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Abstract

Purpose: To investigate whether volumetric-modulated proton arc therapy (VPAT) plans

generate comparable doses to organs at risk (OARs) compared with interstitial high–

dose-rate (iHDR) brachytherapy for patients with gynecologic cancer with disease

extension to parametrial/pelvic side wall, who are not eligible for the aggressive

procedure.

Materials and Methods: VPAT delivers proton arc beams by modulated energies at the

beam nozzle while maintaining the same incident energy to the gantry during the arc

rotation. Plans of 10 patients previously treated with iHDR brachytherapy for high-risk

clinical treatment volumes (HRCTV; 31.8–110.6 cm3; lateral dimensions, 4.2–5.6 cm)

were selected and compared with VPAT plans. VPAT plans for each patient were

designed using a 152- to 245-MeV range of energy-modulated proton beams.

Results: HRCTV coverage of the VPAT plans was comparable to that of the iHDR

plans, with V150% showing no statistical differences. On average, the V100% and V90%

of VPAT plans were higher than those of the iHDR plans, 95.0% vs 91.9% (P¼ .02) and

98.6% vs 97.5% (P¼ .02), respectively. D100 was also 17% higher for the VPAT plans

(P¼ .03). On average, the D2cm3 of bladder, rectum, and small bowels in the VPAT plans

were considerably lower than those in iHDR plans (by 17.4%, 35.2%, and 65.6%,

respectively; P , .05 for all OARs).

Conclusion: VPAT–generated plans were dosimetrically superior to those with HDR

brachytherapy with interstitial needles for locally advanced gynecologic cancer with

parametrial/pelvic side wall disease extension. Dosimetrically, VPAT provides a

noninvasive alternative to iHDR brachytherapy with a superior dosimetric profile.

Keywords: interstitial brachytherapy; proton arc therapy; locally advanced gynecologic cancer

Introduction
Standard treatment for locally advanced cervical cancer is concurrent chemoradiother-

apy, and radiotherapy consists of external-beam radiotherapy to the pelvis and

brachytherapy. Brachytherapy is an essential component of definitive radiotherapy

because it can deliver very high dose to the cervical tumor with minimizing doses to the

organs at risk (OARs). In multiple, large, national, retrospective data sets in the US, the
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use of brachytherapy declined between 2003 and 2011, whereas the use of intensity-modulated radiotherapy or stereotactic

body radiotherapy instead increased during this period. These data suggested that omission of brachytherapy had a strong

negative impact on survival. Therefore, several guidelines for cervical cancer recommend neither stereotactic body

radiotherapy nor intensity-modulated radiotherapy are a suitable substitute for brachytherapy and should only be considered

for those determined to be ineligible because of complex medical factors [1–3]. Recent developments in image-guided

adaptive brachytherapy have improved treatment results in locally advanced cervical cancer [4]. The conventional tandem-

and-ovoid or -ring approach, however, is often inadequate for treating large or irregular-shaped tumors. Interstitial high–dose-

rate (iHDR) brachytherapy, a technique that combines intracavitary applicators and interstitial needles, is increasingly used [5,

6]. Despite clinical advantages, iHDR brachytherapy has multiple constraints and challenges in daily clinical practice.

Brachytherapy is an invasive procedure, especially when using interstitial needles, which typically requires procedures to be

done in the surgical settings under anesthesia. Plan quality is highly operator and setup dependent [7].

Volumetric-modulated arc therapy (VMAT) has been suggested and implemented as a treatment alternative to gynecologic

brachytherapy [8–11]. Relevant studies have used cylinders [8, 9] and tandem-and-ring or -ovoid [10, 11] configurations.

These studies have shown target coverage with VMAT plans is comparable to that of HDR brachytherapy in terms of coverage

but with more uniform dose homogeneity across the target volume. OAR doses were also reported to be comparable. These

studies concluded that VMAT can be a noninvasive alternative to standard intracavitary brachytherapy. However, the lack of

high-dose heterogeneity that is otherwise seen in brachytherapy plans is likely one of the key limitations supporting routine use

of VMAT. Further, these studies did not evaluate feasibility of using VMAT in patients with bulky parametrial/side wall

extension. Many studies have demonstrated that proton treatment offers approximately 50% to 60% less integral dose than

comparable photon treatment [12–14]. Learning from the photon VMAT comparison studies and from the fact that proton offers

a less-integral dose, we expect that proton arc therapy might be superior to photon arc as an alternative to iHDR

brachytherapy. Several practical and achievable proton arc techniques have been suggested recently [15–18]. Langner et al

