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A B S T R A C T   

Background: This study aimed to construct a nomogram based on CAF features to predict the 
cancer-specific survival (CSS) rates of locally advanced rectal cancer (LARC) patients. 
Methods: The EPIC algorithm was employed to calculate the proportion of CAFs. based on the 
differentially expressed genes between the high and low CAF proportion subgroups, prognostic 
genes were identified via LASSO and Cox regression analyses. They were then used to construct a 
prognostic risk signature. Moreover, the GSE39582 and GGSE38832 datasets were used for 
external validation. Lastly, the level of immune infiltration was evaluated using ssGSEA, ESTI-
MATE, CIBERSORTx, and TIMER. 
Results: A higher level of CAF infiltration was associated with a worse prognosis. Additionally, the 
number of metastasized lymph nodes and distant metastases, as well as the level of immune 
infiltration were higher in the high CAF proportion subgroup. Five prognostic genes (SMOC2, 
TUBAL3, C2CD4A, MAP1B, BMP8A) were identified and subsequently incorporated into the 
prognostic risk signature to predict the 1-, 3-, and 5-year CSS rates in the training and validation 
sets. Differences in survival rates were also determined in the external validation cohort. 
Furthermore, independent prognostic factors, including TNM stage and risk score, were combined 
to established a nomogram. Notably, our results revealed that the proportions of macrophages 
and neutrophils and the levels of cytokines secreted by M2 macrophages were higher in the high- 
risk subgroup. Finally, the prognostic genes were significantly associated with the level of im-
mune cell infiltration. 
Conclusion: Herein, a nomogram based on CAF features was developed to predict the CSS rate of 
LARC patients. The risk model was capable of reflecting differences in the level of immune cell 
infiltration.   
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1. Introduction 

As is well documented, colorectal cancer is one of the leading causes of death worldwide and is characterized by high morbidity and 
cancer-related mortality rates [1,2]. The majority of rectal cancer patients present with locally advanced disease at diagnosis and are 
recommended to undergo neoadjuvant chemoradiotherapy (NCRT). Despite locally advanced rectal cancer (LARC) patients benefiting 
from neoadjuvant treatment and surgical procedures [3–5], the long-term prognosis varies [6,7]. Accumulating evidence suggests that 
the close relationship between rectal tumor cells and cellular components of the tumor microenvironment (TME) in LARC patients 
influences survival outcomes [8–10]. Each cellular component in the TME (e.g., stromal and immune cells) exerts distinct functions (e. 
g., paracrine effects and immune response) and participates in tumor progression. Consequently, different proportions of cellular 
components in the TME among LARC patients undergoing NCRT can result in varying clinical outcomes [11]. Thus, it is pivotal to 
expand our understanding of the TME in those patients. 

Cancer-associated fibroblasts (CAFs) are predominant stromal components of the tumor microenvironment [12,13]. Earlier studies 
have documented an intimate association between CAFs and the progression of numerous tumors, including LARC [14,15]. Via the 
secretion of multiple growth factors, cytokines, and chemokines, CAFs promote cancer cell proliferation and invasion, remodel the 
extracellular matrix, modulate immune responses, and confer resistance to treatment, thereby affecting prognosis [16–18]. However, 
studies on the prognostic role of CAFs in LARC patients are scarce. Besides, most bioinformatics studies have focused on the prognostic 
assessment of colon cancer rather than rectal cancer. Given the correlation between CAFs and the prognosis of cancers, there is an 
urgent need to identify CAF-related biomarkers to effectively predict prognoses and explore their potential mechanisms in LARC 
patients. 

In the current study, the prognosis, clinicopathologic features, and TME status of the high CAF proportion subgroup were compared 
with the low CAF proportion subgroup in LARC patients. Next, a prognostic risk signature and nomogram were developed and vali-
dated based on the differentially expressed genes (DEGs) between the high and low CAF proportion subgroups. Finally, the immune 
cell infiltration status was explored in the high- and low-risk subgroups. 

