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Objective: Risk estimation of intracranial aneurysm rupture is critical in determining treatment strategy. There is a scarcity of 
multicenter studies on the predictive power of clinical-radiomics models for aneurysm rupture. This study aims to develop a clinical- 
radiomics model and explore its additional value in the discrimination of aneurysm rupture.
Methods: A total of 516 aneurysms, including 273 (52.9%) with ruptured aneurysms, were retrospectively enrolled from four 
hospitals between January 2019 and August 2020. Relevant clinical features were collected, and radiomic characteristics associated 
with aneurysm were extracted. Subsequently, three models, including a clinical model, a radiomics model, and a clinical-radiomics 
model were constructed using multivariate logistic regression analysis to effectively classify aneurysm rupture. The performance of 
models was analyzed through operating characteristic curves, decision curve, and calibration curves analysis. Different models’ 
comparison used DeLong tests. To offer an understandable and intuitive scoring system for assessing rupture risk, we developed 
a comprehensive nomogram based on the developed model.
Results: Three clinical risk factors and fourteen radiomics features were explored to establish three models. The area under the 
receiver operating curve (AUC) for the radiomics model was 0.775 (95% CI,0.719–0.830), 0.752 (95% CI,0.663–0.841), 0.747 (95% 
CI,0.658–0.835) in the training, internal and external test datasets, respectively. The AUC for clinical model was 0.802 (95% CI, 
0.749–0.854), 0.736 (95% CI, 0.644–0.828), 0.789 (95% CI, 0.709–0.870) in these three sets, respectively. The clinical-radiomics 
model showed an AUC of 0.880 (95% CI,0.840–0.920), 0.807 (95% CI,0.728–0.887), 0.815 (95% CI,0.740–0.891) in three datasets 
respectively. Compared with the radiomics and clinical models, the clinical-radiomics model demonstrated better diagnostic perfor-
mance (DeLong’ test P < 0.05).
Conclusion: The clinical-radiomics model represents a promising approach for predicting rupture of intracranial aneurysms.
Keywords: intracranial aneurysm, rupture, computed tomography angiography, radiomics, nomograms

Introduction
Non-traumatic subarachnoid hemorrhage (SAH) caused by a ruptured aneurysm is a serious neurological disease with 
high mortality and morbidity.1 The mortality rate of SAH is approximately 40–50%, and around half of the survivors 
experience permanent neurological deficits.2 With advancements in imaging techniques and therapeutic progress, the 
detection of unruptured aneurysms is becoming more frequent. How to handle these unruptured aneurysms is a dilemma 
because of the rupture risk and corresponding surgical risk. It is crucial to accurately and promptly screen out patients at 
high risk of rupture in order to formulate treatment plans.

Therefore, assessing the rupture risk of aneurysms holds significant clinical value for patient treatment and prognosis. 
The morphology of aneurysms, including the location of aneurysm, shape, as well as size, clinical factors, such as SAH 
history, smoking, hypertension, gender, population demographics, and hemodynamics, are all risk factors related to the 
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rupture of aneurysms.3 Currently, computed tomography angiography (CTA) and digital subtraction angiography (DSA) 
are the main techniques for assessing the risk of aneurysm rupture in clinical settings. CTA is a highly effective 
diagnostic technique that is not only rapid and cost-efficient, but also boasts widespread accessibility and superior 
spatial resolution. Compared to DSA (the gold standard for diagnosing intracranial aneurysms), CTA is a non-invasive 
alternative with broader application.4 Doctors primarily evaluate the potential for rupture by considering clinical factors 
of individual patients, along with high-resolution angiographic images. Nevertheless, due to variations in physician 
experience levels and proficiency, the assessment is highly subjective, leading to inconsistency among experts. 
Consequently, it is imperative to devise a model for assessing aneurysm rupture risk that can assist doctors in diagnosis 
and decision-making while avoiding overtreatment or surgical-related risks. Radiomics has been comprehensively 
applied for the decision making in the medical field, which is defined as converting images into higher-dimensional 
data, and then mining information from these data to provide better decision support.5 It involves analyzing and mining 
numerous quantitative high-dimensional features extracted from medical imaging to objectively and non-invasively 
assess the lesion and then make the final clinical decision based on key information.6,7 Radiomics can significantly 
enhance our comprehension of the significance and clinical relevance of voxel-level imaging phenotypic characteristics 
in intracranial aneurysms.8 Previous studies have confirmed that radiomics hybrid models have strong predictive ability 
for diseases.9 However, it remains unclear whether radiomics features are superior to clinical risk factors in predicting 
aneurysm rupture and whether combining them offers additional benefits. Therefore, our aim was to evaluate and 
compare the predictive capabilities of clinical models, radiomics models and combined clinical-radiomics models in 
accurately predicting aneurysm rupture. This study established and validated the model based on clinical and radiomics 
variables collected from the internal cohort. Additionally, the model’s accuracy was verified using an entirely indepen-
dent multicenter validation set, with the objective of characterizing patients who are at a heightened risk of aneurysm 
rupture.