[16] and Modiri et al [17] have proposed a proton arc therapy concept using an external energy modulator (EEM). Langner et al

[16] suggested to deliver to a plane at each different gantry angle, while Modiri et al [17] suggested volumetric dose at each

sector of gantry angles, which is called volumetric-modulated proton arc therapy (VPAT; Figure 1A). The concept is briefly

summarized here. A key challenge in proton therapy and even more so in proton arc therapy is switching energies during

beam delivery because the skin-to-target depth changes continuously with gantry movement [19]. VPAT employs continuous

energy-modulated proton beams using an EEM, as shown in Figure 1. Thickness of the modulator in the EEM at any gantry

angle is determined by calculating the depth of the treatment plane from the surface of the gantry angle of the treatment

delivery moment. The energy-modulated proton beam reaches the determined position of each gantry angle while incident

proton energy is maintained at the same level from the beginning to the end of the arc treatment delivery. Monitor units are

programmed in synchrony with the gantry angles and the delivering proton energy, as does the thickness of the EEM. To

perform intensity-modulated proton therapy in VPAT, the optimal energy is determined at each gantry angle and spot

intensities are optimized on the treatment planes of the determined energies.

In addition to the potential for improved target coverage, proton arc therapy may also offer controlled heterogeneity in the

target mimicking the high-dose distributions of intracavitary brachytherapy. In this study, we explored whether the VPAT can

generate clinically acceptable plans that are comparable to iHDR plans for gynecologic cancer with parametrial/pelvic side wall

extension for patients who are ineligible for the iHDR procedure due to complex medical factors. Further, we evaluate if VPAT

can help reduce dose to OARs, such as the bladder, rectum, small bowel, and sigmoid colon, which might have a bearing on

reducing the risk of toxicity. This would have the potential to lead to a decreased risk of fistula formation, a known but

problematic side effect for patients.

Materials and Methods

Patient Data

In our institutional review board–approved study, we analyzed 10 iHDR gynecologic brachytherapy plans, as summarized in

Table 1. The median dimensions for high-risk clinical target volumes (HRCTVs) were 5.0 (maximum [max], 5.6; minimum

[min]: 4.4), 4.2 (5.2, 3.2), and 8.4 (11.2, 5.6) cm for the X, Y, and Z directions, respectively. The median HRCTV was 57.3 cm3

(max, 110.6; min, 31.8). An intrauterine applicator and 6 to 18 needles with an interstitial template were used. Total doses of 20

to 28 Gy in 4 to 5 fractions were prescribed to the HRCTV. Oncentra V3 (Elekta, Stockholm, Sweden) planning system was

used to generate clinical plans.
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Figure 1. Principle of

Volumetric–modulated proton

arc therapy (VPAT). (A)

Energy is modulated while

gantry is moving, (B)

distribution of beams in patient

1, (C) static plan optimization

of 9 to 11 proton beams, and

(D) each energy layer is

assigned as a single beam of

18 interval to make an arc plan.

Table 1. Interstitial high-dose-rate brachytherapy characteristics for study cases.

Number Anatomy Applicator HRCTV, cm3 HRCTV size, cm Needles, n External dose, cGy HDR dose, cGy/Fx

1 EndoCervix Syed 75.7 4.9 3 3.7 3 11.2 15 6660 2000/5

2 Cx Syed 110.6 5.6 3 4.5 3 9.1 18 4500 þ 1000 2625/5

3 Cx Syed 81.7 5.1 3 3.4 3 9.5 16 4500 þ 1000 2250/5

4 Vagina Syed 79.0 5.0 3 4.6 3 7.0 16 5040 þ 540 2250/5

5 Endometrium Syed 54.8 5.3 3 3.2 3 8.6 10 No ext 2500/5

6 Vagina Syed 87.6 5 3 3.8 3 8.7 14 5040 þ 840 2500/5

7 EndoCervix Venezia 64.1 4.9 3 5.2 3 5.6 7 4500 þ 900 2800/4

8 Cx Venezia 32.0 4.4 3 4.7 3 8.2 7 4500 2800/4

9 Cx Venezia 50.5 5.6 3 4.6 3 6.8 6 4500 þ 1000 2800/4

10 Cx Syed 47.0 4.7 3 3.7 3 5.7 10 4500 þ 540 2250/5

Abbreviations: HRCTV, high-risk clinical treatment volumes; HDR, high-dose rate.
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VPAT Planning for iHDR Cases

The RayStation V8.0A (RaySearch, Stockholm, Sweden) planning system was used to generate VPAT plans. A script and

workflow steps were developed to simulate the VPAT optimization plans and are summarized here as follows:

Step 1: Generate a plan with static multiple beams with different gantry angles (Figure 1C).