2. Method 

2.1. Data acquisition 

The GSE87211 [19] dataset, including the information on LARC patients undergoing NCRT, was initially downloaded. Afterward, 
raw data were extracted from the Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo) and inputted into the 
R software. The backgroundCorrect function (method = normexp) of the “limma” package was utilized for background correction, 
while raw data were normalized via the normalizeBetweenArrays function [20]. Probes were annotated, and the annotated data were 
used in the subsequent analyses. Data on clinicopathological factors, including age, gender, pT stage, pN stage, pM stage, survival time, 
and survival status, were collected. Patients with missing data on age, tumor stage, and survival information were excluded from this 
study. The primary endpoint of this study was the cancer-specific survival (CSS) rate. A total of 195 patients were included in this 
study. The training and validation sets were randomly generated using the “caret” R package. This study was approved by the Ethics 
Committee of the First Affiliated Hospital of Fujian Medical University. 

2.2. CAFs infiltration and TME assessment 

Estimate the Proportion of Immune and Cancer cells (EPIC, https://epic.gfellerlab.org), based on a specific set of RNA-seq reference 
gene expression datasets, is an effective deconvolution tool for assessing the proportion of various cellular components within the TME 
[21]. In the GSE87211 dataset, the EPIC algorithm was used to determine to compute the abundance of CAFs in the TME of LARC 
patients. The EPIC score was calculated for each patient, and the high and low CAF proportion subgroups were defined based on the 
median of the proportion of CAFs. 

The Estimation of STromal and Immune cells in MAlignant Tumor tissues using the Expression (ESTIMATE) algorithm was used to 
evaluate the levels of stromal cell and immune cell infiltration in the TME [22]. Thereafter, the “estimate” R package was used to 
execute the ESTIMATE algorithm on expression profiles to determine the stromal score, immune score, and estimate score. These 
scores were subsequently compared between the high and low CAF proportion subgroups to explore differences in cell infiltration. 

2.3. Prognostic risk signature and nomogram 

Differentially expressed genes (DEGs) between the high and low CAF proportion subgroups were identified according to the 
following criteria: absolute log2 (fold change) > 0.5 and the false discovery rate (FDR) < 0.05. Univariate Cox regression was 
employed to identify prognostic genes with a significance threshold of P < 0.05. Furthermore, independent prognostic genes were 
determined via least absolute shrinkage and selection operator (LASSO) regression using the “glmnet” R package and multivariate Cox 
survival analyses. Following this, the prognostic risk signature was constructed based on independent prognostic genes and their 
corresponding coefficient. The risk score was calculated using the following formula: risk score = βgene 1 × Expression gene 1 +βgene 2 ×

Expression gene 2 +βgene 3 × Expression gene 3 + … +βgene n × Expression gene n. In other words, a risk score was calculated for each case. 
Patients were assigned to either the high-risk subgroup or the low-risk subgroup based on the median risk score. Then, differences in 
clinical outcomes were analyzed between the two subgroups. Moreover, the area under the receiver-operating characteristic (AUROC) 
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curve was calculated to evaluate the accuracy of the prognostic risk signature. Of note, higher AUC values correspond to superior 
predictive values. A nomogram was generated based on independent prognostic factors using the R package “rms”. Individualized 1-, 
3-, and 5-year CSS rates were predicted using this model. The performance of the nomogram was evaluated using the Harrell’s 
concordance index (C-index), and the calibration curve was applied to assess the accuracy of the model-predicted survival compared to 
actual 1-, 3-, and 5-year CSS rates. 

2.4. Validation datasets 

Regarding the validation of the prognostic risk signature, external validation cohorts were collected from the GEO database. The 
GSE39582 dataset comprised a total of 585 samples, excluding 19 non-tumoral samples and 9 patients with unknown relapse-free 
survival (RFS) information. Finally, 557 patients were included in the analysis. Additionally, 122 patients with colorectal cancer 
from the GSE38832 dataset were also included. 

2.5. Functional enrichment analysis 

Regarding the assessment of differences in potential biological mechanisms between the high- and low-risk subgroups, gene set 
enrichment analysis (GSEA) was performed using hallmark gene sets (v7.2) from the Molecular Signatures Database (MSigDB, https:// 
software.broadinstitute.org/gsea/msigdb/) [23]. An FDR q-value <0.25 was considered statistically significant. 