Materials and Methods
Study Population
We conducted a retrospective multicenter investigation, analyzing data from four medical centers, with a specific focused 
on intracranial aneurysms for which accessible CTA data was available (from January 2019 to August 2020). The study 
complied to the Declaration of Helsinki and was approved by the ethics committee of First Affiliated hospital of 
Wenzhou Medical University (YJ2019-027-02). Patient informed consent was waived due to the retrospective design of 
this study, and patient data confidentiality was protected.

Exclusion criteria were as follows: non-saccular aneurysms (dissecting aneurysms, fusiform aneurysms); 
Saccular aneurysms accompanied by other vascular diseases, such as arteriovenous malformations, arteriovenous 
fistulas, Moyamoya disease; Aneurysms that received surgical or interventional treatment before CTA examination.

Eligible patients in our medical center were randomly allocated by a computer-aided algorithms to a training cohort 
(n = 275, 70%) and an internal validation cohort (n = 119, 30%). These datasets were then binary classified based on 
whether aneurysm rupture occurred. The external validation datasets (n = 122) encompassed patients from three 
additional medical centers (Wenzhou Central Hospital, Zhejiang Hospital, and the Second Affiliated Hospital of 
Wenzhou Medical University).

Clinical data of patients, including sex, age, smoking status (former or current smokers), history of hyperten-
sion, history of coronary heart disease, and stroke history were collected. Imaging characteristics of patients were 
also collected, including the number and location of aneurysms (internal carotid artery; anterior communicating 
artery; posterior communicating artery; middle cerebral artery; vertebral artery, basilar artery, anterior cerebral 
artery), as well as whether they had rupture or not. The evaluation criteria for aneurysm rupture are as follows: 
patients with SAH, aneurysms located near the cerebral pool clot are assessed as ruptured, while aneurysms not 
located near the cerebral pool clot are judged by DSA; asymptomatic patients without SAH are classified as not 
ruptured.10
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Radiomics Feature Detection
The workflow is illustrated in Figure 1. A neuroradiologist manually performed the segmentation of aneurysm regions of 
interest (ROIs) on each slice of CTA images through 3D slicer 4.10.1. Subsequently, another neuroradiologist randomly 
re-segmented 50 of the aneurysms. To assess the inter-observer reproducibility, we computed the inter-class correlation 
coefficient (ICC). The acquired images were subjected to data preprocessing before extracting radiomics features, 
considering the variations in CT scanners and their parameters.11,12 To reduce the variability of radiomics features, we 
employed image resampling and gray-scale discretization techniques.13 From each ROI, we extracted 1012 radiomics 
features. To screen out the most predictive features, we employed the least absolute shrinkage and selection operator 

Figure 1 The flowchart of this study. 
Note: Hospital (A) Zhejiang Hospital. Hospital (B) Wenzhou Central Hospital. Hospital (C) The second affiliated Hospital of Wenzhou Medical University.
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(LASSO) algorithm for dimensionality reduction. We utilized 10-fold cross-validation to develop radiomics model. The 
radiomics score (Rad-score) for each aneurysm was derived from a linear combination of selected features, with weights 
assign based on their respective logistic regression coefficient.