1. Nine to 11 proton beams, evenly spaced at approximately 308 intervals, were generated. No beams were assigned to

anterior and posterior directions to avoid beams directed to the bladder or rectum. Ranges of gantry angles of avoidance

were manually selected.

2. Single-field optimization was used, if possible.

3. Planning objectives were to achieve 95% of HRCTV receives 100% of the prescribed dose and dose to 2 cm3 of bladder,

rectum, and small bowel limited to or less than iHDR doses.

Step 2: Convert the optimized plan to an arc plan (Figures 1B and 1D)

4. Each energy layer was split into 18 intervals to create an arc plan.

5. Dose distributions were recalculated to determine whether the plan maintained the same dose distribution as the static-field

plan,

6. A robustness test of 3-mm/3.5% was applied.

Constraints for heterogeneous dose distributions in the target were applied to achieve a V150% in the HRCTV like that in

the HDR plans.

Statistical Analysis

All the VPAT plans were normalized to deliver 100% of the prescribed dose to 95% of HRCTV. The plans between the VPAT

and the iHDR were compared. HRCTV dose parameters such as V150, V100, V90, and D100 were used to compare the plans

and D2cm3 of bladder, rectum, and small bowels were used for OAR dose comparisons. Student t test was used to determine

the significance between the 2 plans using a 95% confidence level.

Results
Energies used in the planning were in the range of 152 to 220 MeV, with a maximum variation of energy modulation of 55 MeV

per patient, except for a single, large patient in whom energy ranged between 175 and 245 MeV, with maximum energy

variation of 70 MeV.

Figure 2 shows typical dose distributions and dose–volume histograms (DVHs) of the iHDR and VPAT plans.

Heterogeneous dose distributions in the HRCTV, V150 were similarly achieved (average difference less than 8%) with the

VPAT and iHDR plans. Table 2 summarizes the dosimetric results for targets and OARs. No significant differences in the

V150% were observed between the 2 plans. In contrast, significant differences were seen in D100, D90, V100, and V90

between the 2 plans. V100% was always maintained at 95% for VPAT plans, whereas these percentages varied from 82.9% to

96% for iHDR plans. V90% and D100 for the VPAT plans were higher than those for iHDR plans. The differences for V100%

and V90% were statistically significant but the differences were only 2% to 3%. The worst scenario in the robustness tests with

3-mm/3.5% for VPAT reduced V100% by 5% on average. This was still comparable to the performance of iHDR.

All OARs received significantly lower doses (P , .05 for all) in VPAT than in iHDR plans. D2cm3 values were reduced by

17.4%, 35.2%, and 65.6% for bladder, rectum, and small bowels, respectively. Small bowel or bladder doses of some cases in

Table 2 were less than 10 cGy for both plans, and these cases were not used in calculating P values.

Discussion
In HDR brachytherapy, high doses are delivered to tumor while limiting doses to OARs (especially those proximate to the

target) by generating a steep dose gradient. However, HDR brachytherapy is an invasive procedure, with interstitial HDR

procedures being even more invasive. Interstitial HDR is associated with increased health care costs related to an inpatient

hospitalization. Moreover, dose optimization is not feasible for iHDR planning in areas with no needles—where there are no

needles, there is no doses. In the case shown in Figure 2B, for example, it is not possible for an iHDR plan to cover the

HRCTV unless a needle is at the region of interest whereas VPAT plans do not have that limitation for adjusting the dose
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distribution, as shown in Figure 2A. Adding needles during the planning procedure is not a feasible option; the depth of the

needles can be adjusted only at the imaging phase [20]. During planning, the dwell times of the source positions in the

needles can be flexibly adjusted. Allocating needles to the right places is always a challenging task. For the 10 cases used

in this study, 119 needles were inserted, and 20 needles were not used during planning (i.e., on average, 12 needles per

patient were used and 2 needles were not used). Analysis of HRCTV volume vs number of needles indicates that 1.7

needles are used in the planning for every 10 cm3 of treatment volume and shows a strong correlation (0.74) between

treatment volume and number of needles used in planning. Having more needles is always better than fewer in planning,

increasing flexibility in optimization. Not all inserted needles were used in planning. When including both used and unused

needles the total becomes 2.0 needles/10 cm3. A fast dose gradient is expected in photon VMAT when the target size is

small. For typical brachytherapy cases with cylinders, the diameter of the target is usually less than 4 cm. Planning

comparison studies between VMAT and HDR typically use cylinders of 2 to 4 cm in diameter to generate comparable dose

gradients outside the target [8–11]. In iHDR brachytherapy, however, the diameter of the HRCTV is 5 cm or larger (Table 1).