2.6. Immune landscape 

The correlation between risk scores and biomarkers of CAFs was initially determined. Given that CAFs interact with other immune 
cells in a paracrine manner, the relationship between risk scores and CAF-secreted cytokines was investigated. To further examine the 
level of immune cell infiltration between the two subgroups, single sample gene set enrichment analysis (ssGSEA) was conducted using 
the R package “gsva” [24]. Then, the enrichment scores of various immune cell components were determined, reflecting the relative 
abundances of immune cells in TME. The correlation between gene expression and immune cells was assessed using Tumor Immune 
Estimation Resource (TIMER) [25]. 

Moreover, Cell-type Identification By Estimating Relative Subsets of RNA Transcripts (CIBERSORTx, https://cibersortx.stanford. 
edu/) was used to evaluate the immune status [26]. The relationship between risk score and macrophage subtypes (M0, M1, and 
M2) was also assessed. Lastly, the levels of cytokines secreted by M2 macrophages across different risk scores were determined [27,28]. 

2.7. Statistical analysis 

Statistical analyses were performed using R software (version 3.6.3) and GraphPad Prism 8. Between-group differences were 
assessed using the Wilcoxon Rank-sum test. The “pheatmap” R package was employed for generating heatmaps. Survival analysis and 
Kaplan-Meier (KM) curves were performed using the R package “survival”. Principal component analysis (PCA) and t-distributed 
Stochastic Neighbor Embedding (tSNE) were performed for dimension reduction, followed by data visualization using the R package 
“ggplot2”. The Spearman correlation test was used for correlation analysis. P < 0.05 is deemed statistically significant. 

Fig. 1. Study flow diagram.  
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3. Results 

3.1. CAF proportions in LARC patients 

The flow diagram of this study is depicted in Fig. 1. Based on the median of CAF proportion acquired from the EPIC algorithm, 92 
and 103 patients were included in the high and low CAF proportion subgroups, respectively. Their clinicopathologic features are listed 
in Supplementary Table 1. A significant difference was observed in CSS between the two subgroups, with patients with high CAF 
infiltration exhibiting worse clinical outcomes (Fig. 2A). Next, the relationship between clinicopathologic features and CAF proportion 
was evaluated (Fig. 2B–F). The analysis exposed that high CAF proportion was significantly associated with lymph node metastasis and 
distant metastasis (all P < 0.05), whereas age, gender, and pT stage were comparable between the two subgroups. Considering the 
close intracellular communication between CAFs and cellular components, differences in stromal and immune cell infiltration were 
further compared between the subgroups. As anticipated, the ESTIMATE score, stromal score, and immune score of the high CAF 
proportion subgroup were significantly higher than those of the low CAF proportion subgroup (Fig. 2G–I). These results collectively 
indicated that CAFs promote LARC progression and affect survival and that the prognostic risk signature based on CAF-related 
characteristics holds potential for clinical application. 

Fig. 2. Kaplan–Meier survival curves depicting the prognostic value of CAFs in LARC patients undergoing NCRT (A), differences in clinicopath-
ological features and immune infiltration levels between the high and low CAF proportion subgroups: age (B), gender (C), pT stage (D), pN stage (E), 
pM stage (F), ESTIMATE score (G), stromal score (H), immune score (I). CAF: cancer-associated fibroblasts; LARC: locally advanced rectal cancer; 
NCRT: neoadjuvant chemoradiotherapy. 
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3.2. Development and validation of the prognostic risk signature 

