in this study.

In Fig. 1, we show the feature importance of the variables/features in the model in decreasing order. The 
gradient boosting model consisted of 31 boosting iterations/trees, maximum tree depth of 8, learning rate of 0.3, 
and maximum delta step of 8. SHAP plots and simplified explanations of the clinical presentations that inflate 
the risk of severe sepsis for the top 12 most important variables are shown in Figs. 2 and 3.

The most important feature for predicting decompensation (mortality, severe sepsis, non-severe sepsis, and 
bacteremia) on ED triage was age. Older children are at higher risk of severe sepsis than their younger peers. 
The importance of age may lie in how the feature modifies others, such as vital signs. As expected, patients with 
abnormal vital signs were found to be at the highest risk for sepsis, as shown in Figs. 2 and 3. These figures 
were obtained by fixing the values of other variables at the average value for continuous variables and the most 
common categorical levels for categorical variables. This is a simplification of the nonlinear cross-dependences 
captured by the model between each vital sign and other vital signs and variables included in the model. This 
nonlinear cross-dependence is likely captured with a maximum tree depth of 8, indicating up to 7-way nonlinear 
interactions between variables in the model. This implies that the effect of a fever (or high heart rate etc.) on 
the risk of severe sepsis has been considered while factoring the age and sex of the patient as well as the values 
of other vital signs and variables in the model. This is the strength that machine learning models bring to the 
modeling of complex medical conditions or events.

We included some novel features/variables in the model that were among the 12 most important features. 
These include histories of the maximum value of previous hospital length of stay, diagnosis of sepsis, intravenous 

Figure 1.  Feature/variable importance.
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medications, non-topical antibiotics, and carbapenems. Averaged over the effect and interactions with other vari-
ables, there is increased risk for severe or sepsis-related decompensation among patients with history of longer 
hospital length of stay, sepsis, non-topical antibiotics, and carbapenems.

Model performance and risk stratification. The per-class one-versus-all AUROC mortality, severe 
sepsis, non-severe sepsis, and bacteremia were 0.979 (0.967, 0.991), 0.990 (0.985, 0.995), 0.976 (0.972, 0.981), 
and 0.968 (0.962, 0.974), respectively—see Fig. 4. The corresponding multi-class macro average AUROC and 
AUCPR were 0.977 and 0.316, respectively. The one-vs-all AUCPRs are provided in Fig. 5.

We used a stepwise approach for class selection that differs from simply choosing the output class with the 
highest predicted probability from the softmax (multi-class) output. We first selected a threshold for classifying a 
patient at high risk of severe sepsis using model performance statistics from a one-vs.-all approach to address the 
problem of class imbalance and ensure that model sensitivity is not lost to model specificity. Given the extreme 
class imbalance, we selected a specificity of 99.5%, resulting in a predicted probability threshold for severe sepsis 
of 0.0066. The resulting performance for predicting severe sepsis included sensitivity of 71.1% (62.1%, 80.2%), 
positive predictive value of 6.8% (5.3%, 8.4%), negative predictive value of 99.99% (99.98%, 99.99%), relative 
risk of 457.3 (296.0, 706.3), and an F-1 score of 0.125. In the same way, we fixed the specificity for mortality at 
99.5% in a one-vs-all approach. The resulting performance for predicting mortality included sensitivity of 54.3% 
(43.0%, 63.5%), positive predictive value of 5.0% (3.6%, 6.3%), negative predictive value of 99.98% (99.97%, 
99.98%), relative risk of 215.8 (143.9, 323.4), and F-1 score of 0.091. For the remaining 3 classes, we chose the 
class with the highest predicted probability if the conditions for flagging severe sepsis and death were not met. 
This approach resulted in balanced  accuracy25,26 in predicting severe sepsis ranging from 52 to 85%. In a similar 
way, the balanced  accuracy25,26 for predicting mortality increased from 54 to 62% using this modified approach.