As it is shown for the cases of cylinders, rings, or ovoids, VMAT might have the advantage of flexibility in tailoring dose

distributions in the target when treating gynecologic cancer with parametrial or pelvic side wall extension, because it does

not have the limitation of needle locations. However, because of the size of the target, a slow dose gradient outside the

target volume is expected. Proton beam treatment promises less integral dose than photons [12–14] because the proton

Figure 2. Plan comparison of

(A) volumetric-modulated

proton arc therapy (VPAT) and

(B) interstitial high-dose-rate

(iHDR) plans of patient 1 and

(C) dose–volume histograms

(DVH) comparisons. Solid

thick lines represent the DVH

curves from iHDR plan and

dotted are those from VPAT

plan. Thin lines are from 3mm/

3.5% robust plans of VPAT.

VPAT achieved lower organ-

at-risk doses with better high-

risk clinical target volume

coverage in the DVH. In the

VPAT robust plans, V100 of

the worst-case scenario

decreased by 5%, which was

still comparable to the iHDR

plan.
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beam exit component is negligible. Therefore, proton arc therapy has a dosimetric advantage in pursuing alternative to iHDR

brachytherapy than photon VMAT. Average dose of 10 cm from the center showed less than 5% of the prescribed dose.

Clinical meaning of this low dose needs to be investigated in the further study. For iHDR plans, the dose calculation range is

often less that 10 cm from the center, which means that the iHDR dose far from the center of the HRCTV is regarded as

clinically insignificant.

It was the goal of this study to determine whether a proton arc plan can achieve dose quality equivalent to that of an iHDR

plan. An exact comparison between an external-beam plan and an HDR plan is challenging because of the following factors:

(1) dose heterogeneity; (2) patient size dependency of OAR doses; (3) target size dependency of dose gradients; and (4)

robustness evaluation. Dose is heterogeneous across the target in a typical HDR plan. A high dose in the target area may

increase the chance of tumor eradication. To achieve this effect, the VPAT plans were designed to have a higher dose at the

center of the target. A limitation of this paper is still less dose heterogeneity across the HRCTV than that of iHDR. For a HDR

plan, the dose at the source dwell points can easily be several times higher than the prescribed dose. It was not the goal of

proton arc planning to achieve extremely high doses in the target. For practical reasons, VPAT plans were designed to

generate V150 like HDR plans. As we can see in Table 2, dose heterogeneity in the HRCTV in the VPAT plans is comparable

to that of iHDR plans. Further study may be needed to determine how high the proton plans should go to achieve the same

clinical effect as iHDR brachytherapy; this is beyond the scope of this paper. Patient size is an important contributing factor to

integral dose for external-beam treatment, whereas the size is not an issue for HDR brachytherapy.

Another limitation of this paper is that intrafractional organ motion has not been considered in 3-mm robust test.

Haripotepornkul et al [21] reported that the intrafractional motion range is average 2.9 mm in anterior-posterior direction and up

to 15 mm for each direction during intensity modulated radiation therapy (IMRT). Holding organ motions during the treatments

is one of the key tasks to make the proton arc therapy as an alternate solution. Either applying fiducial marker object in the

uterus [22], or vaginal fixation device [23] can be considered for this purpose. Further study on developing the method and its

dosimetric effect is necessary.

Dosimetric effects of interfractional displacement of source or needle positions is often ignored in iHDR treatment. Tambas

et al [24] reported that 68% of needles shifted 2 6 2.3 mm, and other researchers have reported shifts up to 5 mm [25–27].

Such shifts alter dose distribution and are comparable to the typical robustness range of a proton plan of 3 mm/3.5%.

Degradation of V100 up to 5% for a worst-case scenario of VPAT has been identified in this study. It is still comparable to iHDR

plans, with the assumption of no displacement of source positions during the iHDR treatments. It is not standard practice to

routinely evaluate plan robustness in iHDR. Plan quality will be decreased if needle position uncertainty is included in iHDR

plan evaluation.