1022 DEGs were identified between the high and low CAF proportion subgroups. Then, patients were randomized into a training set 
and a validation set (Table 1). In the training set, 19 genes were found to be positively correlated with prognosis. Meanwhile, LASSO 
regression (Fig. 3A–B) and multivariate Cox regression (Fig. 3C) analyses yielded 5 independent prognostic genes (SMOC2, TUBAL3, 
C2CD4A, MAP1B, and BMP8A). Next, the prognostic risk signature was constructed based on the expression levels of independent 
prognostic genes and their corresponding coefficient: 0.633 × SMOC2+1.030 × TUBAL3—0.952 × C2CD4A+1.252 × MAP1B+1.252 
× BMP8A. Afterward, the risk score was calculated for each individual. Patients were further stratified into high- and low-risk sub-
groups based on the median risk score for the ensuing analyses. In addition, the expression levels of independent prognostic genes in 
the training and validation sets were detected. As illustrated in Fig. 3D–E, the expression level of SMOC2, TUBAL3, MAP1B, and 
BMP8A was higher in the two sets, whereas that of CD4A was low. At the same time, survival analyses determined that higher scores 
were significantly correlated with worse clinical outcomes in the training set (Fig. 4A–B), consistent with the findings in the validation 
set (Fig. 4D–E). Interestingly, the AUC values for the 1-, 3-, and 5-year CSS rates were 0.864, 0.946, and 0.947 in the training set 
(Fig. 4C), 0.716 and 0.696, 0.701 in the validation set, respectively (Fig. 4F). Finally, the ROC curves displayed that the prognostic risk 
signature had satisfactory predictive strength in both sets. 

3.3. Construction of the nomogram 

There was a significant difference in survival rates between the high- and low-risk subgroups in the whole set (P < 0.001, Fig. 5A). 
As is well documented, the combination of independent prognostic factors further enhances predictive abilities. Consequently, uni-
variate and multivariate Cox analyses were performed to identify independent prognostic factors. As delineated in Fig. 5B–C, TN and 
risk scores were significantly and independently correlated with CSS. The nomogram was subsequently constructed by incorporating 
significant variables to predict the 1-, 3-, and 5-year CSS rates for LARC patients undergoing NCRT (Fig. 5D). The nomogram 
demonstrated accurate prognostic accuracy, with a C-index of 0.827 (95% confidence interval: 0.745–0.909). Besides, the calibration 
curves exhibited excellent agreement between the predictive- and actual 1-, 3-, and 5-year CSS rates (Fig. 5E). 

3.4. External validation of the prognostic risk signature 

Based on the gene expression of the signature, the risk score was calculated in the external validation cohort. As illustrated in 
Fig. 6A, the difference in RFS was significant, with the high-risk group exhibiting worse clinical outcomes (P = 0.024) in the GSE39582 
cohort. Likewise, the high-risk group was also linked to shorter CSS rates in the GSE38832 cohort (P = 0.024, Fig. 6B). Furthermore, 
the ROC curves (Fig. 6C–5D) indicated that the risk score could efficiently predict survival in both cohorts (GSE39582: AUC = 0.576, P 
= 0.004; GSE38832: AUC = 0.698, P = 0.002). 

Table 1 
Clinicopathological features of patients in training set and validation set.  

Characteristics Training set Validation set 

N (%） N (%） 

Age, years 
<65 58(59.2) 56(57.7) 
>65 40(40.8) 41(42.3) 

Sex 
Female 32(32.7) 28(28.9) 
Male 66(67.3) 69(71.1) 

pT stage 
T0 18(18.4) 15(15.5) 
T1 10(10.2) 11(11.3) 
T2 20(20.4) 23(23.7) 
T3 43(43.9) 44(45.4) 
T4 7(7.1) 4(4.1) 

pN stage 
N0 66(67.3) 72(74.2) 
N1 24(24.5) 18(18.6) 
N2 8(8.2) 7(7.2) 

pM stage 
M0 90(91.8) 90(92.8) 
M1 8(8.2) 7(7.2) 

TNM stage 
pCR 18(18.4) 15(15.5) 
Stage I 23(23.5) 30(30.9) 
Stage II 21(21.4) 26(26.8) 
Stage III 28(28.6) 19(19.6) 
Stage IV 8(8.2) 7(7.2) 

TNM: tumor-node-metastasis, pCR: pathologic complete response. 
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Fig. 3. Identification of independent prognostic CAF-related genes by LASSO regression (A–B) and multivariable Cox regression (C) in the training 
set. Differential expression of five CAF-related genes in the training set (D) and validation set (E). CAF: cancer-associated fibroblasts; LASSO: least 
absolute shrinkage and selection operator. 