The AUROC overestimates the model performance while the AUCPR underestimates it. In Table 3, we pro-
vide an unbiased statistics to help better assess the model. The potential for alert fatigue at an acceptable level of 
sensitivity gives us more concrete and assessible way of evaluating the model. One patient in 15 flagged at risk for 
death will die with sensitivity of 67% (not counting patients with severe sepsis who later die). One patient in 16 
flagged at risk for severe sepsis will develop severe sepsis with sensitivity of 85%. One in two patients flagged at 
risk for other (non-severe) sepsis or bacteremia will suffer the respective outcome. False positives for death and 
severe sepsis are also of interest to ED providers because they bear similarity to patients who die or had severe 
sepsis or may be suffering other forms of deterioration.

Figure 2.  Shapley additive explanation for severe sepsis: top 6 most important features.
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Discussion
Severe sepsis is a life-threatening response to infection and is a leading cause of death in children, with 75,000 
cases resulting in 6500 deaths and a nearly $5 billion burden of care per year in the U.S. alone as well as a mor-
bidity of 8–21%1–4. Early diagnosis and intervention significantly improves outcomes, however severe sepsis in 
children remains difficult to identify. Instances of severe sepsis continue to rise, and current rule-based models 
are insufficient in predicting its onset.

Accurate patient assessments within seconds of triage in the ED would allow clinicians to effectively manage 
patient decompensation, thus improving clinical outcomes and ultimately increasing the cost-effectiveness of 
the care administered. An effective algorithm would differentiate risk for critical events such as death and severe 
sepsis from risk for less critical events such as non-severe sepsis and bacteremia (without sepsis).

Several inpatient surveillance tools and rules-based systems such as the SIRS criteria and qSOFA are currently 
in widespread  use5,9,27,28. In a 2017 study that compared the utility of the SIRS criteria and the qSOFA score, it was 
noted that the mean time from arrival at the ED to the identification of risk for decompensation was 47.1 min 
for SIRS documentation and 84·0 min for the  qSOFA5. Clinicians must decrease the amount of time that elapses 
before patients at severe risk of decompensation are identified in order to deliver the most effective care and to 
help mitigate complications including death. On implementation of the model described here in the EMR of the 
corresponding author, the time from triage to prediction was between 5 and 7 s—a significantly earlier predictor 
for sepsis and related decompensation.

Previous studies have investigated the ability to predict general infection, sepsis, or severe sepsis among 
patients in the ED, intensive care unit, or general hospital ward using vital  signs29–33. Vital signs and laboratory 
test results were used as predictors. In this study, we considered vital sign measurements captured during triage 
as well as the medical history of the patient during the 6 months prior to the index visit. We used these data to 
develop a real-time predictive model that could classify pediatric patients under a continuum of risk for critical 
decompensation.

The vital sign measurements obtained from the pediatric patients seen at our ED were similar to those 
reported previously. The machine-learning algorithm that we developed using stochastic gradient boosting 
learned the thresholds and interactions with age, other vital signs, and other relevant variables such as prior 
diagnoses. We identified a relationship between prior resource utilization and severe sepsis and decompensation. 
Patients with previous hospitalizations are generally at increased risk for sepsis with this risk increasing with the 
length of stay of these previous visits. Our results suggest that considerations of the patient’s history of previous 
sepsis diagnosis and treatment with antibiotics would improve the accuracy of tools currently used to screen for 

Figure 3.  Shapley additive explanations for severe sepsis: second 6 most important features.
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sepsis. Risk of severe sepsis is elevated in patients who had received carbapenem and other antibiotics during a 
previous hospitalization. This may indicate that there are lingering effects of past or recent bacterial infections 
treated with carbapenem that may elevate the risk of developing severe sepsis. This also suggests that certain 
patients are more susceptible to severe complications from infections. Identifying these high-risk patients in a 
timely manner can improve patient outcomes.