Machine Learning Model Construction
Logistic regression-based machine learning techniques was employed to found a radiomics model using the chosen 
radiomic features. The predictive accuracy of the radiomics model for aneurysm rupture was evaluated by assessing the 
Area under the Receiver Operating Characteristic Curve (AUC). The optimal cutoff value was determined based on the 
maximum Jordan index, and the confusion matrix metrics related to prediction accuracy were calculated, including 
positive predictive value (PPV), negative predictive value (NPV), specificity and sensitivity. The inter-observer con-
sistency of radiomics features was evaluated using intraclass correlation coefficient (ICC).

Establishment of Clinical Model and Clinical-Radiomics Model
Clinical data of the ruptured and non-ruptured group were compared in the training cohort. Subsequently, statistically 
significant factors in univariate analysis were incorporated into a stepwise multiple logistic regression analysis to develop 
a clinical model that estimate the predicted probability of aneurysm rupture for each patient. The developed clinical 
model and radiomics scores were utilized as predictive factors in a multiple logistic regression analysis within the 
training cohort, resulting in the development of a combined model. Finally, the performance of this integrated model was 
assessed through validation cohorts both internally and externally.

Construction and Evaluation of Nomograms
To offer an understandable and intuitive scoring system for assessing rupture risk, we created a comprehensive 
nomogram.14,15 The discriminative power of the nomogram was assessed by means of ROC curves. Both calibration 
curves and Hosmer–Lemeshow tests were utilized to assess the concordance between predicted and observed ruptures. 
The calibration and discrimination of the nomogram were evaluated in both training and validation cohorts.

Statistical Analysis
The measurement data is represented by ± s and subjected to a single sample Kolmogorov–Smirnov test. If the data 
conform to a normal distribution, a paired t-test is employed for statistical analysis; otherwise, a paired Wilcoxon signed- 
rank test is used. Count data were statistically analyzed using either the χ2 test or Fisher’s exact probability method. 
Clinical and radiomics parameters were used to develop clinical model, radiomics model, and clinical-radiomics model. 
The predictive efficacy of the models was conducted using receiver operating characteristic curve (ROC curve) and 
calculation of the area under the curve (AUC). The AUCs of different models’ ROC curves were compared using the 
DeLong test. A statistically significant difference was considered when P <0.05. SPSS (version 25) and R (version 3.6.1) 
were utilized for statistical analysis and model construction.

Results
Basic Characteristics
Our study included a total of 516 aneurysm cases, with 275 cases in the training cohort, 119 cases in the internal 
validation cohort, and 122 cases in the external validation cohort. The mean age of patients experiencing aneurysm 
rupture was 57.69 ± 11.28 years in the training cohort, 56.14 ± 11.48 years in the internal validation cohort, and 
58.61 ± 15.29 years in the external validation cohort.

The incidence of aneurysm rupture was found to be lower among older patients (P < 0.05), with rupture rates ranging 
from 53.5% to 59%. Multiple aneurysms were observed in varying numbers across the three sets, with corresponding 
rupture rates ranging from approximately 29% to over 65%. Detailed baseline characteristics for each set are provided in 
Table 1.
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Construction of Radiomics Scores
The mean ICC value for all radiomics features was calculated as being at a level of significance (p < 0.05). Following 
dimensionality reduction through LASSO regression modeling, we identified and selected a set of fourteen parameters 
that exhibited high predictive value based on their imaging radiomics scores. In both our internal training and validation 
groups, it was observed that R-scores were significantly higher among those who experienced ruptures compared to those 
who did not experience ruptures; thus, indicating R-score’s potential as an independent predictor for identifying 
aneurysms.

Construction of Clinical Models and Combined Models
After incorporating statistically significant clinical indicators from univariate analysis into multivariate logistic regression 
analysis, three independent predictive factors for predicting aneurysm rupture were identified: age (OR, 0.934; 95% CI, 
0.907–0.961; p < 0.001), presence of multiple aneurysms (OR, 0.272; 95% CI, 0.129–0.574; p = 0.001), and aneurysm 
location (p < 0.001). A clinical model known as the C-model was developed by incorporating these factors. A combined 
model called CR-model was subsequently developed by integrating C-model with R-score data, which resulted in 
improved AUC values when compared against individual models alone within both our training cohort and internal 
validation cohort. Additionally, we conducted multicenter external cohort validations, which further confirmed CR- 

Table 1 Baseline Characteristics of Patients in the Training, Internal Validation and External Validation Dataset