Fig. 4. The predictive capability of the prognostic risk signature. Kaplan–Meier survival curves between the high- and low-risk subgroups in the 
training set (A) and validation set (D), the risk score distribution plot in the training set and (B) validation set (E), ROC curve for predicting 1-, 3-, 
and 5-year CSS rates in training the set and (C) validation set (F). ROC: receiver-operating characteristic, CSS: cancer-specific survival. 
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3.5. Subgroup analysis of clinicopathologic features 

To further validate the predictive capability of the prognostic risk signature, subgroup analyses were performed on clinicopath-
ologic features such as age, gender, pT stage, pN stage, and pM stage (Fig. 7A–J). The analysis uncovered significant differences 
between the high- and low-risk subgroups in patients aged <65 years, gender, pT3-4 stage, pN stage, and pM0 stage (all P < 0.05), 
demonstrating the outstanding predictive value of the risk signature. 

3.6. Visualization and potential mechanism of high- and low-risk subgroup 

The benefits of the prognostic risk signature were further supported by the PCA and tSNE plots. As displayed in Fig. 8A–B, the risk 
subgroups were clearly discriminated. Furthermore, GSEA was performed to discover potential biological pathways in the high- and 
low-risk subgroups. Noteworthily, the high-risk subgroup was enriched in pathways related to angiogenesis, epithelial-mesenchymal 
transition (EMT), hypoxia, inflammatory response, apoptosis, complement, Notch signaling, Wnt/β-catenin signaling, and TGF- 
βsignaling pathway (Fig. 8C). These results can contribute to a better understanding of malignant biological behaviors and warrant 
further investigation. 

3.7. Analysis of immune infiltration 

The expression of CAF-related biomarkers was detected across different risk scores. A significant correlation was observed between 
the risk score and CAF-associated biomarkers (e.g., ACTA2, FAP, FSP1, S100A4) (Fig. 9A), implying the prognostic risk signature was 
characterized by CAFs and that CAFs exert biological functions through the secretion of cytokines. Consequently, the correlation 
between risk scores and cytokines secreted by CAFs was further investigated. The correlation heatmap (Fig. 9B) validated that the 
levels of cytokines (e.g., IL-6, CXCL-12, FGF2, CCL2) were higher in the high-risk subgroup. 

As portrayed in Fig. 9C–D, the stromal scores and immune scores were significantly higher in the high-risk subgroup. CAFs have 
been reported to interact with other cellular components in the TME and synergistically influence tumor progression. Hence, the level 
of immune infiltration in the two risk subgroups was investigated by conducting ssGSEA. The results unveiled that the number of 
macrophages was higher in the high-risk subgroup (Fig. 9E–F). Macrophages typically display two polarization states, namely acti-
vated macrophages (M1) and alternatively activated macrophages (M2). Thus, the CIBERSORTx algorithm was adopted to explore 

Fig. 5. The construction of the nomogram to predict CSS rates for LARC patients undergoing NCRT. Kaplan–Meier survival curves between the high- 
and low-risk subgroups (A), identification of independent prognostic factors via univariate (B) and multivariate Cox analyses (C), development of 
nomogram to predict CSS rates (D), and model assessment via the calibration curve (E). CSS: cancer-specific survival, LARC: locally advanced rectal 
cancer; NCRT: neoadjuvant chemoradiotherapy. 
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differences in the expression of M0 (unpolarized), M1, and M2 macrophages. A positive correlation was noted between risk score and 
M0 and M2 macrophages, which are pro-tumorigenic subtypes (Fig. 9G and I). In contrast, no significant differences were detected in 
M1 macrophages, the anti-tumor subtype (Fig. 9H). M2 macrophages release cytokines that participate in tumor proliferation and TME 
remodeling, and as shown in Fig. 9J, M2 macrophages released high levels of cytokines (e.g., CCL2, CCL14, IL-4, TGFβ-1) in the high- 
risk subgroup. Conversely, a higher degree of natural killer (NK) cell infiltration was detected in the low-risk subgroup. Similarly, the 
infiltration levels of B cells, neutrophils, and regulatory T (T-reg) cells were markedly different between the two subgroups (Fig. 9E–F). 

In addition, correlations between the expression levels of the five prognostic genes and immune cells were determined using the 
TIMER database (Fig. 10A–E). The results revealed a positive correlation between BMP8A and B cells (P = 0.009), CD4+ T cells (P <
0.001), macrophages (P = 0.003), neutrophils (P = 0.024), and dendritic cells (P < 0.001). 