The model performance estimates were relatively good given the class imbalance (patients with sepsis com-
pared to those without). But the relatively high number of false positives required to capture a true positive (as 
captured by the number needed to evaluate) would likely run the risk of alert fatigue for severe sepsis if the posi-
tive predictive values are not properly communicated to providers. However, further analyses of the false-positive 
predictions in the individual strata revealed that these groups of patients had high morbidity even without the 
diagnosis of severe sepsis. These false-positive patients included those requiring hospitalization and admission 
to the intensive care unit (ICU). In other words, even the model’s false positives for severe sepsis are of clinical 
utility to providers in the ED in predicting the risk of other decompensation events. This raises the question of 
whether the subject of deterioration is possibly more important to clinicians than just identification of sepsis 
or severe sepsis since screening and identification of criticality, of any kind, could be helpful to stimulate early 
and more general interventions. We believe that specific identification of sepsis and severe sepsis can prompt 
specific goal-directed interventions such as improved door to antibiotic times and early fluid resuscitation both 
of which are believed to be clinically important. Further, alerts generated on individual disease screening could 
be more useful than general alerts of criticality when it comes to achieving provider compliance with order sets.

This study had several limitations. Sepsis was identified using diagnosis codes and the corresponding model 
was created using a single center dataset. Additional studies based on the use of a larger multicenter dataset 

Figure 4.  (a) One-versus-all areas under the receiver operator characteristic curves for mortality. (b) One-
versus-all areas under the receiver operator characteristic curves for severe sepsis. (c) One-versus-all areas 
under the receiver operator characteristic curves for other/non-severe sepsis. (d) One-versus-all areas under the 
receiver operator characteristic curves for bacteremia.
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could provide a more accurate model. Although previous studies have demonstrated the utility of laboratory 
examinations and physician documentation for early sepsis  identification34, we did not consider laboratory test 
values because laboratory results are not available at the time of triage. Another potential limitation, inherent 
in the use of electronic applications that depend on data, is the impact of bad or unexpected data. Data hastily 
entered during patient registration and during ED triage may invariably include errors that could result in unex-
pected failure, underestimation, or overestimation of risk. Also, patients who are likely to have sepsis, proceed to 
severe sepsis, and die will be captured in only one category. As a result, all 3 corresponding predictions should 
be taken seriously.

The performance of our model indicates that a high proportion of patients with severe sepsis will be captured 
by the model. Notably, even false-positive predictions are of clinical value. The quality of care of patients at risk 
of severe sepsis can be improved if the predictions of the model are used in tandem with intervention protocols 
for severe sepsis. It is well known that early antibiotics and fluid resuscitation can improve clinical outcomes and 
prevent death in patients with severe  sepsis7. Early identification of this subset of patients will lead to better care. 
The inpatient ward can be notified much earlier regarding the transfer of a high-risk patient. This could improve 
the early allocation of resources for such hospitalizations as well as increase the amount of time available for the 
clinical team to prepare for these patients, who are likely to require intensive care and/or close monitoring. The 
stochastic gradient boosting algorithm, extreme gradient boosting, was selected for this prediction tasks because 
it can appropriately handle missing data without convoluted statistical imputation processes, and it is very com-
petitive with other algorithms in terms of model performance. This model can be implemented electronically 
and automatically integrated within the electronic medical record to provide an early warning tool for patients 
at risk of severe sepsis and poor outcomes within a few seconds of ED triage. In conclusion, the development 
of an extreme gradient boosting model based on selected ED triage variables can be used as an early warning 
tool for severe sepsis.

Figure 5.  (a) One-vs-all areas under the precision-recall curves for mortality. (b) One-vs-all areas under the 
precision-recall curves for severe sepsis. (c) One-vs-all areas under the precision-recall curves for other/non-
severe sepsis. (d) One-vs-all areas under the precision-recall curves for bacteremia.
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Data availability
The dataset analyzed in this study are available from the corresponding authors on reasonable request and upon 
approval by the Institutional Review Board (IRB) of the corresponding authors’ institution to share the data.
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