Training Cohort (n=275) P Internal Validation Cohort 
(n=119)

External Validation Cohort 
(n=122)

Unruptured 
(n=128)

Raptured 
(n=147)

Unruptured 
(n=55)

Raptured 
(n=64)

Unruptured 
(n=50)

Raptured 
(n=72)

Age 64.37±12.51 57.69±11.28 <0.001 62.67±12.05 56.14±11.48 69.08±10.06 58.61±15.29

Sex 0.731

Male 54(42.2%) 59(40.1%) 24(43.6%) 29(45.3%) 23(46.0%) 22(30.6%)
Female 74(57.8%) 88(59.9%) 31(56.4%) 35(54.7%) 27(54.0%) 50(69.4%)

Hypertension 0.018

Presence 80(62.5%) 71(48.3%) 31(56.4%) 22(34.4%) 35(70.0%) 33(45.8%)
Absence 48(37.5%) 76(51.7%) 24(43.6%) 42(65.6%) 15(30.0%) 39(54.2%)

Smoking 0.287

Presence 35(27.3%) 32(21.8%) 10(18.2%) 12(18.8%) 16(32.0%) 13(18.1%)
Absence 93(72.7%) 115(78.2%) 45(81.8%) 52(81.2%) 34(68.0%) 59(81.9%)

Coronary artery 

disease

0.001

Presence 1(0.8%) 1(0.7%) 0 0 13(26.0%) 18(25.0%)

Absence 127(99.2%) 146(99.3%) 55(100%) 55(100%) 37(74.0%) 54(75.0%)

Ischemic stroke 0.158
Presence 2(1.6%) 0(0.0%) 2(3.6%) 2(3.1%) 7(14.0%) 3(4.2%)

Absence 126(98.4%) 147(100.0%) 53(96.4%) 62(96.9%) 43(86.0%) 69(95.8%)

Multiplicity <0.001
Presence 48(37.5%) 20(13.6%) 22(40.0%) 11(17.2%) 8(16.0%) 15(20.8%)

Absence 80(62.5%) 127(86.4%) 33(60.0%) 53(82.8%) 42(84.0%) 57(79.2%)
Location <0.001

ICA 37(28.9%) 14(9.5%) 8(14.5%) 39(4.7%) 18(36%) 5(6.9%)

AcoA 27(21.1%) 60(40.8%) 16(29.1%) 27(42.2%) 8(16%) 27(37.5%)
PcoA 28(21.9%) 54(36.7%) 17(30.9%) 17(26.5%) 15(30%) 31(43.1%)

MCA 28(21.9%) 14(9.5%) 10(18.2%) 14(21.9%) 7(14%) 6(8.3%)

Others 8(6.2%) 5(3.5%) 4(7.3%) 3(4.7%) 2(4%) 3(4.2%)

Journal of Multidisciplinary Healthcare 2024:17                                                                                 https://doi.org/10.2147/JMDH.S491697                                                                                                                                                                                                                       

DovePress                                                                                                                       
5921

Dovepress                                                                                                                                                                Jia et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


model’s superior diagnostic capability over other models such as R-model or C-model alone. The CR-model demon-
strated a significantly higher AUC value of 0.880 (95% CI, 0.840–0.920) compared to both the C-model with an AUC of 
0.802 (95% CI, 0.749–0.854) and the R-model with an AUC of 0.775 (95% CI, 0.719–0.830) (Figure 2A–C). Similarly, 
in the internal validation cohort, the AUC value of the CR-model was 0.800 (95% CI, 0.720–0.881), exhibiting a superior 
performance, while the AUC values of the R-model and C-model were 0.752 (95% CI, 0.663–0.841) and 0.736 (95% CI, 
0.644–0.827), respectively. In addition, we conducted independent multicenter external cohort validation, and the AUC 
value of CR-model was 0.815 (95% CI, 0.740–0.891), surpassing the imaging R-model’s AUC values of 0.747 (95% CI, 
0.658–0.835). Moreover, the sensitivity, specificity, PPV and NPV associated with the CR-model for predicting aneurysm 
rupture were 0.776, 0.852, 0.857, and 0.768, respectively. In the internal and external validation cohorts, they were 0.766 
and 0.931, 0.764 and 0.560, 0.790 and 0.753, 0.737 and 0.848, respectively. The predictive performance of the three 
models is detailed in Table 2. After DeLong analysis, it became evident that statistically significant differences existed 
between CR-Model, R-Model, and C-Model within various cohorts; thus, highlighting superiority possessed by CR- 
Model especially during external validations.