Two other types of proton arc delivery methods have been introduced in literature. Bertolet and Carabe [18] described

proton monoenergetic arc therapy (PMAT). PMAT delivers the same energy for a segment of angles and then switches the

Table 2. Plan comparisons between high-risk clinical target volume (HRCTV) coverage and organs at risk (OARs) doses

Number

HRCTV OARs

V150 (%) V100 (%) V90 (%) D100 (cGy) Bladder D2cm3 Rectum D2cm3 Sm Bowel D2cm3

HDR Proton HDR Proton HDR Proton HDR Proton HDR Proton HDR Proton HDR Proton

1 48.1 49.0 82.9 95.0 90.1 98.0 916 1183 2416 1978 1381 1114 453 62

2 47.9 63.0 93.6 95.0 97.5 97.9 1630 1784 2360 1838 1825 1601 815 89

3 49.5 68.5 90.2 95.0 96.0 98.0 1481 1883 2267 1769 1479 1003 697 71

4 31.6 36.0 91.4 95.0 96.9 100.0 1391 2095 1407 1443 1269 1043 ,10 ,10

5 91.6 34.0 92.7 95.0 95.0 99.1 1183 1858 2279 1193 1087 840 472 55

6 60.0 65.0 93.7 95.0 97.1 99.5 1508 2386 2338 2209 1488 620 734 248

7 53.0 48.0 88.0 95.0 95.0 97.7 1929 2295 1861 1324 1359 567 ,10 ,10

8 60.8 49.5 94.3 95.0 98.9 98.6 2268 1916 2026 1499 1282 744 1145 430

9 57.9 46.0 96.0 95.0 99.1 98.5 2086 1873 2112 1990 1676 730 620 63

10 63.5 63.7 96.0 95.0 99.7 98.9 1688 1643 ,10 ,10 1410 947 389 62

Mean 56.4 52.3 91.9 95.0 96.5 98.6 1608 1892 2118 1694 1426 921 666 135

P value .28 .02 .02 .03 .002 ,.001 ,.001

Abbreviation: HDR, high-dose rate.
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energy. Ding et al [15] proposed spot-scanning proton arc (SPArc) therapy, which optimizes control points and energy layers

by iterations. Both methods require frequent energy switching. SPArc tries the energy-switching downward to reduce delivery

time, since increasing energy takes longer than decreasing. As seen in Figure 4, frequent energy up and down is required to

deliver plans suggested in this study, making both PMAT and SPArc extremely inefficient or longer treatment time due to

frequent energy switching. VPAT, however, provides a flexible solution of energy change, because it uses a single energy

throughout the arc and delivered energy is modulated by an EEM for which energy switching time is negligible, regardless of

increasing or decreasing energies. Among the proposed methods, VPAT is the most efficient for delivering proton arc plans as

an alternative to HDR brachytherapy, considering energy switching efficiency.

Conclusion
Proton arc treatment plans for patients with locally advanced gynecologic cancer with parametrial or pelvic side wall extension

showed equivalent and acceptable dosimetric results compared with iHDR plans. HRCTV coverage was comparable or better

with the proton plans for V150%, V100%, V90%, and D100%. All OAR doses, including those to rectum, bladder, and small

bowels, showed significant reductions (P , .05 for all OARs). VPAT can provide a noninvasive alternative to iHDR

brachytherapy with equivalent dosimetric profile.

Figure 3. Volumetric-modulated proton arc therapy (VPAT) (A) and interstitial high-dose-rate (iHDR) (B) plans in patient 6. Because the source was

located near arrow A, the target was well covered in both plans. The iHDR plan showed less coverage near arrow B, whereas the VPAT plan covered

the target volume well.

Figure 4. Energy distributions per gantry angles for the high-

efficiency volumetric-modulated proton arc therapy plan in Case 10.

Energy is modulated for every gantry angle.
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Pötter R, Lindegaard JC, Tanderup K. Image guided adaptive brachytherapy with combined intracavitary and interstitial

technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study.

Radiother Oncol. 2016;120:434–40.

5. Murakami N, Kobayashi K, Shima S, Tsuchida K, Kashihara T, Tselis N, Umezawa R, Takahashi K, Inaba K, Ito Y,

Igaki H, Nakayama Y, Masui K, Yoshida K, Kato T, Itami J. A hybrid technique of intracavitary and interstitial

brachytherapy for locally advanced cervical cancer: initial outcomes of a single-institute experience. BMC Cancer.

2019;19:221.

6. Dimopoulos JC, Kirisits C, Petric P, Georg P, Lang S, Berger D, Pötter R. The Vienna applicator for combined intracavitary

and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys.

2006;66:83–90.

7. Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guérin F, Dumas I, Bossi A, Morice P, Viswanathan AN, Haie-
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