4. Discussion 

At present, NCRT followed by total mesorectal excision is the gold standard for the treatment of LARC, demonstrating superiority in 
shrinking tumor size and stage, preserving the anal sphincter, and improving local tumor control [3,4]. This approach yields a 
pathologic complete response rate of approximately 10%–20% [29–31]. However, some LARC patients are unresponsive to NCRT due 
to differential treatment responses, which can result in varying survival outcomes [32]. More importantly, survival rates among pa-
tients with similar clinicopathologic features differed as well. Thus, pioneering an individualized prognostic model is warranted for 
LARC patients undergoing NCRT. In recent years, mounting evidence indicated that TME plays a crucial role in tumor progression and 
survival. As a principal cellular component in the TME, CAFs display a high degree of aggressive behaviors and enhanced secretory 
functions [33]. According to recent studies, CAFs confer treatment resistance by secreting cytokines and the delivery of exosomal 
vesicles in colorectal cancer [34–37]. Saigusa et al. reported that the up-regulated expression of biomarkers of CAFs, encompassing 
fibroblast activation protein-α (FAP-α) and stromal cell-derived factor-1, was correlated with a poor prognosis in LARC patients un-
dergoing NCRT [8]. Furthermore, previous studies also identified FAP as a poor predictive factor in colorectal cancer [38]. It is evident 

Fig. 6. External validation of the prognostic risk signature. Kaplan–Meier survival curves between the high- and low-risk subgroups in the 
GSE39582 (A) and GSE38832 datasets (B) and the receiver-operating characteristic curves based on risk scores to predict survival rates in the 
GSE39582 (C) and GSE38832 datasets (D). 

H. Cai et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e28673

9

Fig. 7. Subgroup analysis according to clinicopathological features. Differences in survival rates between the high- and low-risk subgroups in 
patients aged <65 years (A), aged >65 years (B), female (C), male (D), pT0-T2 stage (E), pT3-T4 stage (F), pN0 stage (G), pN + stage (H), pM0 stage 
(I), pM1 stage (J). pCR: pathologic complete response, TNM: tumor-node-metastasis. 

Fig. 8. The ability of the prognostic risk signature to distinguish between the high- and low-risk subgroups. PCA plot (A), tSNE plot (B), and GSEA 
for the high-risk subgroup (C). PCA: principal component analysis, tSNE: t-distributed Stochastic Neighbor Embedding, GSEA: gene set enrich-
ment analysis. 
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that CAF infiltration is correlated with a poor prognosis in colorectal cancer patients. However, to the best of our knowledge, studies 
focusing on prognostic risk signatures based on CAF-related features for LARC patients undergoing NCRT are limited. 

Herein, the level of CAF infiltration was calculated in LARC patients undergoing NCRT using the EPIC algorithm. Significant 
differences in survival rates were observed between the two subgroups, with the clinical outcomes of patients with a high level of CAF 
infiltration being worse. Noteworthily, lymph node metastases and distant metastases were more prevalent in the high CAF proportion 
subgroup, and the degree of immune cell and stromal cell infiltration was higher. Taken together, these findings demonstrate that CAFs 
impact the progression and prognosis of LARC patients undergoing NCRT, with the immunologic microenvironment potentially 
playing a synergistic role. Thus, we postulate that the CAF-related prognostic signature holds considerable application potential. 
Moreover, in the training set, independent prognostic-related genes (SMOC2, TUBAL3, C2CD4A, MAP1B, and BMP8A) were screened 
and identified from DEGs between the high and low CAF proportion subgroups. Following this, an individualized prognostic risk 
signature was constructed based on the expression of prognostic genes and their corresponding coefficients. Notably, this signature was 
accurate in predicting the 1-, 3-, and 5-year CSS rates in both the training and validation sets. Furthermore, a nomogram was con-
structed by combining the signature with independent prognostic factors in order to predict survival. This nomogram may contribute 
to the development of personalized treatment strategies and cancer surveillance. The pro-tumorigenic functions of C2CD4A are well 
documented [39]. Nevertheless, the role of SMOC2 in the progression of rectal cancer remains controversial [40,41]. Furthermore, the 
biological functions of TUBAL3, MAP1B, and BMP8A in rectal cancer remain to be elucidated. 