Nomogram Construction and Evaluation
Based on this newly established CR-model, a visually represented clinical radiomics nomogram was created with the 
objective of assessing the risk of aneurysm rupture; Age, presence of multiple aneurysms, location of aneurysms, and 
R-score were included in the comprehensive nomogram (Figure 3A). Compared with clinical risk factors, R-score 
accounts for the majority of the scoring system, indicating that quantitative texture parameters play a dominant role in 
predicting aneurysm rupture. The calibration curve graph drawn exhibits good consistency between nomogram estima-
tion and actual observations. Finally, a decision curve analysis (DCA) was employed to assess the clinical utility of the 
constructed models at various threshold probabilities in three cohorts (Figure 3B–D). The calibration curves (Figure 2D– 
F) and Hosmer–Lemeshow test (p = 0.254, 0.992, 0.389 in the three cohorts) demonstrate excellent calibration 
performance.

Discussion
The rupture of intracranial aneurysms poses a significant risk of mortality and disability. With the popularization of 
imaging examinations, an increasing number of unruptured aneurysms are being identified. However, controversy 
remains regarding the necessity for treatment of these unruptured aneurysms due to associated surgical risks. 
Therefore, the assessment of the risk of rupture in unruptured aneurysms holds significant clinical value. This study 
retrospectively identified the feasibility of radiomics in predicting intracranial aneurysm rupture. Our research results 
indicate a close correlation between CTA-based radiomics scores and the rupture of aneurysms. The combined model of 
R-model and C-models has significantly better predictive performance for aneurysm rupture than simple C-model and 
R-models, and has greater advantages in evaluating the risk of aneurysm rupture.

Radiomics initially played a significant clinical role in tumor assessment,16–18 and due to its ability to quantify lesion 
heterogeneity, it has gradually been applied in the evaluation of cerebrovascular diseases in recent years. Ruptured 
aneurysms exhibit distinct radiological characteristics compared to unruptured aneurysms. Leveraging radiomic features, 
particularly structural ones, can significantly enhance the predictive performance of aneurysm rupture.19 Consistent with 
previous research, the R-score established in this study’s training set, internal and external validation set reliably assesses 
the risk of aneurysm rupture (with AUC values of 0.775, 0.752, and 0.747, respectively). The present study rigorously 
selected 14 out of 1012 radiomics features, which were found to be highly predictive, in order to construct a robust 
radiomics model, thereby further demonstrating the potential of radiomics features in aneurysm rupture prediction, 
aligning with previous studies.8 Among numerous radiomics features, features that display image heterogeneity (such as 
ShortRunHighGreyLevelEmphasis, SmallDependenceHighGreyLevelEmphasis, etc) are selected. Radiomics describes 
the morphology and texture features of aneurysms from a microscopic perspective, so texture analysis can indirectly 
reflect the heterogeneity within aneurysms.20,21 The texture features inside the aneurysm cavity are likely due to uneven 
distribution of contrast agents, which is believed to be associated with turbulent blood flow. Turbulence in blood flow 
may activate inflammatory mechanisms, leading to a high risk of rupture.1 This suggests that these texture patterns may 

https://doi.org/10.2147/JMDH.S491697                                                                                                                                                                                                                                

DovePress                                                                                                                                         

Journal of Multidisciplinary Healthcare 2024:17 5922

Jia et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 2 Receiver operating characteristic (ROC) curves and calibration curve of the radiomics model (R model), clinical model (C model), and clinical radiomics model 
(CR model). The operating characteristic curves of the three models in the training (A) and internal validation cohort (B) external validation cohort (C). Calibration curve 
of the three models in the training (D), internal validation and external validation cohorts (E and F).
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serve as indicators of the hemodynamics within the aneurysm, which are closely associated with aneurysm rupture. This 
further underscores the rationale for considering radiomics texture features as potential risk factors in assessing aneurysm 
rupture.

In practice, some risk factors have been associated with the development and rupture of intracranial aneurysms. These 
encompass patient demographics such as age and gender, lifestyle choices including smoking and alcohol consumption, 

Table 2 Performance of the Radiomics, Clinical and Clinical-Radiomics Models

Datasets Models AUC (95% CI) ACC SEN SPE PPV NPV

Training cohort R-model 0.775(0.719, 0.830) 0.713 0.796 0.617 0.705 0.725
C-model 0.802(0.749, 0.854) 0.742 0.707 0.781 0.788 0.699

CR-model 0.880(0.840, 0.920) 0.807 0.776 0.844 0.851 0.766

Internal validation R-model 0.752(0.662, 0.842) 0.723 0.656 0.8 0.792 0.667
Cohort C-model 0.736(0.644, 0.828) 0.731 0.812 0.636 0.722 0.745

CR-model 0.807(0.728, 0.887) 0.748 0.688 0.818 0.815 0.692

External validation R-model 0.747(0.658, 0.836) 0.713 0.764 0.64 0.753 0.653
Cohort C-model 0.789(0.709, 0.870) 0.77 0.972 0.48 0.729 0.923

CR-model 0.815(0.740, 0.891) 0.779 0.931 0.56 0.753 0.848

Abbreviations: R-model, radiomics model; C-model, clinical model; CR-model, clinical-radiomics model; AUC, area 
under the receiver operating curve; ACC, accuracy; CI, confidence interval; PPV, positive predictive value; NPV, 
negative predictive value; SEN, sensitivity; SPE, specificity.

Figure 3 Decision curve analysis and comprehensive nomogram for intracranial aneurysms in all patients. (A) Nomogram for the prediction of small aneurysm ruptures; 
decision curve analysis of the clinical model, radiomics model, and clinical–radiomics model with the threshold probability on the x-axis and the net benefit on the y-axis in 
the (B) training cohort, (C) internal validation cohort, and (D) external validation cohort.
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family history, previous stroke incidents, hypertension history, as well as characteristics of the aneurysm itself such as 
size, location, and shape. The variations in research outcomes primarily stem from disparities within the study 
populations.22–25 In our study, patient age, the presence of multiple aneurysms, as well as location of aneurysms were 
statistically significant in predicting lesion rupture. Recently, Alwalid et al1,8,19 compared the diagnostic performance of 
CTA-based radiomics models and traditional radio-morphological models for predicting aneurysm rupture. The results 
confirmed that radiomics models have better diagnostic performance and are a reliable and objective auxiliary diagnostic 
technique. In this study, the diagnostic efficacy of radiomics model was comparable to the C-model, yet the combined 
model (AUC: 0.880) significantly surpassed the standalone clinical model (AUC: 0.802), highlighting the substantial 
contribution of the radiomics model to the combined model’s construction. The advantage of our research lies in the 
addition of multicenter external validation, in addition to internal validation, which confirms the robustness and 
reproducibility of our CR-model. In addition, we have developed a straightforward and visually intuitive intracranial 
aneurysm rupture risk scoring system, utilizing a nomogram.

The study is subject to certain limitations. First, it is a retrospective, cross-sectional study, which may pose a risk of 
selection bias. Second, while radiomics calculations are automated, ROI segmentation is semi-automatic and is suscep-
tible to manual errors, which hinders the clinical application of radiomics. Third, we did not consider the history of recent 
bleeding because those with recent bleeding are rare. Lastly, the images in the external validation dataset are sourced 
from various scanning protocols and machines, potentially influencing the validation outcomes.

Conclusion
In conclusion, we conducted an analysis of intracranial aneurysm rupture using clinical and radiomics data from multiple 
centers. The discovery of our study suggests that radiomics features derived from CTA can independently predict the risk 
of arterial aneurysm rupture. Moreover, the inclusion of both radiomics features and clinical risk factors in the CR-model 
significantly enhances the diagnostic accuracy for predicting aneurysm rupture. Compared to the C-model, CR-model 
that includes both radiomics features and clinical risk factors significantly improves the diagnostic efficacy for predicting 
arterial aneurysm rupture. This approach can serve as a complementary tool to standard imaging examinations, enabling 
accurate and timely identification of high-risk patients and facilitating personalized treatment planning by clinicians.

Disclosure
The authors report no conflicts of interest in this work.
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