In addition, the potential mechanism was also explored in the risk subgroups via GSEA analysis, which determined that the high- 
risk subgroup was significantly enriched in cancer-associated pathways, such as angiogenesis, EMT, hypoxia, inflammatory response, 
apoptosis, and TGF-βsignaling pathway. A recent study undertaken by Unterleuthner et al. evinced that CAFs secrete WNT2 that 

Fig. 9. Features of the prognostic risk signature and immune landscape. The correlation between risk scores and CAF-related biomarkers (A) and 
cytokines (B), the difference in stromal scores (C), immune scores (D), and infiltration of immune cells (E–F) between the high- and low-risk 
subgroups, The correlation between risk scores and macrophage subtypes (M0, M1, M2, G-I), The correlation between risk scores and cytokine 
related to M2 macrophages (J). CAF: cancer-associated fibroblasts, *: P < 0.05, **: P < 0.01. 
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promotes tumor angiogenesis in colon cancer [42]. One study indicated that CAFs promote the EMT of colorectal cancer cells by 
exosome-mediated intercellular communication [34]. Similar biologic behavior has also been described in gastric cancer [43], prostate 
cancer [44], and oral cancer [45]. Besides, the hypoxic microenvironment enhances the activity of CAFs, which in turn promotes tumor 
progression [46–48]. Exosomes derived from CAFs enhanced colorectal cancer cell stemness and promoted resistance to radiotherapy 
by activating the TGF-βpathway [37]. These results conjointly suggested the potential mechanisms in the high-risk subgroup. 

It is worthwhile emphasizing that the level of macrophage infiltration was significantly different between the high- and low-risk 
subgroups. Specifically, the degree of M2 macrophage recruitment was higher in the high-risk subgroup. Indeed, macrophages 
constitute tumor-infiltrating immune cell components in the TME and exhibit two polarization states, namely classically activated M1 
subtype and alternatively activated M2 subtype [49]. The former possesses a tumoricidal activity phenotype, whereas the latter 
stimulates tumor progression. The crosstalk between CAFs and macrophages has been described in recent studies. In colorectal cancer, 
the expression of biomarkers of M2 macrophages (CD206, CD163) has been reported to be up-regulated following co-culture with CAFs 
and macrophages [50]. In addition, macrophage colony-stimulating factor was secreted by CAFs to shift macrophages to the M2 
polarization state and promote pancreatic ductal adenocarcinoma cell proliferation, migration, and invasion [51]. CAFs promote 
tumor metastasis and angiogenesis in prostate carcinoma in conjunction with M2 macrophages [52]. Moreover, the killing capacity of 
NK cells was inhibited after the synergistic interaction between CAFs and macrophages, protecting colorectal tumor cells against NK 
cells [50]. In melanoma, CAFs induce a decrease in the killing capacity of NK cells [53]. On the other hand, CAFs were found to be 
implicated in the regulation of T-reg cells, and a high level of T-reg cells was associated with a poor prognosis in lung adenocarcinoma 
[54]. Overall, these findings highlight that CAFs closely interact with immune cells to synergistically affect tumor characteristics, 
warranting further investigation into their role in colorectal cancer. 

Nonetheless, some limitations of this study merit acknowledgment. To begin, the biological function of the five CAF-related genes 

Fig. 10. The correlation between the expression level of SMOC2 (A), TUBAL3 (B), C2CD4A (C), MAP1B (D), and BMP8A (E) and immune cells 
(including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). 
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necessitates further exploration. Secondly, the detailed mechanism underlying intercellular communications between CAFs and im-
mune cells requires further studies. 

5. Conclusion 

A higher CAF proportion was correlated with worse survival in LARC patients undergoing NCRT. Herein, a prognosis risk signature 
was established based on DEGs between the high and low CAF proportion subgroup. Furthermore, a nomogram was developed to 
predict the 1-, 3-, and 5-year CSS rates by incorporating independent prognostic factors into the model. Lastly, the risk model was also 
capable of reflecting differences in the level of immune cell infiltration. 
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CSS cancer-specific survival 
EPIC Estimate the Proportion of Immune and Cancer cells 
LASSO least absolute shrinkage and selection operator 
ssGSEA single sample gene set enrichment analysis 
ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression 
CIBERSORTx Cell-type Identification by Estimating Relative Subsets of RNA Transcripts 
TIMER Tumor Immune Estimation Resource 
TNM Tumor-node-metastasis 
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DEGs differentially expressed genes 
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GEO Gene Expression Omnibus 
FDR false discovery rate 
AUC area under the curve 
ROC receiver-operating characteristic 
C-index concordance index 
RFS relapse-free survival 
PCA principal component analysis 
tSNE t-distributed Stochastic Neighbor Embedding 
T-reg regulatory T 
NK natural killer 
FAP-α fibroblast activation protein-α 
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excision with prognosis of rectal cancer: secondary analysis of the CAO/ARO/AIO-04 phase 3 randomized clinical trial, JAMA Surg 153 (2018) e181607. 
https://10.1001/jamasurg.2018.1607. 

[6] K. Freischlag, Z. Sun, M.A. Adam, J. Kim, M. Palta, B.G. Czito, J. Migaly, C.R. Mantyh, Association between incomplete neoadjuvant radiotherapy and survival 
for patients with locally advanced rectal cancer, JAMA Surg 152 (2017) 558–564. https://10.1001/jamasurg.2017.0010. 

[7] C.C. Chen, M.L. Wu, K.C. Huang, I.P. Huang, Y.L. Chung, The effects of neoadjuvant treatment on the tumor microenvironment in rectal cancer: implications for 
immune activation and therapy response, Clin. Colorectal Cancer 19 (2020) e164–e180. https://10.1016/j.clcc.2020.04.002. 

[8] S. Saigusa, Y. Toiyama, K. Tanaka, T. Yokoe, Y. Okugawa, H. Fujikawa, K. Matsusita, M. Kawamura, Y. Inoue, C. Miki, M. Kusunoki, Cancer-associated 
fibroblasts correlate with poor prognosis in rectal cancer after chemoradiotherapy, Int. J. Oncol. 38 (2011) 655–663. https://10.3892/ijo.2011.906. 

[9] A. Jarosch, U. Sommer, A. Bogner, C. Reißfelder, J. Weitz, M. Krause, G. Folprecht, G.B. Baretton, D.E. Aust, Neoadjuvant radiochemotherapy decreases the total 
amount of tumor infiltrating lymphocytes, but increases the number of CD8+/Granzyme B+ (GrzB) cytotoxic T-cells in rectal cancer, OncoImmunology 7 
(2018) e1393133. https://10.1080/2162402x.2017.1393133. 

[10] Y. Yang, W. Tian, L. Su, P. Li, X. Gong, L. Shi, Q. Zhang, B. Zhao, H. Zhao, Tumor-infiltrating cytotoxic T cells and tumor-associated macrophages correlate with 
the outcomes of neoadjuvant chemoradiotherapy for locally advanced rectal cancer, Front. Oncol. 11 (2021) 743540. https://10.3389/fonc.2021.743540. 

[11] R. Dienstmann, G. Villacampa, A. Sveen, M.J. Mason, D. Niedzwiecki, A. Nesbakken, V. Moreno, R.S. Warren, R.A. Lothe, J. Guinney, Relative contribution of 
clinicopathological variables, genomic markers, transcriptomic subtyping and microenvironment features for outcome prediction in stage II/III colorectal 
cancer, Ann. Oncol. 30 (2019) 1622–1629. https://10.1093/annonc/mdz287. 

[12] E. Sahai, I. Astsaturov, E. Cukierman, D.G. DeNardo, M. Egeblad, R.M. Evans, D. Fearon, F.R. Greten, S.R. Hingorani, T. Hunter, R.O. Hynes, R.K. Jain, 
T. Janowitz, C. Jorgensen, A.C. Kimmelman, M.G. Kolonin, R.G. Maki, R.S. Powers, E. Puré, D.C. Ramirez, R. Scherz-Shouval, M.H. Sherman, S. Stewart, T. 
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